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ON THE MEASUREMENT OF THE «<WHITE NOISE>
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In the framework of the Leontieff type equations theory we consider the mathematical
model of the measuring transducer, demonstrating the mechanical lag effect. In studying
the model with deterministic external signal the methods and results of the Sobolev type
equations theory and degenerate groups of operators are very useful, because they help
to create an efficient computational algorithm. Now, the model assumes the presence
of white noise along with the deterministic signal. Since the model is represented by
a degenerate system of ordinary differential equations, it is difficult to apply existing
nowadays approaches such as Ito — Stratonovich — Skorohod and Melnikova — Filinkov —
Alshansky in which the white noise is understood as a generalized derivative of the Wiener
process. Instead, we propose a new concept of the <«white noise>, which is equal to the
symmetric mean derivative (in the paper — the derivative of the Nelson — Gliklikh) of the
Wiener process, and in the framework of the Einstein — Smoluchowsky coincides with the
<ordinary> derivative of the Brownian motion. The first part of the paper contains the
basic facts of the Nelson — Gliklikh derivative theory adapted to this situation. The second
part deals with the weakened Showalter — Sidorov problem and gives exact formulas for its
solution. As an example, we present a concrete model of a measuring transducer.

Keywords: Leontieff type equations, weakened Showalter — Sidorov problem, symmetric
mean deriative, Wiener process.

Introduction

One of the authors |1| proposes a mathematical model of the measuring transducer (MT),
and the co-author [2] proposed to consider it as a part of Leontieff type equations

Li =Mz +y, (1)

titled for obvious similarity with the balance Leontieff equations. Model (1) is proved to be
adequate to a wide range of measured phenomena [3]|, [4]; obtained from its data agreed well
with the results of field experiments. Later, on the basis of the model (1) the authors develop a
method of signal restoration, distorted by mechanical lag [5], and the resonance in the circuits of
MT [6]. On the basis of this method a numerical algorithm for reconstructing a signal distorted
by lag effect of MT |7] has been constructed.

In (1) L, M are square matrixes of order n, and det L = 0. If we use a well-known theory
of Kronecker — Weierstrass (see for example 8|, Chapter 12), then in the case of a regular pencil
L 4+ AM system (1) can be reduced to the equivalent system

L7 = Mi+7, (2)

where matrices L = diag{N,,, Nu,, ..., Ny, I}, M= diag{L;,, S}, Ny, are Jordan boxes of order
k
v, j = 1, k, with zeros on main diagonals; I; and L,,, are identity matrices, | = n—m, m = Z vj;
j=1
S is a square matrix of order /. In (2) m components of the vector function z = Z(¢) correspond to
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the output signal and the remaining components characterize the condition the MT: the vector—
function y = y(t) models the input signal. The same must be said about their pre-images from (1).
Algorithm of reducing of (1) to (2) in the theory is very simple, but very unstable in the numerical
implementation. Therefore, to investigate (1) we use the results of the degenerate operator groups
theory [9], Chapter 4. Such approach lets us to create not only a numerical algorithm for solving
the problems with inertia and resonances of MT, but also to construct complexes of programs
[10, 11].

In all our previous works it has bien tacitly assumed that the input signal y = y(t) is
determined, that is, it does not contain random disturbances, such as additive white noise. So
far as it is difficult to imagine the MT without the white noise (WN), we intend to study this
phenomenon in the model (1), where the input signal is not only the useful signal, but it’s also
the WN. However, before we start this project, we want to make few remarks about the WN as
a phenomenon.

It is believed that the history of the study of white-noise is based on the theory of the
Brownian motion of A. Einstein and M. Smoluchowsky. From this theory it follows that the
displacement of a particle in the Brownian motion is proportional to the v/, where ¢ is time.
Therefore, the particle velocity is proportional to the (2v/¢)~! and therefore it is not defined at
the instant time ¢ = 0. The next step in this direction is made by N. Wiener, who has suggested
that the displacement of a particle is determined by a random process, which later got his name.
Thus, the Wiener process is the random process w(t), and has the following properties:

(wl) w(0) = 0 almost surely (a.s.), and sample paths w(t) are a.s. continuous;

(w2) mathematical expectation E(w(t)) = 0, and autocorrelation function E((w(t) —
w(s))?) = [t — sl;

(w3) sample paths w(t) are a.s. nondifferentiable for all ¢ € [0, +00) and on any arbitrarily
small interval have unbounded variation.

Usually, under the white noise we understand the generalized derivative of the Wiener process
(since <regular> derivative does not exist due to (w3)). In this sense the white noise is presented,
for example, in a linear stochastic differential equation

dxr = (Sx + y)dt + Adw. (3)

Here, in the right side, the symbol dw means the generalized differential of the Wiener process

w(t), that is the WN. The equations of the form (3) are studied for the first time by K. Ito [12], and

then R.L. Stratonovich [13] and A.V. Skorokhod [14] joined the research. Their approaches differ
T

mainly in the interpretation of the integral [ Adw(t), which appears in the right-hand side of (3)

after the integration. At the present time this approach is extended to partial differential equations
[15]. In addition, recently in 1.V. Melnikova school [16] a new direction of stochastic differential
equations theory is formed and is actively developing. Here, the equation (3) is understood in the
form

T =Sr+y+w, (4)

where all derivatives are considered in the Schwartz space. Thus, the generalized derivative of the
Wiener process in the right-hand side of (4) is an additive WN.

However, the approaches of Ito — Stratonovich — Skorohod and Melnikova — Filinkov —
Alshansky can hardly be applied to the equations of the form (1) research. In the first approach
as it follows from the Kronecker — Weierstrass theory equations (1) (or in the equivalent form
(2)) are divided into two parts; one part can be solved by the integration, such as (3), but the
other part can be solved only by the repeated differentiation. And if the first derivative of the
Wiener process has caused so much debate, what can we say about the second, the third and
etc.?! The second approach is inapplicable due to the fact that the authors develop a theory
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of optimal dynamic measurements based on the theory of the optimal control of equations (1)
solutions, but it exists now only in the framework of Hilbert spaces, and nothing is heard about
its distribution on a locally convex space (as in (4)).

The solution is seen by authors in the usage of the mean derivative instead of the generalized
derivative of the Wiener process. E. Nelson [17] laid the fundamentals of the derivatives theory,
and then Yu.E. Gliklikh [18] developed the theory till to its current state. One of the most
important objects of this theory is the symmetric mean derivative of the random process, which
is also called as the current rate of this process. Further the short, this very derivative will be
called as the derivative of Nelson — Gliklikh, but we will keep the author’s notations. For example,
the Nelson — Gliklikh derivative of the Wiener process w(t) we will designate by symbol Dgw(t).

Let’s enumerate the advantages of such substitution. Firstly, in the case of deterministic
(i.e. non-random) smooth process, the Nelson — Gliklikh derivative coincides with the
<ordinary> derivative just as the generalized derivative coincides with the «ordinary> derivative
of the smooth function. Secondly, the Nelson — Gliklikh derivative of the Wiener process w(t) has
calculated and has been the following form: Dgw(t) = (2t)"'w(t). This random process we call
the <white noisex> («WN>), paying attention to the quotes. As well as the generalized derivative
of the Wiener process, our <WNx> due to (w2) has zero expectation. Finally, if the Wiener
process w(t) simulates the displacement of a particle in the Brownian motion, then, according to
Einstein — Smoluchowsky theory, its sample paths are a. s. equivalent to v/#. From this Dgw(t) is
a. s. equivalent to (2v/¢)~!, which coincides with the <ordinarys derivative of Brownian motion.

This paper is organized as follows. The first part contains the basic facts of Nelson — Gliklikh
derivative theory adapted to our situation. Here we follow mainly [18]. In the second part we
investigate the Showalter — Sidorov problem for the equations of the form (1) with the additive
<WN:> in the right side. Moreover, this problem is taken as a «weakeneds in the sense of
S.G. Krein. We show the existence of this problem solutions and give the exact formula. As
an example, the specific model of the WN is given. As we repeatedly note the benefits of the
Showalter — Sidorov problem compared to the Cauchy problem for Leontieff type equations (and
even more general Sobolev type), refer the interested reader to |7, 19].

Finally, the authors consider their wish to express their gratitude to Yu.E. Gliklih for his
strict but constructive criticism.

1. The Nelson — Gliklikh derivative

Let Q = (2,4, P) be complete probability space, R” — dimensional vector space endowed
with the Borel o-algebra. Let’s call the mapping & : 2 — R™ as the random value, and denote the
set of random variables by the symbol V(£2; R™). In this set we select a Lebesgue space Lqy(€2;R™),
g € [0,400), and note that the inclusion L,(2;R") — L,(;R") is dense and continuous, if
q > r, and the set Q is bounded. Suppose further that Ag is the certain o-algebra on 2, and
Ay C A; by Qp = (2, Ap, P) denote corresponding complete probability space. It is easily seen
that, Lo(Q0;R™) is closed space in the Lo(2;R™). By II : La(;R™) — Lo(0;R™) denote the
orthoprojector. In the case of boundedness of € (further this requirement will be assumed as the
default setting) we uniquely continue the orthoprojector II to the projector on L4 (€2;R™), which
we denote by the same symbol IT : Ly (Q; R™) — Lg(Q0; R™), ¢ € [1,2].

Definition 1. Let £ € Li(2;R™). The random value 11 € L1(Q0;R™) is called the conditional
mathematic expectation & relatively to Ay and is denoted by E(§|Ap).

Note that if E(¢]A) = ¢ and E(£|.Ap) is mathematic expectation, if Ay = {0, 2}. Let’s also
note that E(£|.Ap) is the unique (up to values on the set of zero probability) random variable from
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L1(£2;R™) such that / &dP = / E(£]Ap)dP for any A € §p. This consequence of the Radon —
A A

Nikodym theorem can be considered as the equivalent definition FE(£|.Ap).

Let 3% C R be some interval, —oo < a < b < +oc0. Consider the following mappings: f : 3% —
V(Q;R™), for each ¢ € 3% putting in correspondence ¢ € V(Q;R") and g : V(Q;R") x Q — R,
for each pair (£, w) putting in correspondence &(w) € R™. Under the random process we call the
mapping 7 : 3% x Q — R™ which has the form 1 = n(t,w) = g(f(t),w). Thus, at each fixed t € J°
the random process n = n(t,-) is the random variable, i.e. n(t,-) € V(2;R"™), and at each fixed
w € Q the random process 7 = 7(-,w) is called as the (sample) path. We denote set of random
processes by symbol P(3% x Q;R™).

With each £ € V(Q; R") we connect o-algebra A C A, i.e. minimal o-subalgebra A, relatively
to which ¢ is measurable. A¢ is called o-algebra, generated by &. The equivalent definition of A$
is that it’s minimal c-algebra, containing prototypes of all Borel sets in R™ under mapping
£€:Q — R™ With each n € P(3% x ;R") we connect three families of o-subalgebras of the
o-algebra A:

— the past B}, generated by random variables (.S, -) at each S € (a, t);

— the future §/, generated by random variables n(S9,-) at each S € (¢, b);

— the present 91/, generated by the random variable n(t, ).

All g-algebras we consider complete, i.e. containing sets of zero probability.

Let’s rename Ly(Q2) = Ly(€; R™) and by L, (3% x ) we denote the set {n € P(3% x Q;R"):
n(t,) € Ly(Q) at allt € 38}, ¢ € [1,+00). Remind that € P(3% x Q;R") is called random
process with a.s. continuous paths, if for P-a.s. all w € Q paths 7(-,w) are continuous. The set of
random processes from the L, (3% x ), whose paths are a.s. continuous, is donoted by L (30 x Q).
For short, we also rename E;' = E(n|9)).

Definition 2. Let n € Lg(jg x Q), q € [1,2], the mean right Dn(t,-) (left Din(t,-)) derivative of
the random process 1 at the point t € 3% is called as the random variable

At

Dot = i g7 (1A=

(Dt = timy gy (MEIZAEZEET) )

if the limit exists in the sense of the uniform metric on R. The random process 7 is called mean
right (left) differentiable on the 3%, if in each point ¢ € 3% the mean right (left) derivative exists.

So, let n € LS(JZ x ), ¢ € [1,2], be mean right (left) differentiable on J%. Its mean right
(left) derivative is also the random process, which we denote by the symbol Dn (D.n). If n €
LY (3% xQ), q € [1,2] is mean right and left differentiable on 3%, we can determine the symmetrical
(antisymmetrical) mean derivative Dgn = $(D + D.)n (Dan = 5(D — D,)n). Further for the
sake of brevity symmetrical mean derivative Dg will be called the Nelson — Gliklikh derivative.
Note that if all random variables n(t,-), t € 3%, of the process n € LY(3% x Q) take values with
the probability 1, and all paths n(-,w) are a.s. differentiable, the Nelson — Gliklikh derivative
coincides with the partial derivative with respect to the first argument.

Consider the Wiener processes and their Nelson — Gliklikh derivative. Assume 7% = R,
(= [0,400)) and consider the family B = {8; C A : t € Ry} of o-subalgebras of o-algebra
A on Q. Assume the family B be never-decreasing, i.e. Bs DO By for all s > t. The process
n € P(Ry x Q;R™) is called the martingale with respect to family B, if for any ¢t > s we have the

equality E(T/(t? )|%s) = 77(5’ )
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Definition 3. The random process w € LY(Ry x ) is called the Wiener process, subaltern to B, if
the Wiener process is the martingale with respect to B, w(0,-) = 0 and E((w(t, ) —w(s,-))?|B;) =
t—sfort>s.

Let’s formulate some interesting and useful consequence of Definition 3 as properties of the
Wiener process.

(Cwl) (B. Levi) the Wiener process w has stationary independent Gaussian increments,
moreover E(w(t, ) —w(s,-)) =0 and E((w(t,-) — w(s,-))?) = |t — s|.

In other words, the increment w(t, ) — w(s,-) of the Wiener process does not depend on
family B and has the same (Gaussian) distribution, as the process w(t — s, ) for t > s. The same
can be said about the Wiener process.

(Cw2) Paths w(+,w) of the Wiener process are a.s. not differentiable at any point ¢t € Ry and
have unbounded variation on any interval 3% C Ry.

As mentioned, above this property is the main obstacle in the mathematical research of the
WN. Now list the properties of the Wiener process, which will be useful in the investigation of
the <WN>.

Theorem 1. (J.E. Glikhlih) (i) Dsw(t,-) = (2t)‘w(t,-), Diw(t,-) = —(2t3) " tw(t,-);

(ii) /HDSw(s)Hds < +oo.
0

Here || - || — is the norm in Li(Q). Define LE((0,7) x Q) = {n € LE2((0,7) x Q) :
there exist D7, and all its paths are a.s. continuous on (0,7) forany 7 > 0}, & € N, ¢ €
[1,400). From the theorem 1 (i) follows that w € L2((0,7) x Q), ¢ € [1,2]. There is stronger
result:

Theorem 2. (Yu.E. Glikhlih) w € LE((0,7) x Q), k €N, ¢ € [1,2].

2. The Weakened Showalter — Sidorov problem for Leontieff type
equations with the additive <white noise>

Let’s start with the simplification of the definitions. First of all, we rename P (3% x Q) =
P (3% xQ; R™) the set of random processes with the values in R”. The random process n € P(J%x )
will be denoted by symbols n = 7(t), considering its dependence on the second variable w € Q
taking place by default. Nelson — Gliklikh derivative Dg (if it exists) of the random process 7
will be denoted by symbol 73, i.e. Dgn = Dgn(t) =1=1) (t). The subset (the Lebesgue space) of
random processes P(J% x Q), with a.s. continuously differentiable up to order k inclusive (in the
sense of Nelson — Glikhlih) paths, denote by L¥(3% x ), k € {0} UN.

Let further L u M be square matrixes of order n, det L = 0, and the pencil uL. — M be
p-regular [2]. Consider Leontieff type equations

L 1= M+ w, (5)

where w= (2t) " w(t) — «<WNs. The random process 1 € L}((0,7) x Q) is called a solution of
the equation (5), if a.s. all its paths satisfy (5) at any 7 € (0,4+00). A weakened (in the sense of
S.G. Krein) Showalter —Sidorov problem we call the following problem

Jim [RE (M) (n(t) = &) =0, (6)

where RL(M) = (oL — M)™!L is the right L-resolvent of the matrix M, o € p(M) — L-resolvent
set of the matrix M. We note immediately that since ker[RL(M)]P*! = ker P, im[RE(M)]PH! =
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imP, where

1 L
P= /7 RE(M)dy

T 2mi

is projector on R™, so the problem (6) is equivalent to the problem
Jim P(n(t) — &) =0. (7)

So, the solution n = n(t) of the equations (5) will be called the solution of the problem (5), (6)
(or, that is also equivalent, — (5), (7)), if it a.s. satisfies (6).
Along with the projector P we introduce for consideration the projector
1
=— [ LE(M)d
Q=5 /7 p (M)dp,

where Lﬁ(M) = L(uL — M)~! is the left L-resolvent of the matrix M, and v € C, as above, is
the closed contour, bounding the L-spectrum o’ (M) of the matrix M.

Lemma 1. Let the pencil uL — M be p-reqular, then dimker P = dimker Q, LP = QL, M P =
QM.

In view of p-regularity of the pencil ul. — M without loss of generality, we can assume
det M # 0. Indeed, by making in (5) replacement 7(t) = w(t)e™, where o € p%(M), we will reach
of the form (5) at a system, and in the right side will be the matrix M’ = M — aL. Obviously,
det M’ # 0. Let’s construct the matrix (I,, — P)M (I, — Q)L(I, — P) = H.

Lemma 2. Let the pencil pl. — M be p-reqular, det M #£ 0, then the matriz H is nilpotent with
degree not above p.

Lemma 3. Let the pencil ul. — M be p-reqular, then there exists the square matriz A of order n
and AQL = LPA = diag{Q,,,1;} is fulfilled up to permutations of rows, where m = dimker P,
l=n—m.
Assume S = AQM and construct
1
et = /Rﬁ(M)e“tdu.
gl

- 2mi
It is easy to see that the family {*® : t € R} forms a group, and its unit e*S|,—q = P.

Theorem 3. Let the pencil uL — M be p-regular, det M # 0. Then for any & € V(Q;R™) and
7 € (0,400) there exists the solution n € L1((0,7) x Q) of the problem (5), (6), and all solutions
a.s. have the form

P t
n(t) = — S HEM I, - QDY & (1) + e'Sg + / (ISNQ B (5)ds. (8)

k=0 0
Here HY = 1, — P by construction. From theorem 1 (i) and theorem 2 it follows that
n € Li((0,7) x Q) for all 7 € (0, 4+0oc). By direct substitution we see that (8) is a solution of (5).
Similarly [9], Chapter 4, we see that there are a.s. no solutions of (5) different from (8). Since
by action of the projector P one the first term (in fact, subtrahend) in (8), we obtain identically

zero at all t € (0,7), it is clear that (7), and thus (6) are also satisfied.

Example 1. One of the simplest models of the MT, considered in [6], [7], has the following form
(applied to the situation considered here)

a= Aa+ w, B = Ca. 9)
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Here the random process a = «(t) simulates condition of the MT, matrixes A u C — its

devices, f = [(t) is the observed process, in this case, <WNx> w=w (t). Assuming n =
(0517 <o 7am7/617 <. 75[)7 L= diag{ﬂh@m}a

A O
v=(e %)

we will reach the system (5) W= (:11, w10, ,0). Firstly, as it is easy to see det M # 0,
——
l
since det M = (—1)" det A and det A # 0 by construction. And secondly, the pencil uL — M is

O-regular. Projectors Q = L,
(L O
P=(¢ o)

operator A = L, the group of solution operators

etM _ etA O
Cetd Q,, )’

tA — / (pl; — A)~tertdp, and the contour ~ limits the region containing the spectrum

where e"* = —
21

o
o(A) of the matrix A (Incidentally, here o(A) = o(M)). In the model (9) we are interested just
in observation 3, and in addition, for technical reasons, the initial random variable &, (in (6),
(7)) can be set equal to zero a.s. Therefore, by Theorem 3 is valid

Corollary 1. All observations in the model (9) a.s. are given by formula

t
Bt)=C / =94 G (s)ds, t € Ry.
0

This raises two important conclusions: firstly, the random process of observation 3(0) = 0 is
a.s., and secondly, paths ((t) are a.s. continuous.
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O06 u3mepenuu <b6ejoro nrymas

A.JI. Illecmaxos, I.A. Ceupudiox

B pamkax Teopun ypaBHEHWIi JEOHTHEBCKOTO THITA PACCMOTPEHA MaTeMaTHIYeCKas MO-
JleJIb U3MEPUTEILHOTO YCTPOMCTBA, JIeMOHCTpUpYoias 3 deKkT MexaHn4eckoil HHepPIMOH-
Hoctu. IIpu u3ydeHUH MOJEIH C JETEPMUHUPOBAHHLIM BHEITHUM CHUTHAJIOM OYE€Hb MOJIe3-
HBIMH OKA3aJMCh METOMbI U PE3YJIbTATHl TEOPUU YPABHEHUH CODOJIEBCKOrO TUIA U BBIPOXK-
JIEHHBIX TPYII OMEPATOPOB, MOCKOJIbKY OHU TO3BOJIUIN CO3MATh 3(PMEKTUBHBIN BHIUNCITH-
TeJIbHBIN ajaroputM. Ternepb B MOIE/IN MPEIOIATaeTCsa HAPSILY C IeTepMUHIPOBAHHBIM CHUT-
HAJIOM HaJsimuue 6esioro miyma. I1ocKoIbKy MO/IesIh MPEe/ICTaBIEHA BHIPOXKIEHHONW CHCTEMOIH
OOBIKHOBEHHBIX MU DEpPeHIMATbHBIX YPABHEHUH, TO K Hell TPY/IHO TPUMEHUMBI CyIIECTBY-
fomue HbiHe noaxonsl to — Crparonosuda — Crkopoxona u MenbHukoBoit — @uiinHKOBa —
AJbIIaHCKOT0, B KOTOPBIX GEJIbIH 1IyM HOHUMAETCs KAK OOOOIIEHHAs! IPOU3BOIHAS BAHEPOB-
CKOTO Tiporiecca. BMecTo 3Toro mpeiyiaraercst HoBasi KOHIENIINS <0eJioro MyMas, paBHOTO
CHMMETPHUYECKOl TPOU3BOIHON B cpeHeM (B craThe — npousBoaHoit Heibcona — Iukimxa)
BUHEPOBCKOIO TIPOIECCa, TIPUYEM MOJAMEYEHO, 9TO B paMKax Teopun Jiinmmreiina — Cmoiry-
XOBCKOTO JIAaHHAS [IPOU3BOIHAS COBIAIAET C <OOBIYHON> IPOM3BOIHON OPOYHOBCKOTO JIBU-
Kenus. B mepBoit qacTtu ctarbu cOOpaHbl OCHOBHBIE (DaKThI Teopuu mpou3BoaHoit Henbcona
— I'mukanxa, amanTipoBaHHbIE K paccMaTpuBaeMoii cutyaruun. Bo BTOpoit — paccMoTpena
ocrabsennas 3amada [loyonrepa — CumopoBa u gaHbl TOYHBIE (OPMYJIBI ee perienus. B
KadecTBe IIPUMepa NpHUBeIeHa KOHKPETHAs MO/IeJIb N3MEPHUTEHbHOIO YCTPOICTBA.

Katouesvie cr06a: YypasHeHUus AEOHMBEBCKO20 Muna, ocaabrennas 3adawa Iloyoamepa
— Cudoposa, cummempuyecras npoussodnas 6 cpednem, UHHEPOBCKUT Npoyecc.
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