Том 9, № 4Страницы 105 - 116

Математическое моделирование вихреобразования в проточной части расходомера, выбор оптимальной модели турбулентности

А.Л. Карташев, А.А. Кривоногов
Статья посвящена математическому моделированию процессов, происходящих в проточной части вихревого расходомера при помощи конечно-элементных методов. Актуальность обусловлена недостатком информации по этому направлению на данный момент.
Проведен анализ современных источников информации по исследованию процессов нестационарного вихреобразования и других гидрогазодинамических эффектов в проточной части вихревого расходомера и подобных устройствах. Приведено краткое описание процесса вихреобразования за телом обтекания, расположенном в трубопроводе круглого сечения. Приведены основные критерии работоспособности изделия.
Рассмотрены различные математические модели для описания турбулентных течений в трубах с препятствием, проанализированы программные пакеты, на базе которых возможно моделирование нестационарных турбулентных течений.
Проточная часть была смоделирована в программном комплексе ANSYS в модуле CFX для жидкости и газа, с применением различных подходов к математическому моделированию. В статье приводится краткое описание по основным настройкам расчетной области, по построению сетки и заданию начальных и граничных условий. Для верификации численных расчетов проводились физические эксперименты на проливочных установках и на газовом стенде. Для этого были изготовлены и протестированы образцы, соответствующие численным моделям.
По результатам исследований было установлено, что наиболее оптимальным подходом, с точки зрения точности и времени расчета, при численном моделировании процессов вихреобразования (дорожки Кармана) в вихревом расходомере является использование осредненной по Рейнольдсу системы уравнений Навье - Стокса, которая замыкается при помощи моделей турбулентности $k-{varepsilon}$, что подтверждается сравнением с экспериментом.
Полный текст
Ключевые слова
математическое моделирование; вихревые расходомеры; модель турбулентности; тело обтекания; проточная часть.
Литература
1. Кремлевский, П.П. Расходомеры и счетчики количества / П.П. Кремлевский. - Л.: Машиностроение, 1989. - 701 с.
2. Baker, R.C. Flow Measurement Handbook / R.C. Baker. - N.-Y.: Cambridge University Press, 2000. - 524 p.
3. Кремлевский, П.П. Расходомеры и счетчики количества веществ. Кн. 1 / П.П. Кремлевский - СПб.: Политехника, 2002. - 409 с.
4. Карташев, А.Л. Исследование пространственных гидрогазодинамических эффектов в проточной части вихревого расходомера / А.Л. Карташев, А.А. Кривоногов // Вестник ЮУрГУ. Серия: Машиностроение. - 2015.- Т. 15, № 4. - С. 5-13. DOI: 10.14529/engin150401
5. Фабер, Т.Е. Гидроаэродинамика / Т.Е. Фабер. - М: Постмаркет, 2001. - 560 с.
6. Карташев, А.Л. Исследование пространственных гидродинамических эффектов в проточной части вихревого расходомера и оценка возможности их численного моделирования [Электронный ресурс] / А.Л. Карташев, А.А. Кривоногов // Наука ЮУрГУ. Секция технических наук. Материалы 66-й научной конференции, 2014. - С. 33-40. - URL: http: // dspace.susu.ru/xmlui/bitstream/handle/0001.74/4287/3.pdf (дата обращения: 8.05.2016)
7. Использование численных методов моделирования при разработке вихревых расходомеров / В.Д. Богданов, А.В. Конюхов, А.А. Кривоногов, Е.В. Сафонов, В.А. Дорохов // Датчики и системы. - 2012. - № 8 (159). - С. 40-43.
8. Снегирев, А.Ю. Высокопроизводительные вычисления в технической физике. Численное моделирование турбулентных течений / А.Ю. Снегирев. - СПб.: Изд-во Политехн. ун-та, 2009. - 143 с.
9. Bailly, C. Turbulence / C.Bally, G. Comete-Bellot. - Springer International Publishing, 2015. - 360 p.
10. Spalart, P.R. Strategies for Turbulence Modelling and Simulations / P.R. Spalart // International Journal of Heat and Fluid Flow. - 2000. - V. 21. - P. 252-263.
11. Wilcox, D.C. Turbulence Modelling for CFD / D.C. Wilcox. - La Canada, California: DCW Industries Inc., 1998. - 477 p.
12. Spalart, P.R. A One-Equation Turbulence Model for Aerodynamic Flows / P.R. Spalart, S.R. Allmaras // Technical Report AIAA-92-0439. 30th Aerospace Scinces Meeting and Exibit, 1992. - 22 p.
13. Launder, B.E. Lectures in Mathematical Models of Turbulence / B.E. Launder, D.B. Spalding. - London: Academic Press, 1972. - 169 p.
14. Лапин, Ю.В. Внутренние течения газовых смесей / Ю.В. Лапин, М.Х. Стрелец. - М.: Наука, 1989. - 368 c.
15. Pope, S.B. Turbulent Flows / S.B. Pope. - Cambridge: Cambridge Univ. Press, 2000. - 771 p.
16. Renormalization Group Modelling and Turbulence Simulations / S.A. Orszag, V. Yakhot, W.S. Flannery, F. Boysan, D. Choudhury, J. Maruzewski, B. Patel // International Conference on Near-Wall Turbulent Flows. - Tempe, Arizona, 1993. - P. 1031-1046.
17. Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications / F.R. Menter // AIAA Journal. - 1994.- V. 32, № 8. - P. 1598-1605.
18. Menter, F.R. Eddy Viscosity Transport Equations and their Relation to the Model / F.R. Menter // ASME Journal of Fluids Engineering. - 1997. - V. 119, № 4. - P. 876-884.
19. Menter, F.R. Ten Years of Experience with the SST Turbulence Model / F.R. Menter, M. Kuntz, R. Langtry // Turbulence, Heat and Mass Transfer 4. - Begell House Inc. - 2003. - P. 625-632.
20. Menter, F.R. Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective / F.R. Menter // International Journal of Computational Fluid Dynamics. - 2009. - V. 23, № 4. - P. 305-316.
21. A New $k-varepsilon$ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation / T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu // Computers and Fluids. - 1995. - V. 24, № 3. - P. 227-238.
22. Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets / M. Behnia, S. Parneix, Y. Shabany, P.A. Durbin // International Jounal of Heat and Fluid Flow. - 1999. - V. 20, № 1. - P. 1-9.