Том 11, № 1Страницы 5 - 14

The Cauchy Problem for the Sobolev Type Equation of Higher Order

A.A. Zamyshlyaeva, E.V. Bychkov
В статье исследована полулинейная математическая модель ионно-звуковых волн в плазме на основе разрешимости задачи Коши для абстрактного полного полулинейного уравнения соболевского типа высокого порядка. Используется теория относительно полиномиально ограниченных пучков операторов, теория дифференцируемых банаховых многообразий и метод фазового пространства. Построены проекторы, расщепляющие пространство в прямую сумму, и уравнение на два эквивалентных уравнения. Одно из уравнений определяет фазовое пространство, и его решением является функция со значениями из собственного подпространства оператора при старшей производной по времени. Решением второго уравнения является функция со значениями из образа проектора. Таким образом, были получены достаточные условия разрешимости изучаемой задачи. В качестве приложения рассмотрено уравнение четвертого порядка с сингулярным оператором при старшей производной по времени, лежащее в основе математической модели ионно-звуковых волн в плазме. Редуцировав модельную задачу к абстрактной, были получены достаточные условия существования единственного решения полулинейной математической модели ионно-звуковых волн в плазме.
Полный текст
Ключевые слова
уравнение соболевского типа высокого порядка; полулинейное уравнение; полиномиальный пучок операторов; метод фазового пространства.
Литература
1. Замышляева, А.А. Вычислительный эксперимент для одной математической модели ионно-звуковых волн / A.A. Замышляева, А.С. Муравьев // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2015. - Т. 8, № 2. - С. 127-132.
2. Свиридюк, Г.А. Фазовые пространства одного класса операторных полулинейных уравнений типа Соболева / Г.А. Свиридюк, Т.Г. Сукачева // Дифференциальные уравнения. - 1990. - Т. 26, № 2. - С. 250-258.
3. Замышляева, А.А. Линейные уравнения соболевского типа высокого порядка / А.А. Замышляева. - Челябинск: Издательский центр ЮУрГУ, 2012.
4. Свиридюк, Г.А. О галеркинских приближениях сингулярных уравнений типа Соболева / Г.А. Свиридюк, Т.Г. Сукачева // Известия высших учебных заведений. Математика. - 1989. - № 10. - С. 44.
5. Манакова, Н.А. О решении задачи Коши - Дирихле для уравнения Баренблатта - Гильмана / Н.А. Манакова, Е.А. Богатырева // Известия Иркутского государственного университета. Серия: Математика. - 2014. - Т. 7. - С. 52-60.
6. Манакова, Н.А. Оптимальное управление решениями начально-конечной задачи для линейной модели Хоффа / Н.А. Манакова, А.Г. Дыльков // Математические заметки. - 2013. - Т. 94, №,2. - С. 225-236.
7. Келлер, А.В. Задача оптимального измерения для модели измерительного устройства для модели измерительного устройства с детерминированным воздействием и инерционностью / А.В. Келлер, М.А. Сагадеева // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2014. - Т. 7, № 1. - С. 134-138.
8. Свиридюк, Г.А. Фазовые пространства одного класса линейных уравнений соболевского типа высокого порядка / Г.А. Свиридюк, А.А. Замышляева// Дифференциальные уравнения. - 2006. - Т. 42, № 2. - С. 252-260.
9. Ленг, С. Введение в теорию дифференцируемых банаховых многообразий / C. Ленг. - М.: Мир, 1967.
10. Замышляева, А.А. Фазовое пространство уравнения соболевского типа высокого порядка / А.А. Замышляева // Известия Иркутского государственного университета. Серия: Математика. - 2011. - Т. 4, № 4. - С. 45-57.
11. Ниренберг, Л. Лекции по нелинейному функциональному анализу / Л. Ниренберг. - М.: Мир, 1980.