Том 15, № 4Страницы 71 - 79

Algorithm for Processing the Results of Calculations for Determining the Body of Optimal Parameters in the Weighted Finite Element Method

V.A. Rukavishnikov, D.S. Seleznev, A.A. Guseinov
Весовой метод конечных элементов позволяет найти приближенное решение краевой задачи с сингулярностью в 10^{6} быстрее классического метода конечных элементов при заданной погрешности равной 10^{-3}. При этом требуется применять необходимые управляющие параметры в весовом методе конечных элементов. Тело оптимальных параметров определяется на основе проведения и анализа серии численных экспериментов. В представленной статье предложен алгоритм для обработки результатов вычисления и определения тела оптимальных параметров для задачи Дирихле и системы Ламе в области с одним входящим углом на границе, принимающим значения от pi до 2pi.
Полный текст
Ключевые слова
угловая сингулярность; весовой метод конечных элементов; тело оптимальных параметров.
Литература
1. Haodong Chen, Qingsong Wang, Liu G.R., Yu Wang, Jinhua Sun. Simulation of Thermoelastic Crack Problems Using Singular Edge-Based Smoothed Finite Element Method. International Journal of Mechanical Sciences, 2016, vol. 115, pp. 123-134. DOI: 10.1016/j.ijmecsci.2016.06.012
2. Zeng W, Liu G.R., Li D, Dong X.W. A Smoothing Technique Based Beta Finite Element Method (beta FEM) for Crystal Plasticity Modeling. Computers and Structures, 2016, vol. 162, pp. 48-67. DOI: 10.1016/j.compstruc.2015.09.007
3. Surendran M., Sundararajan Natarajan, Bordas P.A., Palani G.S. Linear Smoothed Extended Finite Element Method. International Journal for Numerical Methods in Engineering, 2017, vol. 112, pp. 1733-1749. DOI: 10.1002/nme.5579
4. Aghahosseini A., Khosravifard A., Tinh Quoc Bui. Efficient Analysis of Dynamic Fracture Mechanics in Various Media by a Novel Meshfree Approach. Theoretical and Applied Fracture Mechanics, 2019, vol. 99, pp. 161-176. DOI: 10.1016/j.tafmec.2018.12.002
5. Nicaise S., Renard Y., Chahine E. Optimal Convergence Analysis for the Extended Finite Element Method. International Journal for Numerical Methods in Engineering, 2011, vol. 86, pp. 528-548. DOI: 10.1002/nme.3092
6. Junwei Chen, Xiaoping Zhou, Lunshi Zhou, Filippo Berto. Simple and Effective Approach to Modeling Crack Propagation in the Framework of Extended Finite Element Method. Theoretical and Applied Fracture Mechanics, 2020, vol. 106, article ID: 102452, 21 p. DOI: 10.1016/j.tafmec.2019.102452
7. Xiao-Ping Zhou, Jun-Wei Chen, Filippo Berto. XFEM Based Node Scheme for the Frictional Contact Crack Problem. Computers and Structures, 2020, vol. 231, article ID: 106221, 22 p. DOI: 10.1016/j.compstruc.2020.106221
8. Xiaoping Zhou, Zhiming Jia, Longfei Wang. A Field-Enriched Finite Element Method for Brittle Fracture in Rocks Subjected to Mixed Mode Loading. Engineering Analysis with Boundary Elements, 2021, vol. 129, pp. 105-124. DOI: 10.1016/j.enganabound.2021.04.023
9. Long-Fei Wang, Xiao-Ping Zhou. A Field-Enriched Finite Element Method for Simulating the Failure Process of Rocks with Different Defects. Computers and Structures, 2021, vol. 250, article ID: 106539, 23 p. DOI: 10.1016/j.compstruc.2021.106539
10. Rukavishnikov V.A., Rukavishnikova E.I. Numerical Method for Dirichlet Problem with Degeneration of the Solution on the Entire Boundary. Symmetry, 2019, vol. 11, no. 12, article ID: 1455, 11 p. DOI: 10.3390/sym11121455
11. Rukavishnikov V.A., Rukavishnikova E.I. Error Estimate FEM for the Nikol'skij-Lizorkin Problem with Degeneracy. Journal of Computational and Applied Mathematics, 2022, vol. 403, article ID: 113841, 11 p. DOI: 10.1016/j.cam.2021.113841
12. Rukavishnikov V.A. On the Existence and Uniqueness of an R_nu-Generalized Solution of a Boundary Value Problem with Uncoordinated Degeneration of the Input Data. Doklady Mathematics, 2014, vol. 90, pp. 562-564. DOI: 10.1134/S1064562414060155
13. Rukavishnikov V.A., Rukavishnikova E.I. Existence and Uniqueness of an R_nu-Generalized Solution of the Dirichlet Problem for the Lam'e System with a Corner Singularity. Differential Equations, 2019, vol. 55, no. 6, pp. 832-840. DOI: 10.1134/S0012266119060107
14. Rukavishnikov V.A., Rukavishnikova E.I. On the Dirichlet problem with Corner Singularity. Mathematics, 2020, vol. 8, article ID: 106400, 7 p. DOI: 10.3390/math8111870
15. Rukavishnikov V.A., Kuznetsova E.V. The R_nu-Generalized Solution of a Boundary Value Problem with a Singularity Belongs to the Space W_{2,nu+beta/2+k+1}^{k+2}(Omega,delta). tDifferential Equations, 2009, vol. 45, no. 6, pp. 913-917. DOI: 10.1134/S0012266109060147
16. Rukavishnikov V.A., Rukavishnikova H.I. The Finite Element Method for a Boundary Value Problem with Strong Singularity. Journal of Computational and Applied Mathematics, 2010, vol. 234, pp. 2870-2882. DOI: 10.1016/j.cam.2010.01.020
17. Rukavishnikov V.A., Mosolapov A.O. New Numerical Method for Solving Time-Harmonic Maxwell Equations with Strong Singularity. Journal of Computational Physics, 2012, vol. 231, pp. 2438-2448. DOI: 10.1016/j.jcp.2011.11.031
18. Rukavishnikov V.A., Rukavishnikov A.V. Weighted Finite Element Method for the Stokes Problem with Corner Singularity. Journal of Computational and Applied Mathematics, 2018, vol. 341, pp. 144-156. DOI: 10.1016/j.cam.2018.04.014
19. Rukavishnikov V.A., Rukavishnikov A.V. New Approximate Method for Solving the Stokes Problem in a Domain with Corner Singularity. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2018, vol. 11, no. 1, pp. 95-108. DOI: 10.14529/mmp180109
20. Rukavishnikov V.A., Rukavishnikov A.V. New Numerical Method for the Rotation form of the Oseen Problem with Corner Singularity. Symmetry, 2019, vol. 11, no. 1, article ID: 54, 17 p. DOI: 10.3390/sym11010054
21. Rukavishnikov V.A., Mosolapov A.O., Rukavishnikova E.I. Weighted Finite Element Method for Elasticity Problem with a Crack. Computers and Structures, 2021, vol. 243, article ID: 106400, 9 p. DOI: 10.1016/j.compstruc.2020.106400
22. Rukavishnikov V.A. Body of Optimal Parameters in the Weighted Finite Element Method for the Crack Problem. Journal of Applied and Computational Mechanics, 2021, vol. 7, no. 4, pp. 2159-2170. DOI: 10.22055/jacm.2021.38041.3142
23. Rukavishnikov V.A. Weighted FEM for Two-Dimensional Elasticity Problem with Corner Singularity. Lecture Notes in Computational Science and Engineering, 2016, vol. 112, pp. 411–419. DOI: 10.1007/978-3-319-39929-4_39
24. Kondrat'ev V.A. Boundary-Value Problems for Elliptic Equations in Domains with Conical or Angular Points. Transactions of the Moscow Mathematical Society, 1967, vol. 16, pp. 227-313.
25. Rukavishnikov V.A., Nikolaev S.G. Proba IV-program for the Numerical Solution of Two-Dimensional Problems of the Theory of Elasticity with a Singularity. Certificate of State Registration for the Computer Program, no. 2016610761, May 21, 2013.
26. Gnuplot Homepage. Available at: http://www.gnuplot.info (accessed 30.10.2022)