Том 8, № 3Страницы 148 - 154 Уравнения Осколкова на геометрических графах как математическая модель дорожного движения
Г.А. Свиридюк, С.А. Загребина, А.С. КонкинаВ настоящее время возникла необходимость создания адекватной математической модели, описывающей дорожное движение. Математическая теория управления транспортными потоками сейчас активно развивается в работах школы А.Б. Куржанского, где транспортный поток уподобляется несжимаемой жидкости, и, как следствие, рассматриваются гидродинамические модели, основанные, например, на системе Навье - Стокса. В отличие от упомянутого направления авторы этой статьи помимо несомненных свойств транспортного потока, рассматриваемых ранее, таких как вязкость и несжимаемость, предлагают учитывать еще и его упругость. Действительно, при включении запрещающего сигнала светофора транспортные средства мгновенно не останавливаются, а плавно снижают скорость вплоть до остановки, накапливаясь перед стоп-линией. Аналогично при включении разрешающего сигнала светофора транспортные средства не стартуют мгновенно и одновременно, а трогаются с места друг за другом, постепенно набирая скорость. Тем самым транспортный поток проявляет эффект ретардации, свойственный вязкоупругим несжимаемым жидкостям, которые описываются системой уравнений Осколкова.
В первой части статьи обосновывается линейная математическая модель, т.е. конвективные члены в уравнениях Осколкова отсутствуют. В контексте модели это означает, что перестроениями транспортных средств можно пренебречь. Во второй части модель исследуется на качественном уровне, т.е. формулируется теорема о существовании единственного решения поставленной задачи и приводятся наброски ее доказательства.
Полный текст- Ключевые слова
- уравнения Осколкова; геометрические графы; задача Коши; транспортные потоки.
- Литература
- 1. Куржанский А. Б. Текущие задачи динамики и теории управления, мотивации, теория и вычисления. Дорожная карта [Электронный ресурс]: пленар. докл. на заседании 'П1 - БКЗ Общее пленарное заседание 1' / А.Б. Куржанский // XII Всерос. совещание по проблемам управления, Россия, Москва, ИПУ РАН, 16-19 июня 2014 г. - Режим доступа: http://vspu2014.ipu.ru/conference/section_meeting_pubs?target=7860. - 09.07.2015
2. Введение в математическое моделирование транспортных потоков: учеб. пособие / Гасников А.В., Кленов С.Л., Нурминский Е.А. и др.; приложения: Бланк М.Л., Гасникова Е.В., Замятин А.А. и др.; под ред. А.В. Гасникова. - М.: МФТИ, 2010. - 362 с.
3. Осколков, А.П. О некоторых нестационарных линейных и квазилинейных системах, встречающихся при изучении движения вязких жидкостей / Осколков А.П. // Зап. науч. сем. ЛОМИ. - 1976. - Т. 59. - С. 133-177.
4. Дифференциальные уравнения на геометрических графах: монография / Ю.В. Покорный, О.М. Пенкин, В.Л. Прядиев и др. - М.: Физматлит, 2004. - 268 с.
5. Свиридюк Г.А. Фазовое пространство одной неклассической модели / Г.А. Свиридюк, В.В. Шеметова // Изв. вузов. Математика. - 2005. - № 11. - С. 47-52.
6. Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators / G.A. Sviridyuk, V.E. Fedorov. - Utrecht; Boston; Koln; Tokyo: VSP, 2003.
7. Zagrebina, S.A. The Stochastic Linear Oskolkov Model of the Oil Transportation by the Pipeline / S.A. Zagrebina, E.A. Soldatova, G.A. Sviridyuk // Semigroups of Operators - Theory and Applications / [International Conference], Bedlewo, Poland, Oktober 2013. - Heidelberg; New York; Dordrecht; London: Springer International Publishing Switzerland, 2015. - P. 317-325. - (Springer Proceedings in Mathematics & Statistics; vol. 113).
8. Манакова, Н.А. Задачи оптимального управления для уравнений соболевского типа / Н.А. Манакова. - Челябинск: Изд. Центр ЮУрГУ, 2012. - 88 с.
9. Сагадеева, М.А. Дихотомии решений линейных уравнений соболевского типа / М.А. Сагадеева. - Челябинск: Изд. Центр ЮУрГУ, 2012. - 107 с.
10. Замышляева, А.А. Линейные уравнения соболевского типа высокого порядка / А.А. Замышляева. - Челябинск: Изд. Центр ЮУрГУ, 2012. - 107 с.
11. Келлер, А.В. Численное исследование задач оптимального управления для моделей леонтьевского типа: дис. ... д-ра физ.-мат. наук : 05.13.18 / А.В. Келлер; Южно-Уральский государственный университет. - Челябинск, 2011.
12. Шестаков, А.Л. Численное решение задачи оптимального измерения / А.Л. Шестаков, А.В. Келлер, Е.И. Назарова // Автоматика и телемеханика. - 2011. - № 12. - С. 56-68.
13. Шестаков А.Л. Математическое моделирование состава строительных смесей с заданными свойствами /А.Л. Шестаков, Г.А. Свиридюк, М.Д. Бутакова // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2015. - Т. 8, № 1. - С. 50-56.
14. Осколков, А.П. Нелокальные проблемы для одного класса нелинейных операторных уравнений, возникающих в теории уравнений типа С.Л. Соболева / Осколков А.П. // Зап. науч. сем. ЛОМИ. - 1991. - Т. 198. - С. 31-48.
15. Favini A. First Order Regular and Degenerate Identification Differential Problems / A. Favini, A. Lorenzi, H. Tanabe // Abstract and Applied Analysis. - 2015. - Article ID 393624, 42 p.