Том 15, № 4Страницы 123 - 130 A New Formula on the Conjugate Gradient Method for Removing Impulse Noise Images
Basim A. Hassan, Hameed M. SadiqМножество алгоритмов сопряженного градиента построено на сопряженном коэффициенте. В этой статье предлагается новый сопряженный коэффициент, основанный на квадратичной модели для удаления импульсного шума. Его результаты глобальной сходимости могут быть достигнуты в условиях поиска линии Вульфа. Чтобы продемонстрировать эффективность метода сопряженных градиентов для снижения импульсного шума, проводятся численные эксперименты.
Полный текст- Ключевые слова
- обработка изображений; импульсный шум; метод сопряженных градиентов; глобальная сходимость.
- Литература
- 1. Wei Xue, Junhong Ren, Xiao Zheng, Zhi Liu, Yueyong Liang. A New DY Conjugate Gradient Method and Applications to Image Denoising. Transactions on Information and Systems, vol. 12, pp. 2984-2990.
2. Gaohang Yua, Jinhong Huanga, Yi Zhou. A Descent Spectral Conjugate Gradient Method for Impulse Noise Removal. Applied Mathematics Letters, 2010, vol. 23, pp. 555-560.
3. Hager W.W., Zhang H. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search. SIAM Journal on Optimization, 2005, vol. 16, pp. 170-192.
4. Nocedal J., Wright S.J. Numerical Optimization. N.Y., Springer, 2006.
5. Xian-Zhen Jiang, Jinbao Jian. A Sufficient Descent Dai-Yuan Type Nonlinear Conjugate Gradient Method for Unconstrained Optimization Problems. Nonlinear Dynamics, 2013, vol. 72, pp. 101-112.
6. Fletcher R., Reeves C.M. Funtion Minimization by Conjagate Gradients. Computer Journal, 1964, vol. 7, pp. 149-154.
7. Yuhong Dai, Ya-xiang Yuan. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property. SIAM Journal on Optimization, 1999, vol. 10, no. 1, pp. 177-182.
8. Yasushi N., Hideaki I. Conjugate Gradient Methods Using Value of Objective Function for Unconstrained Optimization. Optimization Letters, 2011, vol. 6, no. 5, pp. 941-955.
9. Hassan B.A. A New Formula for Conjugate Parameter Computation Based on the Quadratic Model. Indonesian Journal of Electrical Engineering and Computer Science, 2019, vol. 3, pp. 954-961. DOI: 10.11591/ijeecs.v13.i3.pp954-961
10. Hassan A.I., Poom Kumam, Hassan B.A., Auwal Bala Abubakar, Jamilu Abubakar. A Derivative-Free Three-Term Hestenes-Stiefel Type Method for Constrained Nonlinear Equations and Image Restoration. International Journal of Computer Mathematics, vol. 99, pp. 1041-1065. DOI: 10.1080/00207160.2021.1946043
11. Hassan B.A., Ranen M. Using a New Type Quasi-Newton Equation for Unconstrained Optimization. Innovation amid Global Pandemic, 2021, vol. 2021, pp. 118-122. DOI: 10.1109/IEC52205.2021.9476089
12. Hassan B.A., Ayoob A. On the New Quasi-Newton Equation for Unconstrained Optimization. Computer and Civil Engineering Towards Engineering Innovations and Sustainability, 2022, vol. 2022, pp. 168-172. DOI: 10.1109/IEC54822.2022.9807584
13. Jabba H.N., Hassan B.A. Two-Versions of Descent Conjugate Gradient Methods for Large-Scale Unconstrained Optimization. Indonesian Journal of Electrical Engineering and Computer Science, 2021, vol. 22, no. 3, pp. 1643-1649.
14. Hassan B.A. A Modified Quasi-Newton Methods for Unconstrained Optimization. Journal of Pure and Applied Mathematics, 2019, vol. 42, pp. 504-511.
15. Polak E., Ribiere G. Note sur la convergence de methodes de directions conjuguees. Revue francaise d'informatique et de recherche operationnelle, 1969, vol. 16, pp. 35-43. (in French)
16. Zoutendijk G. Nonlinear Programming, Computational Methods. Integer and Nonlinear Programming, 1970, pp. 37-86.
17. Jian-Feng Cai, Raymond H. Chan, Benedetta Morini. Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient Type Methods, Image Processing Based on Partial Difierential Equations. Mathematics and Visualization, 2007, vol. 2007, pp. 1-7.
18. Yuhong Dai, Jiye Han, Guanghui Liu, Defeng Sun, Hongxia Yin, Ya-Xiang Yuan. Convergence Properties of Nonlinear Conjugate Gradient Methods. SIAM Journal on Optimization, 1999, vol. 10, no. 2, pp. 345-358.