Том 13, № 2Страницы 80 - 92

Modelling the Human Papilloma Virus Transmission in a Bisexually Active Host Community

O.M. Ogunmiloro
В этой статье сформулирована математическая модель, описывающая динамику передачи вируса папилломы человека (ВПЧ) в бисексуально активном сообществе носителей. Комплексные математические методы были использованы для качественного и количественного анализа модели. Локальная и глобальная устойчивость равновесий модели была проанализирована, и показано, что если R* меньше единицы, то модель локально и глобально асимптотически устойчива в статических состояниях, свободных от ВПЧ. Также, если R* больше единицы, ВПЧ-эндемичное статическое состояние является глобально асимптотически устойчивым. Было проведено численное моделирование и представлены графические иллюстрации.
Полный текст
Ключевые слова
ВПЧ; базовый репродуктивный номер; локальная устойчивость; глобальная устойчивость.
Литература
1. World Health Organization (WHO), WHO Fact Sheet. Available at: https://www.who.int (accessed 2019).
2. Center for Disease Control (CDC), STD Facts-Human Papilloma Virus (HPV). Available at: https://www.medicalnewstoday.com (accessed 2019).
3. Medical News Today, Human Papilloma Virus (HPV): Treatment, Symptoms and Causes. Available at: https://www.medicalnewstoday.com/articles/246670 (accessed 2019).
4. Ogunmiloro O.M., Fadugba S.E., Ogunlade T.O. Stability Analysis and Optimal Control of Vaccination and Treatment of a SIR Epidemiological Deterministic Model with Relapse. International Journal of Mathematical Modelling and Computations, 2018, vol. 8, no. 1, pp. 39-51.
5. La-Salle J., Lefschetz S. Stability by Lyapunov's Direct Method with Applications. N.Y., Academic Press, 1961.
6. Anderson R.M., May R.M. Population Biology of Infectious Diseases. Berlin, Springer, 1982.
7. Lee S.L., Tameru A.M. A Mathematical Model of Human Papilloma Virus (HPV) in the United States (US) and its Impact on Cervical Cancer. Journal of Cancer, 2012, vol. 3, pp. 262-268. DOI: 10.2150/jca.4161, 2012
8. Dasbach E.J., Elbasha E.H., Insinga R.P. Predicting the Epidemiologic Impact of Vaccination Against Human Papilloma Virus Infection and Disease. Epidemiologic Reviews, 2006, vol. 28, no. 1, pp. 88-100.
9. Omame A., Umana R.A., Okounghae D., Inyama S.C. Mathematical Analysis of a Two-Sex Human Papilloma Virus (HPV) Model. International Journal of Biomathematics, 2018, vol. 11, no. 7, article ID: 1850092. DOI: 10.1142/S1793626810000397
10. Sado A.E. Mathematical Modeling of Cervical Cancer with HPV Transmission and Vaccination. Science Journal of Applied Mathematics and Statistics, 2019, vol. 7, no. 2, pp. 21-25. DOI: 1011648/j.sjams.20190702
11. Najat Ziyadi. A Male-Female Mathematical Model of Human Papilloma Virus (HPV) in African American Population. American Institute of Mathematical Sciences, 2017, vol. 14, no. 1, pp. 339-358. DOI: 10.3934/mbe.2017022
12. Ryser M.D., Gravitt P.E., Myers E.R. Mechanistic Mathematical Models: An Underused Platform for HPV Research. Papilloma Research, 2017, vol. 3, pp 46-49.
13. Brower A.F. Models of HPV as an Infectious Disease and as an Etiological Agent. PhD Thesis, University of Michigan, 2015.
14. Sharomi O., Malik T. A Model to Assess the Effect of Vaccine Compliance on Human Papilloma Virus Infection and Cervical Cancer. Applied Mathematical Modelling, 2017, vol. 47, pp. 528-550.
15. Elbasha E.H. Global Stability of Equilibria in a Two-Sex HPV Vaccination Model. Bulletin of Mathematical Biology, 2008, vol. 70, pp. 894-909.
16. Dietz C.A., Nyberg C.R. Genital, Oral and Anal Human Papilloma Virus Infection in Men Who Have Sex with Men. The Journal of the American Osteopathic Association, 2011, vol. 111, pp. 19-25.
17. Independent News, Lesbians and Bisexual Women at Risk from Dangerous Myth "They Cannot Get Cervical Cancer" Warns Nhs. Available at: https://www.independent.co.uk (accessed 2019).