Том 12, № 2Страницы 123 - 135 Numerical Modelling of the Dynamics of the Galactic Halos in the Colliding Galaxies
S.S. Khrapov, A.V. Khoperskov, V.I. KorchaginИзучено поведение горячего коронального газа в сталкивающихся галактиках с "живыми гало" темной материи на основе параллельного трехмерного моделирования самосогласованной динамики N-тел и газа. Рассмотрены различные сценарии галактических столкновений, в том числе центрального и нецентрального, и использовались разные значения начальных скоростей сталкивающихся галактик. Показано, что с учетом собственной гравитации столкновения газообразных и звездных компонентов не приводит к образованию газовой "протогалактики", наблюдаемой в некоторых численных моделях. Также показано, что около шестидесяти процентов горячего газа гало вытесняется в межгалактическое пространство во время столкновения. При численном моделировании наблюдается значительный обмен газом (до 70% для лобовых столкновений) между двумя сталкивающимися галактиками.
Полный текст- Ключевые слова
- Multi-GPU; OpenMP-CUDA; GPU-Direct; NVIDIA TESLA; задача N-тел; SPH; сталкивающиеся галактики.
- Литература
- 1. Norman C., Silk J. Interstellar Bullets - H2O Masers and Herbig-Haro Objects. Astrophysical Journal, 1979, vol. 228, pp. 197-205. DOI: 10.1086/156836
2. Mathews W.G., Brighenti F. Hot Gas in and Around Elliptical Galaxies. Annual Review of Astronomy and Astrophysic, 2003, vol. 41, pp. 191-239. DOI: 10.1146/annurev.astro.41.090401.094542
3. O'Sullivan E., Forbes D.A., Ponman T.J. A Catalogue and Analysis of X-Ray Luminosities of Early-Type Galaxies. Monthly Notices of the Royal Astronomical Society, 2001, vol. 328, pp. 461-484. DOI: 10.1046/j.1365-8711.2001.04890.x
4. Fukugita M., Hogan C.J., Peebles P.J.E. The Cosmic Baryon Budget. The Astrophysical Journal, 1998, vol. 503, pp. 518-530. DOI: 10.1086/306025
5. Fukugita M., Peebles P.J.E. The Cosmic Energy Inventory. The Astrophysical Journal, 2004, vol. 616, pp. 643-668. DOI: 10.1086/425155
6. Sinha M., Holley-Bockelmann K. Numerical Simulations of Hot Halo Gas in Galaxy Mergers. Galaxy Evolution: Emerging Insights and Future Challenges ASP Conference Series, 2009, vol. 419, pp. 263-266. DOI: 10.1063/1.3458479
7. Tutukov A.V., Lazareva G.G., Kulikov I.M. Gas Dynamics of a Central Collision of Two Galaxies: Merger, Disruption, Passage and the Formation of a New Galaxy. Astronomy Reports, 2011, vol. 55, pp. 770-783. DOI: 10.1134/S1063772911090083
8. Vshivkov V.A., Lazareva G.G., Snytnikov A.V., Kulikov I.M., Tutukov A.V. Hydrodynamical Code for Numerical Simulation of the Gas Components of Colliding Galaxies. The Astrophysical Journal Supplement, 2011, vol. 194, p. 47. DOI: 10.1088/0067-0049/194/2/47
9. Hwang J.-S., Park C. Effects of Hot Halo Gas on Star Formation and Mass Transfer During Distant Galaxy-Galaxy Encounters. The Astrophysical Journal, 2015, vol. 805, p. 131. DOI: 10.1088/0004-637X/805/2/131
10. Sawada K., Matsuda T., Hachisu I. Spiral Shocks on a Roche Lobe Overflow in a Semi-Detached Binary System. Monthly Notices of the Royal Astronomical Society, 1986, vol. 219, pp. 75-88. DOI: 10.1093/mnras/219.1.75
11. Bisikalo D.V., Boyarchuk A.A., Kuznetsov O. A., Chechetkin V.M. The Effect of Viscosity on the Flow Morphology in Semidetached Binary Systems. Results of 3D Simulations. II. Astronomy Reports, 2000, vol. 44, pp. 26-35. DOI: 10.1134/1.163824
12. Khoperskov S.A., Khoperskov A.V., Eremin M.A., Butenko M.A. Polygonal Structures in a Gaseous Disk: Numerical Simulations. Astronomy Letters, 2011, vol. 37, pp. 563-575. DOI: 10.1134/S032001081108002X
13. Dobbs C.L., Bonnell I.A., Clark P.C. Centrally Condensed Turbulent Cores: Massive Stars or Fragmentation? Monthly Notices of the Royal Astronomical Society, 2005, vol. 360, pp. 2-8. DOI: 10.1111/j.1365-2966.2005.08941.x
14. Vasiliev E.O. Thermal Instability in a Collisionally Cooled Gas. Monthly Notices of the Royal Astronomical Society, 2012, vol. 419, pp. 3641-3648. DOI: 10.1111/j.1365-2966.2011.20017.x
15. Khoperskov S.A., Vasiliev E.O., Sobolev A.M., Khoperskov A.V. The Simulation of Molecular Clouds Formation in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2013, vol. 428, pp. 2311-2320. DOI: 10.1093/mnras/sts195
16. Vorobyov E.I., Recchi S., Hensler G. Stellar Hydrodynamical Modelling of Dwarf Galaxies: Simulation Methodology, Tests and First Results. Astronomy and Astrophysics, 2015, vol. 579, pp. 1-23. DOI: 10.1051/0004-6361/201425587
17. Vasiliev E.O., Shchekinov Yu.A. Supernova Remnants in the Halpha and Hbeta Lines. Astrophysics, 2017, vol. 60, pp. 1-18. DOI: 10.1007/s10511-017-9458-9
18. Dobbs C.L., Pringle J.E. The Exciting Lives of Giant Molecular Clouds. Monthly Notices of the Royal Astronomical Society, 2013, vol. 432, pp. 653-667. DOI: 10.1093/mnras/stt508
19. Khoperskov S.A., Vasiliev E.O., Ladeyschikov D.A., Sobolev A.M., Khoperskov A.V. Giant Molecular Cloud Scaling Relations: the Role of the Cloud Definition. Monthly Notices of the Royal Astronomical Society, 2016, vol. 455, pp. 1782-1795. DOI: 10.1093/mnras/stv2366
20. Duarte-Cabral A., Dobbs C.L. What Can Simulated Molecular Clouds Tell Us About Real Molecular Clouds? Monthly Notices of the Royal Astronomical Society, 2016, vol. 458, pp. 3667-3683. DOI: 10.1093/mnras/stw469
21. Khoperskov A., Bizyaev D., Tiurina N., Butenko M. Numerical Modelling of the Vertical Structure and Dark Halo Parameters in Disc Galaxies. Astronomische Nachrichten, 2010, vol. 331, pp. 731-745. DOI: 10.1002/asna.200911402
22. Khoperskov S., Vasiliev E., Khoperskov A., Lubimov V. Numerical Code for Multi-Component Galaxies: from N-Body to Chemistry and Magnetic Fields. Journal of Physics, 2014, vol. 510, article ID: 012011, 13 p. DOI: 10.1088/1742-6596/510/1/012011
23. Monaghan J.J. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 1992, vol. 30, pp. 543-574. DOI: 10.1146/annurev.astro.30.1.543
24. Monaghan J.J. Smoothed Particle Hydrodynamics. Reports on Progress in Physics, 2005, vol. 68, pp. 1703-1759. DOI: 10.1088/0034-4885/68/8/R01
25. Mokos A., Rogers B.D., Stansby P.K., Dominguez J.M. Multi-Phase SPH Modelling of Violent Hydrodynamics on GPUs. Computer Physics Communications, 2015, vol. 196, pp. 304-316. DOI: 10.1016/j.cpc.2015.06.020
26. Barnes J.E., Hut P. Error Analysis of a Tree Code. Astrophysical Journal Supplement Series, 1989, vol. 70, pp. 389-417. DOI: 10.1086/191343
27. Lukat G., Banerjee R. A GPU Accelerated Barnes-Hut Tree Code for FLASH4. New Astronomy, 2016, vol. 45, pp. 14-28. DOI: 10.1016/j.newast.2015.10.007
28. Khrapov S.S., Khoperskov A.V. Smoothed-Particle Hydrodynamics Models: Implementation Features on GPUs. Communications in Computer and Information Science, 2017, vol. 793, pp. 266-277. DOI: 10.1007/978-3-319-71255-0_21
29. Khrapov S.S., Khoperskov S.A., Khoperskov A.V. New Features of Parallel Implementation of N-Body Problems on GPU. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2018, vol. 11, pp. 124-136. DOI: 10.14529/mmp180111
30. Huang S.-Y., Spurzem R., Berczik P. Performance Analysis of Parallel Gravitational N-Body Codes on Large GPU Clusters. Research in Astronomy and Astrophysics, 2016, vol. 16, no. 1, article ID: 11, 11 p. DOI: 10.1088/1674-4527/16/1/011
31. Steinberg O.B. Circular Shift of Loop Body-Programme Transformation, Promoting Parallelism. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2017, vol. 10, no. 3, pp. 120-132. DOI: 10.14529/mmp170310
32. Goulding A.D., Greene J.E., Chung-Pei Ma. The MASSIVE Survey. IV. The X-Ray Halos of the Most Massive Early-Type Galaxies in the Nearby Universe. The Astrophysical Journal, 2016, vol. 826, p. 167. DOI: 10.3847/0004-637X/826/2/167