№ 17 (150), выпуск 3Страницы 12 - 23 Распараллеливание пространственной модели переноса примеси на системах с распределенной памятью с помощью одно- и двумерной декомпозиции области
Д.А. Беликов, А.В. СтарченкоПредставлено распараллеливание вычислительного алгоритма решения системы адвективно-диффузионно-кинетических уравнений математической модели переноса малых составляющих примеси с учетом их химических взаимодействий в приземном слое атмосферы. Распараллеливание основано на одно- или двумерной декомпозиции расчетной области с использованием синхронных операций для межпроцессорной передачи данных. Производительность разработанного параллельного алгоритма при различных способах декомпозиции и организации обменов оценена экспериментально на кластере Томского государственного университета СКИФ Cyberia.
Полный текст- Ключевые слова
- параллельные вычисления, модель переноса примеси
- Литература
- 1. Dabdub, D. Parallel Computation in Atmospheric Chemical Modeling / D. Dabdub, J.H. Seinfeld // Parallel Computing. - 1996. - V. 22. - P. 111 - 130.
2. Gropp, W. Using MPI-2: Portable Parallel Programming with the Message-Passing Interface / W. Gropp, E. Lusk, A. Skjellum. - Cambridge, MA: MIT Press, 1999.
3. Воеводин, В.В. Параллельные вычисления / В.В. Воеводин, Вл.В. Воеводин. - СПб.: БХВ-Петербург, 2002.
4. Есаулов, А.О. Использование параллельных вычислений при моделировании мезомасштабных атмосферных процессов / А.О. Есаулов // Труды Второй Сибирской школы-семинара по параллельным вычислениям. - Томск, 2004. - С. 100 - 107.
5. Беликов, Д.А. Исследование образования вторичных загрязнителей (озона) в атмосфере г. Томска / Д.А. Беликов, А.В. Старченко // Оптика атмосферы и океана. - 2005. - Т. 18, № 05 - 06. - С. 435 - 443.
6. Толстых, М.А. Особенности использования MPI для распараллеливания задач математической физики на вычислительных системах с невысокой скоростью обменов между процессорами / М.А. Толстых // Сибирская школа-семинар по параллельным вычислениям. - Томск, 2006. - С. 99 - 125.
7. Беликов, Д.А. Численная модель турбулентного переноса примеси в пограничном слое атмосферы / Д.А. Беликов, А.В. Старченко // Оптика атмосферы и океана. - 2007. - Т. 20, № 8. - С. 667 - 673.
8. Morison, R.P. Atmospheric modeling of air pollution as a tool for environmental prediction management / R.P. Morison, L.M. Leslie, M.S. Speer // Meteorology and atmospheric physics. - 2002. - V. 80. - P. 141 - 151.
9. Hurley, P.J. The Air Pollution Model (TAPM) Version 2 / P.J. Hurley // CSIRO Atmospheric Research Technical Paper. - 2002. - N. 55. - P. 37.
10. Короленок, Е.В. Моделирование приземных концентраций озона городского региона / Е.В. Короленок, О.В. Нагорнов // Математическое моделирование. - 2002. - Т. 14, № 4. - С. 80 - 94.
11. Perego, S. Metphomod - a Numerical Mesoscale Model for Simulation of Regional Photosmog in Complex Terrain: Model Description and Application during Pollumet 1993 (Switzerland) / S. Perego // Meteorology and Atmospheric Physic. - 1999. - V. 70. - P. 43 - 69.
12. Старченко, А.В. Численная модель для оперативного контроля уровня загрязнения городского воздуха / А.В. Старченко, Д.А. Беликов // Оптика атмосферы и океана. - 2003. - Т. 16, № 7. - С. 657 - 665.
13. Van Leer, B. Towards the ultimate conservative difference scheme. Part IV: A new approach to numerical convection / B. Van Leer // J.Comput. Phys. - 1977. - V. 23. - P. 276 - 299.
14. Электронный ресурс. Режим доступа (http://parallel.ru/).