Том 15, № 1Страницы 60 - 83

Неклассические модели математической физики с многоточечным начально-конечным условием

С.А. Загребина, А.С. Конкина
Статья содержит обзор результатов авторов в области неклассических моделей математической физики, для которых рассмотрены многоточечные начально-конечные условия, обобщающие условия Коши и Шоуолтера - Сидорова. Напомним, что неклассическими называют те модели математической физики, чьи представления в виде уравнений или систем уравнений в частных производных не укладываются в рамках одного из классических типов - эллиптического, параболического или гиперболического. Абстрактные результаты проиллюстрированы конкретными многоточечными начально-конечными задачами в различных постановках для уравнений в частных производных, возникающих в последнее время в приложениях. В том числе рассмотрены неавтономная модель Чена - Гетина с комплексными коэффициентами, стохастическая эволюционная модель Девиса, макромодель транспортного потока на перекрестке, основанная на уравнениях Осколкова, рассмотренных в системе геометрических графов, учитывающих условие непрерывности, баланса потока и условие запрета на движение.
Полный текст
Ключевые слова
уравнения соболевского типа; разрешающие C_0-полупотоки операторов; разрешающие (полу)группы операторов; относительно спектральные проекторы; многоточечное начально-конечное условие; неавтономная модель Чена - Гетина; стохастическая модель Девиса; макромодель транспортного потока на перекрестке.
Литература
1. Alshin A.B., Korpusov M.O., Sveshnikov A.G. Blow Up in Nonlinear Sobolev Type Equations. Berlin, Walter de Gruyter, 2011. DOI: 10.1515/9783110255294
2. Aranson I.S., Kramer L. The World of the Complex Ginzburg–Landau Equation. Reviews of Modern Physics, 2002, vol. 74, no. 1, pp. 99–143.
3. Barenblatt G.I., Zheltov Iu.P., Kochina I.N. Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks. Journal of Applied Mathematics and Mechanics, 1960, vol. 24, no. 5, pp. 1286–1303.
4. Chen P.J., Gurtin M.E. On a Theory of Heat Conduction Involving Two Temperatures. Journal of Applied Mathematics and Physics, 1968, vol. 19, no. 4, pp. 614–627.
5. Demidenko, G.V., Uspenskii, S.V. Partial Differential Equations and Systems not Solvable with Respect to the Highest Order Derivative. N.Y., Basel, Hong Kong, Marcel Dekker, 2003.
6. Dzektser E.S. [Generalization of the Equation of Motion of Ground Waters with free Surface]. Doklad Akademia Nauk SSSR, 1972, vol. 202, no. 5, pp. 1031–1033. (in Russian)
7. Favini A., Sviridyuk G.A., Manakova N.A. Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises”. Abstract and Applied Analysis, 2015, article ID: 697410. DOI: 10.1155/2015/697410
8. Favini A., Sviridyuk G.A., Sagadeeva M.A. Linear Sobolev Type Equations with Relatively pSectorial Operators in Space of “Noises”. Mediterranian Journal of Mathematics, 2016, vol. 15,
no. 1, pp. 185–196. DOI: 10.1007/s00009-016-0765-x
9. Favini A., Sviridyuk G.A., Zamyshlyaeva A.A. One Class of Sobolev Type Equations of Higher Order with Additive “White Noise”. Communications on Pure and Applied Analysis, 2016, vol. 15, no 1, pp. 185–196. DOI: 10.3934/cpaa.2016.15.185
10. Favini A., Zagrebina S.A., Sviridyuk G.A. Multipoint Initial-Final Value Problems for Dynamical Sobolev-Type Equations in the Space of Noises. Electronic Journal of Differential Equations, 2018, vol. 2018, article ID: 128.
11. Hallaire M. Soil Water Movement in the Film and Vapor Phase under the Influence of Evapotranspiration. Water and Its Conduction Insoils. Proceedings of XXXVII Annual Meeting of the Highway Research Board, Highway Research Board Special Report, 1958, no. 40, pp. 88–105.
12. Keller A.V., Zagrebina S.A. Some Generalizations of the Showalter–Sidorov Problem for Sobolev-Type Models. Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 2, pp. 5–23. (in Russian) DOI: 10.14529/mmp150201
13. Konkina A.S. Multipoint Initial-Final Value Problem for the Model of Davis with Additive White Noise. Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 2017, vol. 10, no. 2, pp. 144–149. DOI: 10.14529/mmp170212
14. Konkina A.S. Numerical Research of the Mathematical Model for Traffic Flow. Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 2019, vol. 12, no. 4, pp. 128–134. DOI: 10.14529/mmp190411
15. Konkina A.S., Mukhametyarova A.A. Macro Model of Transport Flow at the Crossroads. Journal of Computational and Engineering Mathematics, 2021, vol. 8, no. 4, pp. 37–44. DOI: 10.14529/jcem210405
16. Manakova N.A., Dyl’kov A.G. Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model. Mathematical Notes, 2013, vol. 94, no. 1–2, pp. 220–230. DOI: 10.1134/S0001434613070225
17. Manakova, N.A., Sviridyuk, G.A. An Optimal Control of the Solutions of the InitialFinal Problem for Linear Sobolev Type Equations with Strongly Relatively p-Radial Operator. Springer Proceedings in Mathematics and Statistics, 2015, vol. 113, pp. 213–224. DOI: 10.1007/978-3-319-12145-1_13
18. Manakova N.A. Mathematical Models and Optimal Control of the Filtration and Deformation Processes. Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no 3, pp. 5–24. DOI: 10.14529/mmp150301
19. Sagadeeva M.A., Sviridyuk G.A. The Nonautonomous Linear Oskolkov Model on a Geometrical Graph: The Stability of Solutions and the Optimal Control Problem. Springer Proceedings in Mathematics and Statistics, 2015, vol. 113, pp. 257–271. DOI: 10.1007/978-3-
319-12145-1_16
20. Sagadeeva M.A. Degenerate Flows of Solving Operators for Nonstationary Sobolev Type Equations. Bulletin of the South Ural State University. Mathematics. Mechanics. Physics, 2017, vol. 9, no. 1, pp. 22–30. DOI: 10.14529/mmph170103
21. Sagadeeva M.A., Zagrebina S.A., Manakova N.A. Optimal Control of Solutions of a Multipoint Initial-Final Problem for Non-Autonomous Evolutionary Sobolev Type Equation. Evolution Equations and Control Theory, 2019, vol. 8, no. 3, pp. 473–488. DOI: 10.3934/eect.2019023
22. Sviridyuk G.A. A Problem of Showalter. Differential Equations, 1989, vol. 25, no. 2, pp. 338–339.
23. Sviridyuk G. A. Solvability of a Problem of the Thermoconvection of a Viscoelastic Incompressible Fluid, Soviet Mathematics, 1990, vol. 34, no. 12, pp. 80–86.
24. Sviridyuk G.A. Sobolev-Type Linear Equations and Strongly Continuous Semigroups of Resolving Operators with Kernels. Russian Academy of Sciences. Doklady. Mathematics, 1995, vol. 50, no. 1, pp. 137–142.
25. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, Boston, VSP, 2003.
26. Sviridyuk G.A., Shemetova V.V. Hoff Equations on Graphs. Differential Equations, 2006, vol. 42, no. 1, pp. 139–145.
27. Sviridyuk G.A., Efremov A.A. An Optimal Control Problem for a Class of Linear Equations of Sobolev Type. Russian Mathematics, 1996, vol. 40, no. 12, pp. 60–71.
28. Sviridyuk G.A., Zamyshlyaeva A.A., Zagrebina S.A. Multipoint Initial-Final Problem for One Class of Sobolev Type Models of Higher Order with Additive White Noise. Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 2018. vol. 11, no. 3, pp. 103–117. DOI: 10.14529/mmp180308
29. Shestakov A.L., Sviridyuk G.A., Hudyakov Yu.V. Dinamic Measurement in Spaces of “Noise”. Bulletin of the South Ural State University. Computer Technologies, Automatic Control, Radio Electronics, 2013, vol. 13, no. 2, pp. 4–11.
30. Showalter R.E. The Sobolev type Equations. Applicable Analysis, 1975, vol. 5, no. 1, pp. 15–22.
31. Showalter R.E. The Sobolev type Equations. II. Applicable Analysis, 1975, vol. 5, no 2, pp. 81–99.
32. Sukacheva T.G., Kondyukov A.O. On a Class of Sobolev-Type Equations. Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 2014, vol. 7, no. 4, pp. 5–21.
33. Zamyshlyaeva A.A., Tsyplenkova O.N. The Optimal Control over Solutions of the Initialfinish Value Problem for the Boussinesque–L¨ove Equation. Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 2012, no. 5 (264), pp. 13–24. (in Russian)
34. Zamyshlyaeva A.A. The Higher-Order Sobolev-Type Models. Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 2014, vol. 7, no. 2, pp. 5–28.
35. Zagrebina S.A., Sagadeeva M.A. The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case. The Bulletin of Irkutsk State University. Mathematics, 2014, no. 7, pp. 19–33.
36. Zagrebina S.A., Soldatova E.A., Sviridyuk G.A. The Stochastic Linear Oskolkov Model of the Oil Transportation by the Pipeline. Springer Proceedings in Mathematics and Statistics, 2015, vol. 113, pp. 317–325. DOI: 10.1007/978-3-319-12145-1_20
37. Zagrebina S.A., Konkina A.S. The Multipoint Initial-Final Value Condition for the Navier–Stokes Linear Model. Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 1, pp. 132–136. DOI: 10.14529/mmp150111
38. Zagrebina S. A., Konkina A. S. Traffic Management Model. Proceedings of 2nd International Conference on Industrial Engineering, Applications and Manufacturing, 2016, article ID: 7911712. DOI 10.1109/ICIEAM.2016.7911712
39. Zagrebina S., Sukacheva T., Sviridyuk G. The Multipoint Initial-Final Value Problems for Linear Sobolev-Type Equations with Relatively p-Sectorial Operator and Additive “Noise”. Global and Stochastic Analysis, 2018, vol. 5, no. 2, pp. 129–143.