Том 8, № 4Страницы 120 - 126

Оптимальное управление для одной математической модели распространения нервного импульса

Н.А. Манакова, О.В. Гаврилова
В статье изучается вопрос существования оптимального управления для одной математической модели, которая была предложена Р. Фитц Хью и Дж.М. Нагумо для моделирования распространения нервного импульса. Данная модель относится к классу моделей 'реакции-диффузии', которые моделируют широкий класс процессов, таких как химические реакции с диффузией и распространение нервного импульса. В случае асимптотической устойчивости изучаемой модели и в предположении, что скорость изменения одной компоненты существенно превосходит скорость другой, изучаемая модель может быть сведена к задаче оптимального управления для полулинейного уравнения соболевского типа с начальным условием Шоуолтера - Сидорова. В работе доказано существование единственного слабого обобщенного решения рассматриваемой модели с начальным условием Шоуолтера - Сидорова и существование оптимального управления.
Полный текст
Ключевые слова
уравнения соболевского типа; оптимальное управление; уравнения реакции-диффузии.
Литература
1. Fitz Hugh, R. Mathematical Models of Threshold Phenomena in the Nerve Membrane / R. Fitz Hugh // Bulletin of Mathematical Biology. - 1955. - V. 17, № 4. - P. 257-278.
2. Nagumo, J. An Active Pulse Transmission Line Simulating Nerve Axon / J. Nagumo, S. Arimoto, S. Yoshizawa // Proceedings of the IRE. - 1962. - V. 50, № 10 - P. 2061-2070.
3. Бокарева, Т.А. Сборки Уитни фазовых пространств некоторых полулинейных уравнений типа Соболева / Т.А. Бокарева, Г.А. Свиридюк // Математические заметки. - 1994. - Т. 55, № 3. - С. 3-10.
4. Линейные и нелинейные уравнения соболевского типа / А.Г. Свешников, А.Б. Альшин, М.О. Корпусов, Ю.Д. Плетнер. - М.: ФИЗМАТЛИТ, 2007. - 736 с.
5. Лионс, Ж.-Л. Некоторые методы решения нелинейных краевых задач / Ж.-Л. Лионс. - М.: Мир, 1972. - 587 c.
6. Свиридюк, Г.А. / Оптимальное управление линейными уравнениями типа Соболева с относительно p-секториальными операторами / Г.А. Свиридюк, А.А. Ефремов // Дифференциальные уравнения. - 1995. - Т. 31, № 11. - С. 1912-1919.
7. Келлер, А.В. Численное решение задач оптимального и жесткого управления для одной нестационарной системы леонтьевского типа / А.В. Келлер, М.А. Сагадеева // Научные ведомости Белгородского гос. ун-та. Серия: Математика. Физика. - 2013. - Т. 32, № 19. - C. 57-66.
8. Свиридюк, Г.А. О разрешимости сингулярной системы обыкновенных дифференциальных уравнений / Г.А. Свиридюк // Дифференциальные уравнения. - 1987. - Т. 23, № 9. - С. 1637-1639.