
MSC 60H25, 60H40ON THE MEASUREMENT OF THE ≪WHITE NOISE≫A.L. Shestakov, South Ural State University (Chelyabinsk, Russian Federation),G.A. Sviridyuk, South Ural State University (Chelyabinsk, Russian Federation)In the framework of the Leontie� type equations theory we onsider the mathematialmodel of the measuring transduer, demonstrating the mehanial lag e�et. In studyingthe model with deterministi external signal the methods and results of the Sobolev typeequations theory and degenerate groups of operators are very useful, beause they helpto reate an e�ient omputational algorithm. Now, the model assumes the preseneof white noise along with the deterministi signal. Sine the model is represented bya degenerate system of ordinary di�erential equations, it is di�ult to apply existingnowadays approahes suh as Ito � Stratonovih � Skorohod and Melnikova � Filinkov �Alshansky in whih the white noise is understood as a generalized derivative of the Wienerproess. Instead, we propose a new onept of the ≪white noise≫, whih is equal to thesymmetri mean derivative (in the paper � the derivative of the Nelson � Gliklikh) of theWiener proess, and in the framework of the Einstein � Smoluhowsky oinides with the
≪ordinary≫ derivative of the Brownian motion. The �rst part of the paper ontains thebasi fats of the Nelson � Gliklikh derivative theory adapted to this situation. The seondpart deals with the weakened Showalter � Sidorov problem and gives exat formulas for itssolution. As an example, we present a onrete model of a measuring transduer.Keywords: Leontie� type equations, weakened Showalter � Sidorov problem, symmetrimean derivative, Wiener proess.IntrodutionOne of the authors [1℄ proposes a mathematial model of the measuring transduer (MT),and the o-author [2℄ proposed to onsider it as a part of Leontie� type equations

Lẋ = Mx + y, (1)titled for obvious similarity with the balane Leontie� equations. Model (1) is proved to beadequate to a wide range of measured phenomena [3℄, [4℄; obtained from its data agreed wellwith the results of �eld experiments. Later, on the basis of the model (1) the authors develop amethod of signal restoration, distorted by mehanial lag [5℄, and the resonane in the iruits ofMT [6℄. On the basis of this method a numerial algorithm for reonstruting a signal distortedby lag e�et of MT [7℄ has been onstruted.In (1) L, M are square matrixes of order n, and det L = 0. If we use a well-known theoryof Kroneker � Weierstrass (see for example [8℄, Chapter 12), then in the ase of a regular penil
L + λM system (1) an be redued to the equivalent system

L̃ ˙̃x = M̃x̃ + ỹ, (2)where matries L̃ = diag{Nν1
, Nν2

, . . . , Nνk
, Il}, M̃ = diag{Im, S}, Nνj

are Jordan boxes of order
νj , j = 1, k, with zeros on main diagonals; Il and Im are identity matries, l = n−m, m =

k∑

j=1

νj ;
S is a square matrix of order l. In (2) m omponents of the vetor funtion x̃ = x̃(t) orrespond toÑåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå≫, âûï. 13 99



A.L. Shestakov, G.A. Sviridyukthe output signal and the remaining omponents haraterize the ondition the MT: the vetor�funtion ỹ = ỹ(t) models the input signal. The same must be said about their pre-images from (1).Algorithm of reduing of (1) to (2) in the theory is very simple, but very unstable in the numerialimplementation. Therefore, to investigate (1) we use the results of the degenerate operator groupstheory [9℄, Chapter 4. Suh approah lets us to reate not only a numerial algorithm for solvingthe problems with inertia and resonanes of MT, but also to onstrut omplexes of programs[10, 11℄.In all our previous works it has bien taitly assumed that the input signal y = y(t) isdetermined, that is, it does not ontain random disturbanes, suh as additive white noise. Sofar as it is di�ult to imagine the MT without the white noise (WN), we intend to study thisphenomenon in the model (1), where the input signal is not only the useful signal, but it's alsothe WN. However, before we start this projet, we want to make few remarks about the WN asa phenomenon.It is believed that the history of the study of white-noise is based on the theory of theBrownian motion of A. Einstein and M. Smoluhowsky. From this theory it follows that thedisplaement of a partile in the Brownian motion is proportional to the √
t, where t is time.Therefore, the partile veloity is proportional to the (2

√
t)−1 and therefore it is not de�ned atthe instant time t = 0. The next step in this diretion is made by N. Wiener, who has suggestedthat the displaement of a partile is determined by a random proess, whih later got his name.Thus, the Wiener proess is the random proess w(t), and has the following properties:(w1) w(0) = 0 almost surely (a.s.), and sample paths w(t) are a.s. ontinuous;(w2) mathematial expetation E(w(t)) = 0, and autoorrelation funtion E((w(t) −

w(s))2) = |t − s|;(w3) sample paths w(t) are a.s. nondi�erentiable for all t ∈ [0, +∞) and on any arbitrarilysmall interval have unbounded variation.Usually, under the white noise we understand the generalized derivative of the Wiener proess(sine ≪regular≫ derivative does not exist due to (w3)). In this sense the white noise is presented,for example, in a linear stohasti di�erential equation
dx = (Sx + y)dt + Aδw. (3)Here, in the right side, the symbol δw means the generalized di�erential of the Wiener proess

w(t), that is the WN. The equations of the form (3) are studied for the �rst time by K. Ito [12℄, andthen R.L. Stratonovih [13℄ and A.V. Skorokhod [14℄ joined the researh. Their approahes di�ermainly in the interpretation of the integral ∫ τ

0
Aδw(t), whih appears in the right-hand side of (3)after the integration. At the present time this approah is extended to partial di�erential equations[15℄. In addition, reently in I.V. Melnikova shool [16℄ a new diretion of stohasti di�erentialequations theory is formed and is atively developing. Here, the equation (3) is understood in theform

ẋ = Sx + y + ẇ, (4)where all derivatives are onsidered in the Shwartz spae. Thus, the generalized derivative of theWiener proess in the right�hand side of (4) is an additive WN.However, the approahes of Ito � Stratonovih � Skorohod and Melnikova � Filinkov �Alshansky an hardly be applied to the equations of the form (1) researh. In the �rst approahas it follows from the Kroneker � Weierstrass theory equations (1) (or in the equivalent form(2)) are divided into two parts; one part an be solved by the integration, suh as (3), but theother part an be solved only by the repeated di�erentiation. And if the �rst derivative of theWiener proess has aused so muh debate, what an we say about the seond, the third andet.?! The seond approah is inappliable due to the fat that the authors develop a theory100 Âåñòíèê ÞÓð�Ó, �27 (286), 2012



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈ�ÎÂÀÍÈÅof optimal dynami measurements based on the theory of the optimal ontrol of equations (1)solutions, but it exists now only in the framework of Hilbert spaes, and nothing is heard aboutits distribution on a loally onvex spae (as in (4)).The solution is seen by authors in the usage of the mean derivative instead of the generalizedderivative of the Wiener proess. E. Nelson [17℄ laid the fundamentals of the derivatives theory,and then Yu.E. Gliklikh [18℄ developed the theory till to its urrent state. One of the mostimportant objets of this theory is the symmetri mean derivative of the random proess, whihis also alled as the urrent rate of this proess. Further the short, this very derivative will bealled as the derivative of Nelson � Gliklikh, but we will keep the author's notations. For example,the Nelson � Gliklikh derivative of the Wiener proess w(t) we will designate by symbol DSw(t).Let's enumerate the advantages of suh substitution. Firstly, in the ase of deterministi(i.e. non�random) smooth proess, the Nelson � Gliklikh derivative oinides with the
≪ordinary≫ derivative just as the generalized derivative oinides with the ≪ordinary≫ derivativeof the smooth funtion. Seondly, the Nelson � Gliklikh derivative of the Wiener proess w(t) hasalulated and has been the following form: Dsw(t) = (2t)−1w(t). This random proess we allthe ≪white noise≫ (≪WN≫), paying attention to the quotes. As well as the generalized derivativeof the Wiener proess, our ≪WN≫ due to (w2) has zero expetation. Finally, if the Wienerproess w(t) simulates the displaement of a partile in the Brownian motion, then, aording toEinstein � Smoluhowsky theory, its sample paths are a. s. equivalent to √

t. From this DSw(t) isa. s. equivalent to (2
√

t)−1, whih oinides with the ≪ordinary≫ derivative of Brownian motion.This paper is organized as follows. The �rst part ontains the basi fats of Nelson � Gliklikhderivative theory adapted to our situation. Here we follow mainly [18℄. In the seond part weinvestigate the Showalter � Sidorov problem for the equations of the form (1) with the additive
≪WN≫ in the right side. Moreover, this problem is taken as a ≪weakened≫ in the sense ofS.G. Krein. We show the existene of this problem solutions and give the exat formula. Asan example, the spei� model of the WN is given. As we repeatedly note the bene�ts of theShowalter � Sidorov problem ompared to the Cauhy problem for Leontie� type equations (andeven more general Sobolev type), refer the interested reader to [7, 19℄.Finally, the authors onsider their wish to express their gratitude to Yu.E. Gliklih for hisstrit but onstrutive ritiism.1. The Nelson � Gliklikh derivativeLet Ω = (Ω,A,P) be omplete probability spae, R

n � dimensional vetor spae endowedwith the Borel σ-algebra. Let's all the mapping ξ : Ω → R
n as the random value, and denote theset of random variables by the symbol V(Ω; Rn). In this set we selet a Lebesgue spae Lq(Ω; Rn),

q ∈ [0, +∞), and note that the inlusion Lq(Ω; Rn) →֒ Lr(Ω; Rn) is dense and ontinuous, if
q ≥ r, and the set Ω is bounded. Suppose further that A0 is the ertain σ-algebra on Ω, and
A0 ⊂ A; by Ω0 = (Ω,A0,P) denote orresponding omplete probability spae. It is easily seenthat, L2(Ω0; R

n) is losed spae in the L2(Ω; Rn). By Π : L2(Ω; Rn) → L2(Ω0; R
n) denote theorthoprojetor. In the ase of boundedness of Ω (further this requirement will be assumed as thedefault setting) we uniquely ontinue the orthoprojetor Π to the projetor on Lq(Ω; Rn), whihwe denote by the same symbol Π : Lq(Ω; Rn) → Lq(Ω0; R

n), q ∈ [1, 2].De�nition 1. Let ξ ∈ L1(Ω; Rn). The random value Πξ ∈ L1(Ω0; R
n) is alled the onditionalmathemati expetation ξ relatively to A0 and is denoted by E(ξ|A0).Note that if E(ξ|A) = ξ and E(ξ|A0) is mathemati expetation, if A0 = {∅, Ω}. Let's alsonote that E(ξ|A0) is the unique (up to values on the set of zero probability) random variable fromÑåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå≫, âûï. 13 101



A.L. Shestakov, G.A. Sviridyuk
L1(Ω; Rn) suh that ∫

A

ξdP =

∫

A

E(ξ|A0)dP for any A ∈ F0. This onsequene of the Radon �Nikodym theorem an be onsidered as the equivalent de�nition E(ξ|A0).Let Ib
a ⊂ R be some interval, −∞ ≤ a < b ≤ +∞. Consider the following mappings: f : Ib

a →
V(Ω; Rn), for eah t ∈ Ib

a putting in orrespondene ξ ∈ V(Ω; Rn) and g : V(Ω; Rn) × Ω → R
n,for eah pair (ξ, ω) putting in orrespondene ξ(ω) ∈ R

n. Under the random proess we all themapping η : Ib
a ×Ω → R

n whih has the form η = η(t, ω) = g(f(t), ω). Thus, at eah �xed t ∈ Ib
athe random proess η = η(t, ·) is the random variable, i.e. η(t, ·) ∈ V(Ω; Rn), and at eah �xed

ω ∈ Ω the random proess η = η(·, ω) is alled as the (sample) path. We denote set of randomproesses by symbol P(Ib
a × Ω; Rn).With eah ξ ∈ V(Ω; Rn) we onnet σ-algebra Aξ ⊂ A, i.e. minimal σ-subalgebra A, relativelyto whih ξ is measurable. Aξ is alled σ-algebra, generated by ξ. The equivalent de�nition of Aξis that it's minimal σ-algebra, ontaining prototypes of all Borel sets in R

n under mapping
ξ : Ω → R

n. With eah η ∈ P(Ib
a × Ω; Rn) we onnet three families of σ-subalgebras of the

σ-algebra A:� the past P
η
t , generated by random variables η(S, ·) at eah S ∈ (a, t);� the future F

η
t , generated by random variables η(S, ·) at eah S ∈ (t, b);� the present N

η
t , generated by the random variable η(t, ·).All σ-algebras we onsider omplete, i.e. ontaining sets of zero probability.Let's rename Lq(Ω) ≡ Lq(Ω; Rn) and by Lq(I

b
a ×Ω) we denote the set {η ∈ P(Ib

a × Ω; Rn) :
η(t, ·) ∈ Lq(Ω) at all t ∈ Ib

a}, q ∈ [1, +∞). Remind that η ∈ P(Ib
a × Ω; Rn) is alled randomproess with a.s. ontinuous paths, if for P-a.s. all ω ∈ Ω paths η(·, ω) are ontinuous. The set ofrandom proesses from the Lq(I

b
a×Ω), whose paths are a.s. ontinuous, is donoted by L0

q(I
b
a×Ω).For short, we also rename E

η
t = E(η|Nη

t ).De�nition 2. Let η ∈ L0
q(I

b
a ×Ω), q ∈ [1, 2], the mean right Dη(t, ·) (left D∗η(t, ·)) derivative ofthe random proess η at the point t ∈ Ib

a is alled as the random variable
Dη(t, ·) = lim

∆t→0+
E

η
t

(
η(t + ∆t, ·) − η(t, ·)

∆t

)

(
D∗η(t, ·) = lim

∆t→0−
E

η
t

(
η(t, ·) − η(t − ∆t, ·)

∆t

))
,if the limit exists in the sense of the uniform metri on R. The random proess η is alled meanright (left) di�erentiable on the Ib

a, if in eah point t ∈ Ib
a the mean right (left) derivative exists.So, let η ∈ L0

q(I
b
a × Ω), q ∈ [1, 2], be mean right (left) di�erentiable on Ib

a. Its mean right(left) derivative is also the random proess, whih we denote by the symbol Dη (D∗η). If η ∈
L0

q(I
b
a×Ω), q ∈ [1, 2] is mean right and left di�erentiable on Ib

a, we an determine the symmetrial(antisymmetrial) mean derivative DSη = 1
2(D + D∗)η (DAη = 1

2(D − D∗)η). Further for thesake of brevity symmetrial mean derivative DS will be alled the Nelson � Gliklikh derivative.Note that if all random variables η(t, ·), t ∈ Ib
a, of the proess η ∈ L0

1(I
b
a × Ω) take values withthe probability 1, and all paths η(·, ω) are a.s. di�erentiable, the Nelson � Gliklikh derivativeoinides with the partial derivative with respet to the �rst argument.Consider the Wiener proesses and their Nelson � Gliklikh derivative. Assume Ib

a = R+(= [0, +∞)) and onsider the family B = {Bt ⊂ A : t ∈ R+} of σ-subalgebras of σ-algebra
A on Ω. Assume the family B be never-dereasing, i.e. Bs ⊃ Bt for all s ≥ t. The proess
η ∈ P(R+ × Ω; Rn) is alled the martingale with respet to family B, if for any t ≥ s we have theequality E(η(t, ·)|Bs) = η(s, ·).102 Âåñòíèê ÞÓð�Ó, �27 (286), 2012



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈ�ÎÂÀÍÈÅDe�nition 3. The random proess w ∈ L0
2(R+×Ω) is alled theWiener proess, subaltern to B, ifthe Wiener proess is the martingale with respet to B, w(0, ·) = 0 and E((w(t, ·)−w(s, ·))2|Bt) =

t − s for t ≥ s.Let's formulate some interesting and useful onsequene of De�nition 3 as properties of theWiener proess.(Cw1) (B. Levi) the Wiener proess w has stationary independent Gaussian inrements,moreover E(w(t, ·) − w(s, ·)) = 0 and E((w(t, ·) − w(s, ·))2) = |t − s|.In other words, the inrement w(t, ·) − w(s, ·) of the Wiener proess does not depend onfamily B and has the same (Gaussian) distribution, as the proess w(t− s, ·) for t ≥ s. The samean be said about the Wiener proess.(Cw2) Paths w(·, ω) of the Wiener proess are a.s. not di�erentiable at any point t ∈ R+ andhave unbounded variation on any interval Ib
a ⊂ R+.As mentioned, above this property is the main obstale in the mathematial researh of theWN. Now list the properties of the Wiener proess, whih will be useful in the investigation ofthe ≪WN≫.Theorem 1. (J.E. Glikhlih) (i) DSw(t, ·) = (2t)−1w(t, ·), D2

Sw(t, ·) = −(2t2)−1w(t, ·);(ii) t∫

0

||DSw(s)||ds < +∞.Here || · || � is the norm in L1(Ω). De�ne Lk
q ((0, τ) × Ω) = {η ∈ Lk−1

q ((0, τ) × Ω) :there exist Dk
Sη, and all its paths are a.s. ontinuous on (0, τ) for any τ > 0}, k ∈ N, q ∈

[1, +∞). From the theorem 1 (i) follows that w ∈ L2
q((0, τ) × Ω), q ∈ [1, 2]. There is strongerresult:Theorem 2. (Yu.E. Glikhlih) w ∈ Lk

q ((0, τ) × Ω), k ∈ N, q ∈ [1, 2].2. The Weakened Showalter � Sidorov problem for Leontie� typeequations with the additive ≪white noise≫Let's start with the simpli�ation of the de�nitions. First of all, we rename P(Ib
a × Ω) ≡

P(Ib
a×Ω; Rn) the set of random proesses with the values in R

n. The random proess η ∈ P(Ib
a×Ω)will be denoted by symbols η = η(t), onsidering its dependene on the seond variable ω ∈ Ωtaking plae by default. Nelson � Gliklikh derivative DS (if it exists) of the random proess ηwill be denoted by symbol ◦

η, i.e. DSη = DSη(t) =
◦
η=

◦
η (t). The subset (the Lebesgue spae) ofrandom proesses P(Ib

a ×Ω), with a.s. ontinuously di�erentiable up to order k inlusive (in thesense of Nelson � Glikhlih) paths, denote by Lk
q (I

b
a × Ω), k ∈ {0} ∪ N.Let further L è M be square matrixes of order n, detL = 0, and the penil µL − M be

p-regular [2℄. Consider Leontie� type equations
L

◦
η= Mη+

◦
w, (5)where ◦

w= (2t)−1w(t) � ≪WN≫. The random proess η ∈ L1
1((0, τ) × Ω) is alled a solution ofthe equation (5), if a.s. all its paths satisfy (5) at any τ ∈ (0, +∞). A weakened (in the sense ofS.G. Krein) Showalter �Sidorov problem we all the following problem

lim
t→0+

[RL
α(M)]p+1(η(t) − ξ0) = 0, (6)where RL

α(M) = (αL−M)−1L is the right L-resolvent of the matrix M , α ∈ ρL(M) � L-resolventset of the matrix M . We note immediately that sine ker[RL
α(M)]p+1 = kerP , im[RL

α(M)]p+1 =Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå≫, âûï. 13 103



A.L. Shestakov, G.A. Sviridyuk
imP , where

P =
1

2πi

∫

γ

RL
µ(M)dµis projetor on R

n, so the problem (6) is equivalent to the problem
lim

t→0+
P (η(t) − ξ0) = 0. (7)So, the solution η = η(t) of the equations (5) will be alled the solution of the problem (5), (6)(or, that is also equivalent, � (5), (7)), if it a.s. satis�es (6).Along with the projetor P we introdue for onsideration the projetor

Q =
1

2πi

∫

γ

LL
µ(M)dµ,where LL

µ(M) = L(µL − M)−1 is the left L-resolvent of the matrix M , and γ ∈ C, as above, isthe losed ontour, bounding the L-spetrum σL(M) of the matrix M .Lemma 1. Let the penil µL − M be p-regular, then dim kerP = dim kerQ, LP = QL, MP =
QM .In view of p-regularity of the penil µL − M without loss of generality, we an assume
detM 6= 0. Indeed, by making in (5) replaement η(t) = ω(t)eαt, where α ∈ ρL(M), we will reahof the form (5) at a system, and in the right side will be the matrix M ′ = M − αL. Obviously,
detM ′ 6= 0. Let's onstrut the matrix (In − P )M−1(In − Q)L(In − P ) ≡ H.Lemma 2. Let the penil µL − M be p-regular, detM 6= 0, then the matrix H is nilpotent withdegree not above p.Lemma 3. Let the penil µL−M be p-regular, then there exists the square matrix Λ of order nand ΛQL = LPΛ = diag{Om, Il} is ful�lled up to permutations of rows, where m = dim kerP ,
l = n − m.Assume S = ΛQM and onstrut

etS =
1

2πi

∫

γ

RL
µ(M)eµtdµ.It is easy to see that the family {etS : t ∈ R} forms a group, and its unit etS |t=0 = P .Theorem 3. Let the penil µL − M be p-regular, detM 6= 0. Then for any ξ0 ∈ V(Ω; Rn) and

τ ∈ (0, +∞) there exists the solution η ∈ L1
1((0, τ)×Ω) of the problem (5), (6), and all solutionsa.s. have the form

η(t) = −
p∑

k=0

HkM−1(In − Q)Dk
S

◦
w (t) + etSξ0 +

∫ t

0
e(t−s)SΛQ

◦
w (s)ds. (8)Here H0 = In − P by onstrution. From theorem 1 (ii) and theorem 2 it follows that

η ∈ L1
1((0, τ)×Ω) for all τ ∈ (0, +∞). By diret substitution we see that (8) is a solution of (5).Similarly [9℄, Chapter 4, we see that there are a.s. no solutions of (5) di�erent from (8). Sineby ation of the projetor P one the �rst term (in fat, subtrahend) in (8), we obtain identiallyzero at all t ∈ (0, τ), it is lear that (7), and thus (6) are also satis�ed.Example 1. One of the simplest models of the MT, onsidered in [6℄, [7℄, has the following form(applied to the situation onsidered here)

◦
α= Aα+

◦
ω, β = Cα. (9)104 Âåñòíèê ÞÓð�Ó, �27 (286), 2012



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈ�ÎÂÀÍÈÅHere the random proess α = α(t) simulates ondition of the MT, matrixes A è C � itsdevies, β = β(t) is the observed proess, in this ase, ≪WN≫

◦
ω=

◦
ω (t). Assuming η =

(α1, . . . , αm, β1, . . . , βl), L = diag{Il, Om},
M =

(
A O

C −Im

)
,we will reah the system (5) ◦

w= (
◦
ω1, . . . ,

◦
ωl, 0, . . . , 0︸ ︷︷ ︸

l

). Firstly, as it is easy to see detM 6= 0,sine det M = (−1)m detA and det A 6= 0 by onstrution. And seondly, the penil µL − M is
0-regular. Projetors Q = L,

P =

(
Il O

C Om

)
,operator Λ = L, the group of solution operators

etM =

(
etA

O

CetA
Om

)
,where etA =

1

2πi

∫

γ

(µIl−A)−1eµtdµ, and the ontour γ limits the region ontaining the spetrum
σ(A) of the matrix A (Inidentally, here σ(A) = σL(M)). In the model (9) we are interested justin observation β, and in addition, for tehnial reasons, the initial random variable ξ0 (in (6),(7)) an be set equal to zero a.s. Therefore, by Theorem 3 is validCorollary 1. All observations in the model (9) a.s. are given by formula

β(t) = C

∫ t

0
e(t−s)A ◦

ω (s)ds, t ∈ R+.This raises two important onlusions: �rstly, the random proess of observation β(0) = 0 isa.s., and seondly, paths β(t) are a.s. ontinuous.Referenes1. Shestakov A.L. Dynami Auray of the Transmitter with a Corretive Devie in the Form ofa Sensor Model. Metrologiya [Measurement Tehniques℄, 1987, no. 2, pp. 26�34. (in Russian)2. Sviridyuk G.A., Bryhev S. V. Numerial Solution of Systems of Equations of Leontief Type.Russian Mathematis (Izvestiya VUZ. Matematika), 2003, vol. 47, no. 8, pp. 44�50.3. Shestakov A.L. Dynami Error Corretion Transduer Linear Filter-based Sensor Model.Izvestiya VUZ. Priborostroenie, 1991, vol. 34, no. 4. pp. 8�13. (in Russian)4. Shestakov A.L. Modal Synthesis of the Transmitter. Izvestiya RAN. Teoriya i sistemyupravleniya [J. of Computer and Systems Sienes International℄, 1995, no. 4, pp. 67�75.(in Russian)5. Shestakov A.L., Sviridyuk G.A. A New Approah to Measuring Dynamially DistortedSignals. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya ≪Matematiheskoemodelirovanie i programmirovanie≫ � Bulletin of the South Ural State University. Series
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ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈ�ÎÂÀÍÈÅ
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