Том 14, № 3Страницы 99 - 105

Choosing Average Values when Determining Characteristics of the Unsteady Boiling of Liquid

A.A. Levin
В работе представлен анализ проблем построения математических моделей процессов интенсивных фазовых превращений, а именно аспекту использования замыкающих соотношений эмпирического происхождения. Основной тренд при реализации современных численных алгоритмов для практических задач направлен на улучшение точности результатов расчета, достигаемое обычно за счет уточнения некоторого набора коэффициентов в математических моделях. Эти уточнения осуществляются как на основе модернизации существующих подходов, так и с привлечением новых эмпирических сведений, получаемых для ограниченного числа режимных условий. Предсказательные модели для описания динамики фазовых превращений, как одни из наиболее сложных в математической постановке задач, относятся к особо яркому проявлению описываемой проблемы. Рассмотрены существующие и широко применяемые экспериментальных работ, посвященные извлечению первичных сведений о динамике паровых пузырей на поверхности металлических нагревателей. На их примере показано наличие упрощенного подхода в существующей методологии разработки, и показан способ определения корректного обобщения эмпирических сведений, обладающих псевдо-стохастическим характером.
Полный текст
Ключевые слова
математические модели; пузырьковое кипение; усреднение.
Литература
1. Baojin Qi, Ya Wang, Jinjia Wei, Yonghai Zhang, Ting Yu. Nucleate Boiling Heat Transfer Model Based on Fractal Distribution of Bubble Size. International Journal of Heat and Mass Transfer, 2019, no. 128, pp. 1175-1183. DOI: 10.1016/j.ijheatmasstransfer.2018.09.081
2. Sarker D., Ding W., Hampel U. Bubble Growth During Subcooled Nucleate Boiling on a Vertical Heater: A Mechanistic Attempt to Evaluate the Role of Surface Characteristics on Microlayer Evaporation. Applied Thermal Engineering, 2019, no. 153, pp. 565-574. DOI: 10.1016/j.applthermaleng.2019.03.040
3. Goel P., Nayak A.K., Ghosh P., Joshi J.B. Experimental Study of Bubble Departure Characteristics in Forced Convective Subcooled Nucleate Boiling. Experimental Heat Transfer, 2018, no. 31, pp. 194-218.
4. Ke Wang, Shengjie Gong, Bofeng Bai, Weimin Ma. On the Relation between Nucleation Site Density and Critical Heat Flux of Pool Boiling. Heat Transfer Engineering, 2018, no. 39, pp. 1498-1507.
5. Amidu M.A., Satbyoul Jung, Hyungdae Kim. Direct Experimental Measurement for Partitioning of Wall Heat Flux During Subcooled Flow Boiling: Effect of Bubble Areas of Influence Factor. International Journal of Heat and Mass Transfer, 2018, no. 127, pp. 515-533.
6. Sato Y., Niceno B. Nucleate Pool Boiling Simulations Using the Interface Tracking Method: Boiling Regime From Discrete Bubble To Vapor Mushroom Region. International Journal of Heat and Mass Transfer, 2017, no. 105, pp. 505-524. DOI: 10.1016/j.ijheatmasstransfer.2016.10.018
7. Giustini G., Ardron K.H., Walker S.P. Modelling of Bubble Departure in Flow Boiling Using Equilibrium Thermodynamics. International Journal of Heat and Mass Transfer, 2018, no. 122, pp. 1085-1092.
8. Colombo M., Fairweather M. Prediction of Bubble Departure in Forced Convection Boiling: a Mechanistic Model. International Journal of Heat and Mass Transfer, 2015, no. 85, pp. 135-146.
9. Urbano A., Tanguy S., Huber G., Colin C. Direct Numerical Simulation of Nucleate Boiling in Micro-Layer Regime. International Journal of Heat and Mass Transfer, 2018, no. 123, pp. 1128-1137.
10. Fau S., Bergez W., Colin C. Transition between Nucleate and Film Boiling in Rapid Transient Heating. Experimental Thermal and Fluid Science, 2017, no. 83, pp. 2220-2229.
11. Levin A.A., Khan P.V. Experimental Observation of the Maximum Bubble Diameter in Non-Stationary Temperature Field of Subcooled Boiling Water Flow. International Journal of Heat and Mass Transfer, 2018, no. 124, pp. 876-883. DOI: 10.1016/j.ijheatmasstransfer.2018.03.078
12. Murshed S.M., Vereen K., Strayer D., Kumar R. An Experimental Investigation of Bubble Nucleation of a Refrigerant in Pressurized Boiling Flows. Energy, 2010, no. 33, pp. 5143-5150.
13. Prodanovic V., Fraser D., Salcudean M. Bubble Behavior in Subcooled Flow Boiling of Water at Low Pressures and Low Flow Rates. International Journal of Multiphase Flow, 2002, no. 28, pp. 1-19.
14. Situ R., Hibiki T., Ishii M., Mori M. Bubble Lift-Off Size in Forced Convective Subcooled Boiling Flo. International Journal of Heat and Mass Transfer, 2005, no. 48, pp. 5536-5548. DOI: 10.1016/j.ijheatmasstransfer.2005.06.031
15. Klausner J.F., Mei R., Bernhard D.M., Zeng L.Z. Vapor Bubble Departure in Forced-Convection Boiling. International Journal of Heat and Mass Transfer, 1993, no. 36, pp. 651-662.
16. Thorncroft G.E., Klausner J.F., Mei R. An Experimental Investigation of Bubble Growth And Detachment in Vertical Upflow and Downflow Boiling. International Journal of Heat and Mass Transfer, 1998, no. 41, pp. 857-3871.
17. Levin A.A., Khan P.V. Influence of the Thermal Parameters on the Bubble Heat Balance at Transient Boiling Of Subcooled Water. Journal of Physics: Conference Series, 2019, no. 1369, issue 1, article ID: 012010. DOI: 10.1088/1742-6596/1369/1/012010