Том 13, № 3Страницы 5 - 16

On a Model of Spontaneous Symmetry Breaking in Quantum Mechanics

A. Restuccia, A. Sotomayor, V.A. Strauss
Исследуется спонтанное нарушение симметрии в одномерной квантовомеханичесой проблеме в терминах двухточечной граничной проблемы, ведущей к сингуляным потенциалам, содержащим сдвинутые дельта-функции и их производные. С математической точки зрения при этом используется метод самосопряжeнных расширений симметрического дифференциального оператора, заданного на гладких функциях с интегрируемым квадратом модуля, обнуляющихся вместе со своей первой производной в двух внутренних точках вещественной прямой. Мы находим резольвенту для таких расширений и оцениваем еe поведение при изменении положения указанных точек. Область определения подобных расширений может содержать функции, терпящие разрыв и/или имеющие разрывную производную в точках, указанных выше, последнее может интерпретироваться как присутствие взаимозависимых (сцепленных) сингулярным потенциалов, сосредоточенных в тех же точках. Наша цель - найти связанные состояния с нарушенной симметрией. Для частного случая взаимозависимых граничных условий мы доказываем существование связанного состояния, приводящего к спонтанному нарушению симметрии, стабильному по отношению к феномену декогеренции, порождeнной внешними флуктуациями. Мы обсуждаем представленную модель в контексте "киральных" связанных состояний с нарушенной симметрией молекул, таких как NH_3. Показано, что в рамках теории гильбертовых пространств этот эффект исчезает при обнулении расстояния между указанными выше точками.
Полный текст
Ключевые слова
cамосопряжeнные расширения симметрического дифференциального оператора; резольвента; решение волнового уравнения: связанные состояния; спонтанное и радиационное нарушение симметрии.
Литература
1. Weinberg S. Lectures on Quantum Mechanics. Cambrigde, Cambrigde University Press, 2012.
2. Zurek W.H. Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 2003, vol. 75, pp. 715-776. DOI: 10.1103/RevModPhys.75.715
3. Burrau O. Berechnung des Energiewertes des Wasserstoffmolekel-Ions (H^2_+) im Normalzustand. Naturwissenschaften, 1927, vol. 15, issue 1, pp. 16-17. (in German) DOI: 10.1007/BF01504875
4. Yang C.N. Some Exact Results for the Many-Body Problem in One Dimension with Repulsive Delta-Function Interaction. Physical Review Letters, 1967, vol. 19, issue 23, pp. 1312-1315. DOI: 10.1103/PhysRevLett.19.1312
5. Kronig R.L., Penney W.G. Quantum Mechanics of Electrons in Crystal Lattices. Mathematical, Physical and Engineering Sciences, 1931, vol. 130, no. 8, pp. 499-513. DOI: 10.1098/rspa.1931.0019
6. Frost A.A. Delta-Function Model.I.Electronic Energies of Hydrogen-Like Atoms and Diatomic Molecules. The Journal of Chemical Physics, 1956, vol. 25, pp. 1150-1154. DOI: 10.1063/1.1743167
7. Frost A.A., Leland F.E. Delta-Function Model. Aromatic Hydrocarbons. The Journal of Chemical Physics, 1956, vol. 25, pp. 1154-1160. DOI: 10.1063/1.1743168
8. Claverie P. Study of the Convergence Radius of the Rayleigh-Schrodinger Perturbation Series for the Delta-Function Model of H_2^+. International Journal of Quantum Chemistry, 1969, vol. 3, issue 3, pp. 349-370.
9. Certain P.R., Brown W. Branch Point Singularities in the Energy of the Delta-Function Model of One-Electron Diatoms. International Journal of Quantum Chemistry, 1972, vol. 6, issue 1, pp. 131-142.
10. Albeverio S., Gesztesy F., Hoegh-Krohn R., Kirsch W. On Point Interactions in One Dimension. Operator Theory, 1984, vol. 12, issue 1, pp. 101-126.
11. Gesztesy F., Holden H. A New Class of Solvable Models in Quantum Mechanics Describing Point Interactions on the Line. Journal of Physics: Mathematical and General, 1987, vol. 20, issue 15, pp. 5157-5177.
12. Albeverio S., Gesztesy F., Hoegh-Kron R., Holden H. Solvable Models in Quantum Mechanics. Rhode Island, American Mathematical Society, 2004.
13. Kurasov P., Luger A. Reflectionless Potentials and Point Interactions in Pontryagin Spaces. Letters in Mathematical Physics, 2005, vol. 73, pp. 109-122. DOI: 10.1007/s11005-005-0002-1
14. Restuccia A., Sotomayor A., Strauss V. Non-Local Interactions in Quantum Mechanics Modelled by Shifted Dirac Delta Functions. Journal of Physics: Conference Series, Santiago, Chile, 2016, vol. 1043, article ID: 012013, 9 p.