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This paper addresses some classes of linear and quasi-linear partial di�erential algebraic
equations (PDAEs), i.e. systems of partial di�erential equations with singular matrices
multiplying the higher derivatives of the desired vector-function. Such systems do not belong
to the class of the Cauchy � Kovalevskaya equations, and therefore do not not comply with
known existence theorems. The current research focuses on the �rst order evolutionary
systems with one variable and investigates PDAEs depending on the parameter. The concept
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Introduction and Statement of the Problem

Consider an evolutionary system of partial di�erential equations

Λ(Dt, Dx)u := A(x, t)Dtu+

ρ∑
j=1

Bj(x, t)D
j
xu+ C(x, t)u = f(x, t), (x, t) ∈ U, (1)

where A(x, t), Bj(x, t), C(x, t) are (n × n)-matrices, U = X × T ⊆ R2, X = [x0, x1],
T = [t0, t1], Dt ≡ ∂/∂t, Dx ≡ ∂/∂x, f(x, t), u ≡ u(x, t) are the given and the desired
vector-functions, respectively. It is assumed that

det A(x, t) = 0, det Bρ(x, t) = 0 ∀(x, t) ∈ U, (2)

and that the entries of (1) are su�ciently smooth in some domain Ũ that includes U . The
solution u(x, t) is searched for in the domain U. In this paper, we focus only on classic
solutions.

In what follows, by the solution of (1) we understand any vector-function u(x, t) that
has continuous partial derivatives in Ũ with respect to x, t and turns (1) into an identical
relation in U.

The statement of the problem for partial di�erential equations usually includes initial
and boundary conditions. Here we consider the simplest cases:

uj(x, t0) = ϕj(x), u(x0, t) = ψ(t), uj(x, t) = Dj
xu(x, t), j = 0, ρ, D0

xu(x, t) = u(x, t). (3)
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Ever since the second half of the 20th century the �eld of mathematics addressing
equations with a noninvertible operator at the evolutionary term has played an important
role in various applications such as hydrodynamics (the Navier-Stokes equations), gas
dynamics (the Euler equations), electric and thermal engineering [1�8].

The study of such equations began with the work by L.S. Sobolev [1], that is why they
are often referred to as Sobolev equations [2]. It is quite common to treat such equations
by transition to the di�erential equations in the Banach spaces

Av̇(t) +Bv(t) = f(t), t ∈ T, (4)

where A,B are some operators that put (4) into correspondence to (1) in the Banach
spaces, ker A ̸= 0; and v(t), f(t) are the desired and the given vector-functions,
correspondingly.

A signi�cant contribution into this �eld of mathematics has been made by
G.A. Sviridyuk and his followers (see, for example, [2�7] and the references listed there).
Interesting results are also presented in [9�14]. Another approach to solving Sobolev
equations suggests transition to singular in some sense partial di�erential equations
with subsequent application of powerful methods of functional analysis [15, 16]. Some
promising results have been obtained for systems (1) with constant coe�cient matrices
by employment of Furrier transformations and similar methods (see, for example, the
fundamental monographs [17,18] and the references listed there).

Finally, during the last 15�20 years it has become popular to employ the approach
based on the methods developed for the DAE theory [19�25]. According to the American
Mathematical Society, the term DAE is used for systems of ordinary di�erential equations
with a singular matrix multiplying the higher derivative of the desired vector-function.
Index is a notion used in the theory of DAEs for measuring the distance from a DAE to its
related ODE. The index is a nonnegative integer number that provides useful information
about the mathematical structure and potential complications in the analysis and the
numerical solution of the DAE. It also identi�es the number of derivatives on which the
solution to the given DAE depends. However, there is still no agreement on how to calculate
the index of partial di�erential algebraic equations (PDAEs), and the current research aims
to provide some clarity on this matter. We will address a special case of (1) that comprises
partial di�erential equations, ordinary di�erential equations, and algebraic equations.

When studying PDAEs, we face the question whether we can classify them as
hyperbolic, elliptic, or parabolic, because the classic theory of partial di�erential equations
states that the type of the system predetermines the method of solution (see, for example,
[26]). Therefore, in what follows, we say that a PDAE is hyperbolic if it can be split
into: 1) a classic hyperbolic system; 2) di�erential subsystems with respect to x, t, where
the second variable is treated as a parameter; 3) a subsystem with a unique solution, in
particular, an algebraic system.

Remark 1. For the sake of simplicity, the dependence on t and x sometimes will be
omitted, if this does not lead to misunderstanding. The inclusion V (x, t) ∈ Ci,j(U), i, j >
1, where V (x, t) is some matrix (in particular, a vector-function), denotes that all elements
of V (x, t) have continuous partial derivatives up to orders i, j in the domain U. If
i = j, then we say that the matrix V (x, t) is i times di�erentiable in the domain U.
V1(x) ∈ Ci(X), V2(t) ∈ Ci(T ) denote i-times di�erentiable matrices V1(x), V2(t). The
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continuous matrices are denoted as V (x, t) ∈ C(U), V1(x) ∈ C(X), V2(t) ∈ C(T ) and
r[V (x, t)] = max{rank V (x, t), (x, t) ∈ U}.

Now consider an example to illustrate some properties speci�c to PDAEs.

Example 1.

Λ(Dt, Dx)u =

1 α1 α2

0 0 0
0 0 0

Dtu+

+

0 0 0
0 ext 1
0 0 0

D2
xu+

α3 α4 α5

0 ext + 2t 1
0 0 0

Dxu+

α6 α7 α8

0 γ 0
0 ext δ

 u = f.

Here u =
(
u1 u2 u3

)⊤
, f =

(
f1 f2 f3

)⊤
, δ, αi, i = 1, 8 are numeric parameters,

γ ≡ γ(x, t) is some smooth function, ⊤ stands for transposition. However, in this situation,
if δ = 1 and γ ≡ 0, the system is solvable for any f1 ∈ C1,1(U), f2 ∈ C1,1(U),
f3 ∈ C3,1(U), γ ∈ C1,1(U), if g(x, t) = [γ(x, t) − (t + t2)ext] ̸= 0 ∀(x, t) ∈ U. Indeed,
the third equation of the system yields u3 = f3 − extu2. Substitute u3 into the second
equation. We obtain u2 = (f2 −Dxf3 −D2

xf3)/g(x, t). Therefore, the components u2, u3
are uniquely de�ned in the domain U and belong to C1,1(U). Then, by substituting u2, u3
into the �rst equation, we obtain an equation of the hyperbolic type

Dtu1 + α3Dxu1 + α6u1 = ψ(x, t)f1 − α3u2 − α4u3,

where ψ(x, t) = f1 − α1Dtu2 − α2Dtu3 − α4Dxu3 − α5Dxu3 − α7u2 − α8u3. Hence, we can
say that the system is implicitly hyperbolic and the following equality is valid

u1 = ϕ(x− α1(t− t0)) +

t∫
t0

exp(α3s)ψ(x− α3(t− s), s)ds,

where ϕ(z) is an arbitrary function.

Summarizing what has been said, we are drawn to the following conclusions:
1) the components u2, u3 are �xed functions. Hence, we can set initial and boundary

conditions only in the form of the functions u2(x, t0), u2(x0, t), u3(x, t0), u3(x0, t);
2) the equation is hyperbolic with respect to u1, and here we can set arbitrary initial

and boundary conditions u1(x0, t), u1(x, t0) that satisfy the consistency conditions at the
point (x0, t0). For example, ϕ(x0) = ψ(t0) etc. [26];

3) if we perturb the free term f̃3 = f3 + ϵ sin(tx/ϵ2), then it can be readily seen that
at ϵ→ 0 the following relations are valid: ∥f̃3 − f3∥C(U) → 0, ∥ũ2 − u2∥C(U) → ∞, which
means that the solution is highly sensitive to changes in the initial data.

1. Auxiliary Information

De�nition 1. [27] A pseudo inverse of the (m× n)-matrix M(x, t), t ∈ U is de�ned as
an (n×m)-matrix M+(x, t) satisfying the following criteria

M(x, t)M+(x, t)M(x, t) =M(x, t), M+(x, t)M(x, t)M+(x, t) =M+(x, t),

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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(M+(x, t)M(x, t))⊤ =M+(x, t)M(x, t), (M(x, t)M+(x, t))⊤ =M(x, t)M+(x, t).

M+(x, t) exists for any matrix and any (x, t) ∈ U. If the matrix M(x, t) is square and
regular, then M−1(x, t) =M+(x, t), and M−1(x, t) ∈ Ci,j(U), if M(x, t) ∈ Ci,j(U).

Lemma 1. Let M(x, t) ∈ Ci,j(U) and rankM(x, t) = const = r ∀(x, t) ∈ U.
Then:

1. There exist square matrices L(x, t), R(x, t) ∈ Ci,j(U) such that det L(x, t) ̸=
0, det R(x, t) ̸= 0 ∀(x, t) ∈ U, L(x, t)M(x, t)R(x, t) = diag{Ir, 0}, where Iν is
an identity matrix of dimension ν;

2. There exists the matrix M+(x, t) ∈ Ci,j(U).

If rank M(x, t) ̸= const, (x, t) ∈ U, then at least one element of M+(x, t) has a
discontinuity of the second kind in the domain U. The proof techniques can be found in
the monograph [28].

Now consider a higher order DAE depending on a parameter

Λk(Dt)u :=
k∑

j=0

Aj(x, t)D
j
tu = f(x, t), (5)

Λk(Dx)u :=
k∑

j=0

Aj(x, t)D
j
xu = f(x, t), (6)

where (x, t) ∈ U, Aj(x, t) are (n× n)-matrices at least from C(U), detAk(x, t) ≡ 0, the
variables x and t are understood as parameters. Introduce the following notation.

De�nition 2. The operator Ωl(Dt) :=
∑l

j=0 Lj(x, t)D
j
t , where Lj(x, t) are (n×n)-matrices

from C(U), with the property

Ωl(Dt) ◦ Λk(Dt)y =
k∑

j=0

Ãj(x, t)D
j
ty ∀y ∈ Ck+1(U), det Ãk(x, t) ̸= 0 ∀(x, t) ∈ U,

is called the Left Regularizing Operator (LRO) for the DAE (5). The smallest possible
number l is said to be the index of (5).

A similar de�nition of the LRO can be formulated for (6) by replacing Dt with Dx.

Lemma 2. If system (5) has index l, then the following alternative holds: detAk(x, t) ̸=
0 ∀(x, t) ∈ U for l = 0, or detAk(x, t) ≡ 0, (x, t) ∈ U for l > 0.

Proof. Indeed, if l = 0, then L0Ak = Ãk ∀(x, t) ∈ U, where det Ãk ̸= 0 ∀(x, t) ∈ U.
However, if l > 0, then it follows from the de�nition of index that LlAk = 0 ∀(x, t) ∈ U.
This is valid for continuous matrices Ll and Ak if and only if det Ll = det Ak = 0 ∀(x, t) ∈
U.

2

In other words, if we assume that the LRO exists, then the condition detAk(x, t) ≡
0, (x, t) ∈ U is not necessary. Moreover, the LRO guarantees solvability of the system for
any �xed x.
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Theorem 1. Let system (5) satisfy the conditions:

1. Aj(x, t) ∈ Cm,i(U), j = 0, k, m = max{(k − 1)n + r + 1, 2l}, r = r[Ak(x, t)],
i ≥ 0, f(x, t) ∈ Cl,i(U);

2. The system has the LRO in U, which coe�cients are either continuous or i times
partially di�erentiable with respect to x.

Then, system (5) is solvable for any f(x, t), and its solution for any �xed x ∈ X can
be written in the form

u(x, t) = Xd(x, t)c(x) +W (Dt)f(x, t),

W (Dt)f(x, t) =

t∫
t0

K(x, t, s)f(x, s)ds+
l−k∑
j=0

Cj(x, t)D
j
tf,

(7)

where Xd(x, t) is an (n × d(x))-matrix, K(x, t, s), Cj(x, t) are (n × n)-matrices smooth
with respect to t, j = 0, l − 1, rank Xd(x, t) = d(x) ∀t ∈ T , c(x) is an arbitrary function.
If c(x) ∈ Ci(X), then u(x, t) ∈ Ck,i(U).

If l < k, the vector-function in (7) has the form W (Dt)f(x, t) =
t∫

t0

K(x, t, s)f(x, s)ds.

Proof. Denote ζ =
(
u⊤ Dtu

⊤ . . . D
(k−1)
t u⊤

)⊤
. Then we can put the following �rst order

DAE into correspondence to (5):(
Iν 0
0 Ak(x, t)

)
Dtζ +

(
0 −Iν

A0(x, t) Ã(x, t)

)
ζ =

(
0

f(x, t)

)
, (x, t) ∈ U, (8)

where ν = (k − 1)n, Ã =
(
A1 A2 . . . Ak−1

)
. System (5) has the LRO of the form

diag{Iν ,Ωl(Dt)}, and the proof is based on application of the statement that was proved
in [29] for the situation when k = 1 and the coe�cient matrices as well the free term depend
on t only. Note that all solutions to (5) are the solutions to the non-singular system

Ωl(Dt) ◦ Λk(Dt)y = Ωl(Dt)f(x, t), (x, t) ∈ U. (9)

If in De�nition 1 matrices Ãj(x, t) and the vector-function Ωlf(x, t) are either continuous
or i-times di�erentiable with respect to x, then any solution y ≡ y(x, t) to (9) is either
continuous or i-times di�erentiable with respect to x. Hence, the solutions to (5) possess
the same properties.

2

A similar theorem can be formulated for the DAE (6). Then, according to Theorem 1, the
general solution to (6) can be written in the form of the equalities:

u = Xd(x, t)c(t) +W (Dx)f(x, t),

W (Dx)f(x, t) =

x∫
x0

K(x, t, s)f(s, t)ds+
l−k∑
j=0

Cj(x, t)D
j
xf.

(10)
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2. Index for Linear PDAEs

Now, using the results from the previous section, introduce the concept of index for
PDAEs.

De�nition 3. Let there exist an operator Ψl(Dt, Dx) :=
∑l

j=0 Lj(Dx)D
j
t , where Lj(Dx) =∑σj

i=0 Li(x, t)D
i
x, Li(x, t) are (n× n)-matrices from C(U), with the property

Ψl(Dt, Dx) ◦ Λ(Dt, Dx)y = A(Dx)Dty + Ã(Dx)y ∀y ∈ Cl+1(U),

where

A(Dx) =
m∑
i=0

Ai(x, t)D
i
x, Ã(Dx) =

m1∑
i=0

Ãi(x, t)D
i
x,

Ai(x, t), Ãi(x, t) are (n× n)-matrices from C(U); it is assumed that the operator A(Dx)
has the LRO in the domain U. The smallest possible l is said to be the index of system
(1) with respect to the variable t.

Due to the fact that the partial derivatives with respect to x and t play equally
important roles in the system, the index with respect to x can be de�ned in a similar way.
If system (1) has index with respect to t, then, using formulas (10) and provided that the
initial data is su�ciently smooth, the original system can be reduced to a vector integral
di�erential equation resolved with respect to the evolutionary term

Dtu+W (Dx)Ã(Dx)u =W (Dx)f(x, t) +Xd(x, t)c(t). (11)

Now suppose that the conditions of Lemma 1 are satis�ed. Then, by multiplying system
(9) by L(x, t) on the left and introducing the change of variable u = R(x, t)z, we obtain(

Ir 0
0 0

)
Dtz +

(
Λ11

1 (Dx) Λ12
1 (Dx)

Λ21
1 (Dx) Λ22

1 (Dx)

)
z = g, (12)

where g = L(x, t)f, Λiν
1 (Dx) =

∑ρ
j=1 B̃iν(x, t)D

j
x + C̃iν(x, t), B̃iν(x, t), C̃iν(x, t), i, ν =

1, 2 are the blocks of the matrices LBρD
ρ
xR, · · · , L

∑ρ
j=1 jBjD

j
xR and LADtR +

L
∑ρ

j=1BjD
j
xR + LCR, correspondingly.

Example 2. Set in Example 1 α1 = 0, α2 = 0. Then the system has the form of the
relation (12), where

Λ11
1 (Dx) = α3Dx + α6, Λ

12
1 (Dx) = (α4Dx + α7 α5Dx + α8), Λ

21
1 (Dx) = 0,

Λ22
1 (Dx) =

(
ext 1
0 0

)
D2

x +

(
ext + 2t 1

0 0

)
Dx +

(
γ(x, t) 0
ext 1

)
.

Di�erentiate the second and the third equations of the system with respect to t. We get(
1 0
0 Λ22

1 (Dx)

)
Dtu+

(
Λ11

1 (Dx) Λ12
1 (Dx)

0 Λ̃22
1 (Dx)

)
u = f, (13)

where Λ̃22
1 (Dx) =

(
xext 0
0 0

)
D2

x+

(
xext + 2 0

0 0

)
Dx+

(
Dtγ(x, t) 0
xext 0

)
. The operator

Λ22
1 (Dx) is index 2, if g(x, t) = [γ(x, t) − (t + t2)ext] ̸= 0 ∀(x, t) ∈ U. Here the LRO has
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the form Ω2(Dx) =

(
1 0

−Dx D2
x

)
. Moreover, in formula (10) we have that d = 0 and

W (Dx) =

(
ext 1

g(x, t) 0

)−1

Ω2(Dx). Therefore, system (11) in this case has the form

Dtu+

(
Λ11

1 (Dx) Λ12
1 (Dx)

0 W (Dx)Λ̃
22
1 (Dx)

)
u =

(
f1

W (Dx)Dtf2

)
, f =

(
f1
f2

)
.

Theorem 2. Let one of the following conditions be satis�ed for system (12):

1. The operator Λ22
1 (Dx) has the LRO in the domain;

2. Λ22
1 (Dx) = 0 and the operator Λ21

1 (Dx) ◦ Λ12
1 (Dx) has the LRO in the domain U.

Then: 1) under conditions of Theorem 1 the DAE (1) has index 1 with respect to t in the
domain U; 2) if condition 2 of Theorem 1 is satis�ed, then the DAE (1) has index 2 with
respect to t in the domain U.

Proof. Transform the DAE (1) to the form (12). Di�erentiate the second block equation
of (12) with respect to t. We obtain(

Ir 0
Λ21

1 (Dx) Λ22
1 (Dx)

)
Dtz+

(
Λ11

1 (Dx) Λ12
1 (Dx)

Λ̃21
1 (Dx) Λ̃22

1 (Dx)

)
z = g̃ =

(
g1
Dtg2

)
, g =

(
g1
g2

)
, (14)

where Λ̃2j
1 (Dx) = DtB2j(x, t)Dx +DtC2j(x, t), j = 1, 2.

Multiply the �rst block equation of (12) by the operator Λ21
1 (Dx) and deduct the

result from the second equation. This yields a system A(Dx)Dtz + Ã(Dx)z = g̃, where
the operators A(Dx) and Ψl(Dt, Dx) from De�nition 3 can be written in the form A(Dx) =

diag{Ir, Λ22
1 (Dx)}, Ψl(Dt, Dx) =

(
Ir 0

−Λ21
1 (Dx) In−r

)
DtL(x, t), Dt = diag{Ir, DtIn−r}.

Let the second part of the statement be satis�ed. If we again di�erentiate the second
block equation of (12) with respect to t and deduct the �rst equation, multiplied by
Λ21

1 (Dx), from the second one, we arrive at(
Ir 0
0 0

)
Dtz +

(
Λ11

1 (Dx) Λ12
1 (Dx)

Φ(Dx) −Λ21
1 (Dx)Λ

12
1 (Dx)

)
z = h, (15)

where h =
(
g⊤1 Dtg

⊤
2 − Λ21

1 (Dx)g
⊤
1

)⊤
, Φ(Dx) = Λ̃21

1 (Dx) − Λ21
1 (Dx)Λ

11
1 (Dx). Since the

operator Λ21
1 (Dx)Λ

12
1 (Dx) has the LRO, we therefore ful�ll the �rst part of the theorem

and can perform similar transformations. Here operators from De�nition 3 have the form
A(Dx) = diag{Ir, −Λ21

1 (Dx)Λ
12
1 (Dx)},

Ψl(Dt, Dx) =

(
Ir

−Φ(Dx) In−r

)
Dt

(
Ir 0

−Λ21
1 (Dx) In−r

)
DtL(x, t).

2

Remark 2. The paper [23] graded systems (1), where the operator Λ22
1 (Dx) has the LRO,

as index (1, l). According to this de�nition, the system from Example 1 has index (1,1) at
δ ̸= 1 and index (1,2) at δ = 1.
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There is also one more important remark to be made. Let the �rst part of Theorem 2
be satis�ed. Then system (12) entails the equality Λ22

1 (Dx)z2 = −Λ21
1 (Dx)z1 + g2, where(

z⊤1 z⊤2
)⊤

= z.
Using formula (10), express z1 through z2 and substitute the result into the �rst block

equations of the DAE (12). We arrive at the system of integral di�erential equations
resolved with respect to the evolutionary term

Dtz1 + [Λ21
1 (Dx)− Λ12

1 W (Dx)Λ
21
1 (Dx)]z1 = h(x, t), (16)

where h(x, t) = g1 −Λ12
1 (Dx)Xd(x, t)c(t)−Λ12

1 (Dx)W (Dx)g2. Eq. (16) without its integral
part is a linear di�erential equation, which can be further investigated to �nd out whether
it belongs to the class of hyperbolic, parabolic, or elliptic equations.

A similar system can be derived if the second condition of Theorem 2 is satis�ed.

3. Hyperbolicity Criteria for Singular Systems

In this section we discuss techniques for �nding the index of system (1) as well as
criteria for assigning the system to a certain type. It is quite challenging to actually
construct the matrices L(x, t) and R(x, t) that would transform the original system to the
form (16) and possess the same smoothness as the matrix A(x, t). For example, consider

A(x, t) =

(
1− sinω(x, t) cosω(x, t)
cosω(x, t) 1 + sinω(x, t)

)
,

where g(x, t) is some arbitrary smooth function. It can be readily seen that this matrix
has a constant rank in any domain U. Below, we will focus on hyperbolic systems only.

If system (1) is regular, i.e. det A(x, t) ̸= 0 ∀(x, t) ∈ U, the hyperbolicity is understood
as in [26]. In what follows, we provide criteria which, in terms of input data, guarantee
that system (1) has index 1 with respect to t in the domain U and possesses an implicit
hyperbolic structure.

De�nition 4. If the matrix pencil λA(x, t) + B(x, t) satis�es the conditions:

1. r[A(x, t)] = r; 2. det[λA(x, t) + B(x, t)] = a0(x, t)λ
r + · · · , a0(x, t) ̸= 0 ∀(x, t) ∈ U,

then we say that the pencil satis�es the rank-degree criterion in the domain U.

De�nition 5. If the pencil of continuous matrices λA(x, t) + µB(x, t) + C(x, t) satis�es
the conditions:

1. r[A(x, t)] = r1 < n, r[(A(x, t)|B(x, t))] = r1 + r2 < n;

2. det[λA(x, t) + µB(x, t) + C(x, t)] = a0(x, t)λ
r1µr2 + · · · , a0(x, t) ̸= 0 ∀(x, t) ∈ U,

then we say that the pencil satis�es the double rank-degree criterion in the domain U (or,
in terms of [30], has a simple structure).

Lemma 3. If:

1. A(x, t), B(x, t), C(x, t) ∈ Ci,j(U);
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2. The matrix pencil λA(x, t) + B(x, t) satis�es the rank-degree criterion in U;

3. The matrix pencil λA(x, t) + µB(x, t) + C(x, t) satis�es the double rank-degree
criterion in U.

Then:

1. Compliance with the the second point of the lemma entails that there exists such
square matrices P1(x, t), Q1x, t) ∈ Ci,j(U) that det P1(x, t)Q1(x, t) ̸= 0 ∀(x, t) ∈ U,

P1(x, t)[λA(x, t) + B(x, t)]Q1(x, t) = λ

(
Ir 0
0 0

)
+

(
J(x, t) 0

0 Il

)
; (17)

2. Compliance with the the third point of the lemma entails that there exists such square
matrices P (x, t), Q(x, t) ∈ Ci,j(U) that det P (x, t)Q(x, t) ̸= 0 ∀(x, t) ∈ U,

P (x, t)[λA(x, t) + µB(x, t) + C(x, t)]Q(x, t) =

= λ

Ir 0 0
0 0 0
0 0 0

+ µ

J(x, t) 0 B13(x, t)
0 Iϱ 0
0 0 0

+

C11(x, t) C12(x, t) 0
C21(x, t) C22(x, t) 0

0 0 Iν

 , (18)

where r +ϱ +ν = n, J(x, t), B13(x, t), Cij(x, t), i = 1, 2 are the matrix blocks of
corresponding dimensions.

Remark 3. If ϱ = n− r (here this is equivalent to rank(A(x, t)|B(x, t)) = n ∀(x, t) ∈ U),
then the simple structure condition coincides with the rank-degree criterion. When the
matrices of the pencil A(x, t) + µB(x, t) + C(x, t) depend only on t and the matrices
A(x, t), (A(x, t)|B(x, t)) have a constant rank in the domain, the lemma on reducibility to
the form (18) was announced in [31]. The lemma for two variables was proved in [23]. In
this work we omit the requirement for the ranks to be constant because they follow from
condition 2 of De�nition 5.

Theorem 3. Let in system (1):

1. A(x, t), Bρ(x, t), ρ = 1, C(x, t) ∈ Ci,j(U), i, j ≥ 1;

2. The matrix pencil λA(x, t)+B1(x, t) satisfy the rank-degree criterion in U or matrix
pencil λA(x, t) + µB1(x, t) + C(x, t) have a simple structure in U;

3. All roots of the polynomial

det[λA(x, t) +D(x, t)] = 0, (19)

where D(x, t) = B1(x, t) + [In − S(x, t)S+(x, t)]C(x, t), S(x, t) = (A(x, t) |B1(x, t)),
are real and simple, and

δ < λ1(x, t) < λ2(x, t) < · · · < λp(x, t), λp+1(x, t) = 0, · · · , λr(x, t) = 0 ∀(x, t) ∈ U,

where δ is some real number.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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Then:

1. System (1) has index 1 in the domain U with respect to t;

2. System (1) is implicitly hyperbolic;

3. System (1) has index (1, 0) if matrix pencil λA(x, t)+B1(x, t) satisfy the rank-degree
criterion in U in terms of Remark 2;

4. System (1) has index (1, 0) if matrix pencil λA(x, t) + µB1(x, t) + C(x, t) have a
simple structure in U in terms of Remark 2.

Proof. Multiply (1) by the matrix P and introduce the change of variable u = Qz, where
P, Q are matrices from Lemma 3. We obtainIr 0 0

0 0 0
0 0 0

Dtz +

J 0 B13

0 Iϱ 0
0 0 0

Dxz +

G11 G12 G13

G21 G22 G23

0 0 Iν

 z = Pf, (20)

where Gij(x, t), i = 1, 2, j = 1, 2, 3 are blocks of the matrix PADtQ + PBDxQ + PCQ.
It is readily seen that if we multiply the last line by G13, G23 and deduct the result from
the �rst and second lines, we can turn the latter ones into zero. Therefore, the matrix P
can initially be chosen so that these blocks are zero. Now prove that the eigenvalues of the
matrix J coincide with the roots of the polynomial (19). Consider a polynomial

det P det[λA+D] det Q = det[λPAQ+ PBQ+ P (In − SQ̃Q̃−1S+)P−1PCQ] =

= det

λ
Ir 0 0

0 0 0
0 0 0

+

J 0 B13

0 Iϱ 0
0 0 0

+ Z

G11 G12 0
G21 G22 0
0 0 Iν

 ,
where Q̃ = diag{Q, Q}, Z = P (In − SQ̃Q̃−1S+)P−1. Direct calculation shows that Z =(
0 Z1

0 Ip

)
, where Z1 is some block, and det P det[λA+D] det Q = det PQ det[λIr + J ].

Hence, according to [26], we can choose the matrices P, Q so that the matrix J will be
diagonal. Rewrite system (20) as

Ip 0 0 0
0 Iq 0 0
0 0 0 0
0 0 0 0

Dtz +


J1 0 0 B14

0 0 0 B24

0 0 Iϱ 0
0 0 0 0

Dxz +


G11 G12 G13 0
G21 G22 G23 0
G31 G32 G33 0
0 0 0 Iν

 z = Pf, (21)

where J1 = diag{λ1, · · · , λp}. If we write down (21) as the DAE (12), then the
corresponding blocks take the form

Λ11
1 (Dx) =

(
J1 0
0 0

)
Dx +

(
G11 G12

G21 G22

)
, Λ12

1 (Dx) =

(
0 0
B14 B24

)
Dx +

(
G13 0
G23 0

)
,

Λ21
1 (Dx) =

(
0 0
0 0

)
Dx +

(
G11 G12

0 0

)
, Λ22

1 (Dx) =

(
Iϱ 0
0 0

)
Dx +

(
G33 0
0 Iν

)
,

where the operator Λ22
1 (Dx) has an LRO of the form diag{Iϱ, DxIν}. Taking into

consideration the form of the matrix J , this fact proves the theorem.
2
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4. The PDAEs Based Mathematical Models

In view of what has been said above, consider modelling of some processes in power
plants. Such models include equations describing �uid motion (for instance, water, oil fuel
etc.) in pipelines of the network. The motion of incompressible, viscous liquid substances
is described by a system of the Navier � Stokes equations, which can be written down in
the form of a PDAE

Dt

(
I3 0
0 0

)(
u
p

)
+

(
−∆I3 grad
div 0

)(
u
p

)
+

(
ϖ(u)u

0

)
=

(
g(Z, t)

0

)
, (22)

where u = (u1 u2 u3)
⊤, g(Z, t) = (g1(Z, t) g2(Z, t) g3(Z, t) 0)

⊤ is a given vector-function.
uj ≡ uj(Z, t), j = 1, 3 are coordinate velocities of �uid particles at the point (Z, t) =
(x, y, z, t), p = p(Z, t) is a pressure at the point (Z, t),

∆u = D2
xu1 +D2

yu2 +D2
zu3, div u = Dxu1 +Dyu2 +Dzu3, grad u = (Dxu1 Dyu2 Dzu3)

⊤

are the Laplas operator, divergence, and gradient, correspondignly; ϖ(u) is the Jacobian
of the vector-function u. The linearized version of (24) is called the Stokes system

Λ(Dt, Dx, Dy, Dz)U =

= Dt

(
I3 0
0 0

)(
u
p

)
+

(
−∆I3 grad
div 0

)(
u
p

)
=

(
g(Z, t)

0

)
, U =

(
u
p

)
. (23)

The system is written in a dimensionless form, i.e. it is assumed that �uid viscosity and
density are equal to 1. Various forms of systems (24), (23) have been studied in the immense
number of research works. In particular, system (23) was considered on the basis of the
transition to (4) (see, for example, [6], [12]). A number of Russian and foreign researchers
tried to apply the DAEs theory to the investigation of (23), and the paper [32] seems to
be the �rst work of such kind.

System (23) has the same structure as the DAE (12), so if we set Λ11
1 = ∆I3,

Λ12
1 = −grad, Λ21

1 = div, Λ22
1 = 0, then, by repeating the reasoning of Theorem 2 and

taking into consideration divgrad = ∆, we obtain

Ψ2 ◦ Λ(Dt, Dx, Dy, Dz)U =

(
I3 0
0 −∆

)
Dt

(
u
p

)
+

(
−∆I3 grad
Υ∆I3 −Υgrad

)(
u
p

)
,

where

Ψ2 =

(
I3 0
−Υ 1

)(
I3 0
0 Dt

)(
I3 0

−div 1

)(
I3 0
0 Dt

)
, Υ = div∆I3.

Using the expression

(
I3 0
0 Dt

)
=

(
I3 0
0 0

)
+

(
0 0
0 1

)
Dt, write down the operator

Ψ2 as a sum from De�nition 3

Ψ2 =

(
I3 0
−Υ 0

)
+

(
0 0

−div 0

)
Dt +

(
0 0
0 1

)
D2

t .

Therefore, we can assume that system (23) has index 2 with respect to t.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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Such a transformation is not possible if the DAE (24) is nonlinear. However, we can
apply the operator

Ψ̃2 =

(
I3 0

−div 1

)[(
I3 0
0 0

)
+

(
0 0
0 1

)
Dt

]
,

to the nonlinear system to reduce its index. As a result we get

Dt

(
I3 0
0 0

)(
u
p

)
+

(
−∆I3 grad
Υ −∆

)(
u
p

)
+

(
ϖ(u)u

−divϖ(u)u

)
=

(
g(Z, t)

−divg(Z, t)

)
. (24)

It is well-known from the DAE theory, that the index reduction considerably increases
computational reliability.

The index is preserved whatever approximations we use. For example, expand the
desired function and the known function in a Fourier series with respect to spatial variables

U(Z, t) =
∞∑
ν=0

Uν(t)e
−i(ν,Z), g(Z, t) =

∞∑
ν=0

Gν(t)e
−i(ν,Z), i =

√
−1,

where ν = (ν1, ν2, ν3), νj, j = 1, 3 are integer numbers,

Uν(t) = (u1ν(t) u2ν(t) u3ν(t) pν(t))
⊤, Gν(t) = (g1ν(t) g2ν(t) g3ν(t) 0)

⊤.

Substitute the expansions obtained into (23). We derive an in�nite sequence of the DAEs

d

dt


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

Uν(t) +


−qν 0 0 −iν1
0 −qν 0 −iν2
0 0 −qν −iν3

−iν1 −iν2 −iν3 0

Uν(t) = Gν(t), (25)

where qν = ν21 + ν22 + ν23 . System (25) has index 2 in terms of De�nition 2, i.e. there exists
the operator Ω2 = L0 + L1(d/dt) + L2(d/dt)

2, where L0, L1, L2 − (4 × 4) are matrices
with constant elements. The operator can be constructed following the algorithm from
Theorem 2.

The method of lines is another way of approximating partial di�erential equations.
For the sake of simplicity, we consider a two-dimensional Navier � Stokes system in the
domain U = G× [t0, t1], G = [0, 1]× [0, 1]. Introduce on G a uniform grid in the x and y
directions with the time step h.

Consider the system

v̇j,k(t)− ∆̄vj,k(t) + ∆x̄pj,k(t)− [vj,k(t)∆xvj,k(t) + wj,k(t)∆xvj,k(t)] = f1,j,k,

ẇj,k(t)− ∆̄wj,k(t) + ∆ȳpj,k(t)− [vj,k(t)∆ywj,k(t) + wj,k(t)∆ywj,k(t)] = f2,j,k,

∆xvj,k(t) + ∆ywj,k(t) = 0, (26)

where the di�erence operators have the form:

∆xςj,k = (ςj+!,k − ςj,k)/h, ∆x̄ςj,k = (ςj,k − ςj−1,k)/h,

∆yςj,k = (ςj,k+1 − ςj,k)/h, ∆ȳςj,k = (ςj,k − ςj,k−1)/h, ∆̄ = ∆x∆x̄ +∆y∆ȳ,
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ςj,k is an arbitrary grid function. The values of the desired functions are assumed to have
been derived from the initial boundary conditions, if the index is zero.

Introduce a vector-function

UN(t) = (ζ1(t) ζ2(t) · · · ζN−1(t))
⊤, PN(t) = (η1(t) η2(t) · · · ηN−1(t))

⊤,

where N = 1/h, ζj(t) = (vj,1(t) wj,1(t) vj,2(t) wj,2(t) · · · vj,N−1(t) wj,N−1(t)), ηj(t) =
(pj,1(t) pj,2(t) · · · pj,N−1(t)) and rewrite (26) as a DAE(

I2(N−1) 0
0 0

)(
U̇N(t)

ṖN(t)

)
+

(
DN −M⊤

N

MN 0

)(
UN(t)
PN(t)

)
+

(
(SNUN(t),UN(t))

0

)
=

= FN(t), (27)

where DN , MN , SN are the matrices of the appropriate dimension, FN(t) is a vector-
function composed of the functions f1,j,k, f2,j,k and components of the initial and boundary
conditions.

To control where �uid �ows as well as to control �uid pressure, it is common to use
hydraulic circuits. The hydraulic circuit graph can be presented by a full (m× n)-matrix
A of nodes and lines that identically describes the structure and the orientation of the
circuit: aij = 1, if the line i comes from the node j; aij = −1, if the line i comes into the
node j; aij = 0, if the node j does not belong to the line i (i = 1, n, j = 1, m). It is
assumed that the �rst and the second Kirchho� circuit laws are satis�ed: 1) at any node
the amount of �uid �owing into the node is equal to the amount of �uid �owing out of
that node; 2) the sum of pressure drops in any closed loop is zero. The connection between
the �ow rate of the line i and the pressures pbx,i(t), pbix,i(t) on its ends is expressed as

pbx,i(t)− pbix,i(t) + hi(t) = ri(t)ẋi(t) + s0,ixi(t) + s1,i |xi(t)|xi(t), (28)

where ri(t) > 0 is an inertia parameter of the line, hi(t) is a hydraulic head, s0,i > 0
and s1,i > 0 are pipe frictions corresponding to the stream-line and turbulent �ows. The
relations (28) and the equations following from the Kirchho� laws can be written in the
form of the DAE(

R(t) 0
0 0

)(
Ẋ(t)

Ṗ(t)

)
+

(
S0 −A⊤

1

A1 0

)(
X(t)
P(t)

)
+

(
S1 |X(t)|X(t)

0

)
=

=

(
H(t) +A⊤

2 P
∗(t)

Q(t)

)
, (29)

where (A⊤
1 A⊤

2 ) = A⊤, R = diag{r0(t), r1(t), . . . , rn(t)}, S0 = diag{s0,1, s0,2, . . . , s0,n},
S0 = diag{s1,1, s1,2, . . . , s1,n}, |X(t)| = {|x1(t)|, |x2(t)|, . . . , |xn(t)|}, X(t) is an n-
dimensional vector-function of the �ow rates in pipelines; P(t) is an m1-dimensional
vector-function of the unknown pressures at nodes; P ∗(t) is an m2-dimensional vector-
function of the known pressures; m1 +m2 = m; H(t) is an n-dimensional vector-function
of hydraulic heads; Q(t) is an m1-dimensional vector-function of in�ows; rankA1 = m1. It
was previously shown in [33] that if we have a non-linear term in the system, there exists
an operator Ω2 = L0 + L1(d/dt) + L2(d/dt)

2, where L0, L1, L2 are constant matrices of
the appropriate dimension, that transforms the DAE (29) to the normal form. Due to the

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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fact that the block structure of (27) is identical to that one of (29), the same technique
can be applied to prove existence of such an operator for the DAE (27).

Models of complex power plants are typically described by quasi-linear DAEs, the
study of which is quite challenging even when we deal with the simplest models. Consider a
quasi-linear PDAE that describes heat exchange in a steam straight-through boiler, which
can be primitively represented as a pipe with �owing �uid (water, steam, vapor-water)
heated by hot gases and emission from the fuel combustion.

The conservation laws allow us to write down the following PDAEa11 0 0
0 a22 0
0 0 0

Dt

u1u2
u3

+

xν, 0 0
0 0 0
0 0 xκ,g

Dx

u1u2
u3

+

+

 c1[t(u1, p)− u2]
−c1[t(u1, p)− u2] + c2u2 − c3u

−c2u2 + c3u

 =

 0
q(x, t)

0

 , (30)

where u1 is �uid heat content; u2 is pipe wall temperature; u3 is gas enthalpy; t(u1, p)
is �uid temperature; p is �uid pressure; xν,, xκ,g are the �ow and gas rates in the lines
ν, κ; a11, a22, c1, c2, c2 are some parameters responsible for the circuit general geometry and
properties of hear exchange; q(x, t) is radiation heat �ow. The gas �ow rates and pressures
are found when solving (29).

Problem (30) can be generalized as follows

A(x, t)Dtu+B(x, t)Dxu+ C(u, x, t) = f(x, t), (x, t) ∈ U,

where C(u, x, t) is a given in Rn×U vector-function, and applied to investigation of more
relevant models.
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Î ÏÎÍßÒÈÈ ÈÍÄÅÊÑÀ ÄÈÔÔÅÐÅÍÖÈÀËÜÍÎ-
ÀËÃÅÁÐÀÈ×ÅÑÊÈÕ ÓÐÀÂÍÅÍÈÉ Â ×ÀÑÒÍÛÕ ÏÐÎÈÇÂÎÄÍÛÕ,
ÂÎÇÍÈÊÀÞÙÈÕ ÏÐÈ ÌÎÄÅËÈÐÎÂÀÍÈÈ ÏÐÎÖÅÑÑÎÂ
Â ÝÍÅÐÃÅÒÈ×ÅÑÊÈÕ ÓÑÒÀÍÎÂÊÀÕ

Â.Ô. ×èñòÿêîâ, Å.Â. ×èñòÿêîâà

Èíñòèòóò äèíàìèêè ñèñòåì è òåîðèè óïðàâëåíèÿ èì. Â.Ì. Ìàòðîñîâà ÑÎ ÐÀÍ,
ã. Èðêóòñê

Â ñòàòüå ðàññìàòðèâàþòñÿ íåêîòîðûå êëàññû ëèíåéíûõ è êâàçèëèíåéíûõ

äèôôåðåíöèàëüíî-àëãåáðàè÷åñêèõ óðàâíåíèé (ÄÀÓ) â ÷àñòíûõ ïðîèçâîäíûõ. Ïîä
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ÄÀÓ â ÷àñòíûõ ïðîèçâîäíûõ â ðàáîòå ïîíèìàþòñÿ ñèñòåìû ñ âûðîæäåííûìè âî âñåé
îáëàñòè îïðåäåëåíèÿ ìàòðèöàìè ïðè ñòàðøèõ ïðîèçâîäíûõ èñêîìîé âåêòîð-ôóíêöèè.
Îíè íå ÿâëÿþòñÿ ñèñòåìàìè òèïà Êîøè � Êîâàëåâñêîé, è óòâåðæäåíèÿ î ðàçðåøèìîñòè
â îáùåì ñëó÷àå îòñóòñòâóþò. Êîíêðåòíûì îáúåêòîì èçó÷åíèÿ ÿâëÿþòñÿ ýâîëþöèîííûå
ñèñòåìû ñ îäíîé ïðîñòðàíñòâåííîé ïåðåìåííîé. Ïðîâåäåíû èññëåäîâàíèÿ ÄÀÓ âûñî-
êîãî ïîðÿäêà, çàâèñÿùèõ îò ïàðàìåòðà. Íà ýòîé îñíîâå ââåäåíî ïîíÿòèå èíäåêñà ÄÀÓ
â ÷àñòíûõ ïðîèçâîäíûõ. Ðàññìîòðåíû ïîñòàíîâêè íà÷àëüíî-êðàåâûõ çàäà÷ äëÿ ÄÀÓ
â ÷àñòíûõ ïðîèçâîäíûõ. Ïîëó÷åííûå ðåçóëüòàòû ïðèìåíÿþòñÿ äëÿ àíàëèçà ìîäåëåé
ïðîöåññîâ òåïëîìàññîîáìåíà â ýíåðãåòè÷åñêèõ óñòàíîâêàõ.

Êëþ÷åâûå ñëîâà: äèôôåðåíöèàëüíî-àëãåáðàè÷åñêèå óðàâíåíèÿ; ÷àñòíûå ïðîèçâîä-

íûå; èíòåãðî-äèôôåðåíöèàëüíûå óðàâíåíèÿ; ïðîñòðàíñòâî ðåøåíèé; èíäåêñ; ìîäåëè

ýíåðãåòè÷åñêèõ óñòàíîâîê.

Ëèòåðàòóðà
1. Ñîáîëåâ, C.Ë. Îá îäíîé íîâîé çàäà÷å ìàòåìàòè÷åñêîé ôèçèêè / Ñ.Ë. Ñîáîëåâ // Èçâå-

ñòèÿ ÀÍ ÑÑÑÐ. Ñåðèÿ ìàòåìàòè÷åñêàÿ. � 1954. � Ò. 18. � Ñ. 3�50.

2. Ñâèðèäþê, Ã.À. Êâàçèñòàöèîíàðíûå òðàåêòîðèè ïîëóëèíåéíûõ äèíàìè÷åñêèõ óðàâíå-
íèé òèïà Ñîáîëåâà / Ã.À. Ñâèðèäþê // Èçâåñòèÿ ÐÀÍ. Ñåðèÿ ìàòåìàòè÷åñêàÿ. � 1993. �
Ò. 57, � 3. � Ñ. 192�207.

3. Ñâèðèäþê, Ã.À. Ê îáùåé òåîðèè ïîëóãðóïï îïåðàòîðîâ / Ã.À. Ñâèðèäþê // Óñïåõè ìà-
òåìàòè÷åñêèõ íàóê. � 1994. � Ò. 49, � 4. � Ñ. 47�74.

4. Ñâèðèäþê, Ã.À. Ëèíåéíûå óðàâíåíèÿ òèïà Ñîáîëåâà è ñèëüíî íåïðåðûâíûå ïîëóãðóïïû
ðàçðåøàþùèõ îïåðàòîðîâ ñ ÿäðàìè / Ã.À. Ñâèðèäþê // Äîêëàäû Àêàäåìèè íàóê. �
1994. � Ò. 337, � 5. � Ñ. 581�584.

5. Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators /
G.A. Sviridyuk, V.E. Fedorov. � Utrecht, Boston, K�oln: VSP, 2003.

6. Ñâèðèäþê, Ã.À. Ëèíåéíûå óðàâíåíèÿ ñîáîëåâñêîãî òèïà / Ã.À. Ñâèðèäþê, Â.Å. Ôåäî-
ðîâ. � ×åëÿáèíñê: ×åëÿáèíñêèé ãîñ. óí-ò, 2003.

7. Zamyshlyaeva, A.A. Nonclassical Equations of Mathematical Physics. Linear Sobolev Type
Equations of Higher Order / A.A. Zamyshlyaeva, G.A. Sviridyuk // Âåñòíèê ÞÓðÃÓ. Ñå-
ðèÿ: Ìàòåìàòèêà. Ìåõàíèêà. Ôèçèêà. � 2016. � V. 8, � 4. � P. 5�16.

8. Òàèðîâ, Ý.À. Èíòåãðàëüíàÿ ìîäåëü íåëèíåéíîé äèíàìèêè ïàðîãåíåðèðóþùåãî êàíàëà
íà îñíîâå àíàëèòè÷åñêèõ ðåøåíèé / Ý.À. Òàèðîâ, Â.Â. Çàïîâ // Âîïðîñû àòîìíîé íàóêè
è òåõíèêè. Ñåðèÿ: Ôèçèêà ÿäåðíûõ ðåàêòîðîâ. � 1991. � Âûï. 3. � Ñ. 14�20.

9. Ñèäîðîâ, Í.À. Îáîáùåííûå ðåøåíèÿ äèôôåðåíöèàëüíûõ óðàâíåíèé ñ ôðåäãîëüìîâûì
îïåðàòîðîì ïðè ïðîèçâîäíîé / Í.À. Ñèäîðîâ, Ì.Â. Ôàëàëååâ // Äèôôåðåíöèàëüíûå
óðàâíåíèÿ. � 1987. � Ò. 23, � 4. � Ñ. 726�728.

10. Ñèäîðîâ, Í.À. Óðàâíåíèÿ ñ ÷àñòíûìè ïðîèçâîäíûìè ñ îïåðàòîðîì êîíå÷íîãî èíäåêñà
ïðè ãëàâíîé ÷àñòè / Í.À. Ñèäîðîâ, Î.À. Ðîìàíîâà, Å.Á. Áëàãîäàòñêàÿ // Äèôôåðåíöè-
àëüíûå óðàâíåíèÿ. � 1994. � Ò. 30, � 44. � Ñ. 729�731.

11. Ôàëàëååâ, Ì.Â. Îáîáùåííûå ðåøåíèÿ âûðîæäåííûõ èíòåãðî-äèôôåðåíöèàëüíûõ óðàâ-
íåíèé â áàíàõîâûõ ïðîñòðàíñòâàõ è èõ ïðèëîæåíèÿ / Ì.Â. Ôàëàëååâ, Ñ.Ñ. Îðëîâ //
Òðóäû ÈÌÌ ÓðÎ ÐÀÍ. � 2012. � Ò. 18, � 4. � Ñ. 286�297.

12. Êðåéí, Ñ.Ã. Ñèíãóëÿðíî âîçìóùåííûå äèôôåðåíöèàëüíûå óðàâíåíèÿ â áàíàõîâîì ïðî-
ñòðàíñòâå / Ñ.Ã. Êðåéí, Ê.È. ×åðíûøîâ. � Íîâîñèáèðñê: Èí-ò ìàòåìàòèêè, 1979.

13. Favini, A. Multivalued Linear Operators and Degenerate / A. Favini, A. Yagi // Annali di
Matematica Pura ed Applicata. � 1993. � V. 163, � 1. � P. 353�384.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 2. Ñ. 5�23

21



V.F. Chistyakov, E.V. Chistyakova

14. Èâàíîâ, Â.Ê. Äèôôåðåíöèàëüíî-îïåðàòîðíûå óðàâíåíèÿ è íåêîððåêòíûå çàäà÷è /
Â.Ê. Èâàíîâ, È.Â. Ìåëüíèêîâà, À.È. Ôèëèíêîâ. � Ì.: Ôèçìàòëèò, 1995.

15. Pyatkov, S.G. Operator Theory. Nonclassical Problems / S.G. Pyatkov. � Utrecht: VSP, 2002.

16. Kozhanov, A.I. Composite Type Equations and Inverse Problems / A.I. Kozhanov. � Utrecht:
VSP, 1999.

17. Ïàëàìîäîâ, Â.Ï. Ëèíåéíûå äèôôåðåíöèàëüíûå îïåðàòîðû ñ ïîñòîÿííûìè êîýôôèöè-
åíòàìè / Â.Ï. Ïàëàìîäîâ. � Ì.: Íàóêà, 1967.

18. Äåìèäåíêî, Ã.Â. Óðàâíåíèÿ è ñèñòåìû, íå ðàçðåøåííûå îòíîñèòåëüíî ñòàðøåé ïðîèç-
âîäíîé / Ã.Â. Äåìèäåíêî, Ñ.Â. Óñïåíñêèé. � Íîâîñèáèðñê: Íàó÷íàÿ êíèãà, 1998.

19. Áîÿðèíöåâ, Þ.Å. Ïðèìåíåíèå îáîáùåííûõ îáðàòíûõ ìàòðèö ê ðåøåíèþ è èññëåäîâà-
íèþ ñèñòåì äèôôåðåíöèàëüíûõ óðàâíåíèé ñ ÷àñòíûìè ïðîèçâîäíûìè ïåðâîãî ïîðÿäêà /
Þ.Å. Áîÿðèíöåâ // Ìåòîäû îïòèìèçàöèè è èññëåäîâàíèå îïåðàöèé. � Èðêóòñê: ÑÝÈ ÑÎ
ÀÍ ÑÑÑÐ, 1984. � Ñ. 123�141.

20. Martinson, W.S. A Di�erentiation Index for Partial Di�erential-Algebraic Equations /
W.S. Martinson, P.I. Barton // SIAM Journal on Scienti�c Computing. � 2000. � V. 21,
� 6. � P. 2295�2316.

21. Campbell, S.L. The Index of an In�nite Dimensional Implicit System / S.L Campbell,
W. Marzalek // Mathematical and Computer Modelling of Systems. � 1999. � V. 5, � 1. �
P. 18�42.

22. Áîðìîòîâà, Î.Â. Î ìåòîäàõ ÷èñëåííîãî ðåøåíèÿ è èññëåäîâàíèÿ ñèñòåì íå òèïà Êîøè �
Êîâàëåâñêîé / Î.Â. Áîðìîòîâà, Â.Ô. ×èñòÿêîâ // Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè
è ìàòåìàòè÷åñêîé ôèçèêè. � 2004. � Ò. 44, � 8. � Ñ. 1380�1387.

23. Ãàéäîìàê, Ñ.Â. Î ñèñòåìàõ íå òèïà Êîøè � Êîâàëåâñêîé èíäåêñà (1,k) / Ñ.Â. Ãàéäîìàê,
Â.Ô. ×èñòÿêîâ // Âû÷èñëèòåëüíûå òåõíîëîãèè. � 2005. � Ò. 10, � 2. � Ñ. 45�59.

24. Áîðìîòîâà, Î.Â. Î ðàçðåøèìîñòè âûðîæäåííûõ ñèñòåì äèôôåðåíöèàëüíûõ óðàâíåíèé
â ÷àñòíûõ ïðîèçâîäíûõ / Î.Â. Áîðìîòîâà, Ñ.Â. Ãàéäîìàê, Â.Ô. ×èñòÿêîâ // Èçâåñòèÿ
âóçîâ. Ìàòåìàòèêà. � 2005. � � 4. � C. 18�29.

25. Lamour, R. Di�erential-Algebraic Equations: A Projector Based Analysis / R. Lamour,
R. Marz, C. Tischendorf. � Berlin: Springer, 2013.

26. Ãîäóíîâ, Ñ.Ê. Óðàâíåíèÿ ìàòåìàòè÷åñêîé ôèçèêè / Ñ.Ê. Ãîäóíîâ. � Ì.: Íàóêà, 1971.

27. Moore, E.H. On the Reciprocal of the General Algebraic Matrix / E.H. Moore // Bulletin of
the American Mathematical Society. � 1920. � V. 26, � 9. � P. 394�395.

28. ×èñòÿêîâ, Â.Ô. Àëãåáðî-äèôôåðåíöèàëüíûå îïåðàòîðû ñ êîíå÷íîìåðíûì ÿäðîì /
Â.Ô. ×èñòÿêîâ. � Íîâîñèáèðñê: Íàóêà, 1996.

29. Áîÿðèíöåâ, Þ.Å. Àëãåáðî-äèôôåðåíöèàëüíûå ñèñòåìû. Ìåòîäû ðåøåíèÿ è èññëåäîâà-
íèÿ / Þ.Å. Áîÿðèíöåâ, Â.Ô. ×èñòÿêîâ. � Íîâîñèáèðñê: Hàóêà, 1998.

30. Bulatov, M.V. Application of Matrix Polynomials to the Analysis of Linear Di�erential-
Algebraic Equations / M.V. Bulatov, M.-G. Lee. // Di�erential Equations. � 2008. � V. 44,
� 10. � P. 1353�1360.

31. Áóëàòîâ, Ì.Â. Îá îäíîì ñåìåéñòâå ìàòðè÷íûõ òðîåê / Ì.Â. Áóëàòîâ // Ëÿïóíîâñêèå ÷òå-
íèÿ è ïðåçåíòàöèÿ èíôîðìàöèîííûõ òåõíîëîãèé. � Èðêóòñê: ÈÄÑÒÓ ÑÎ ÐÀÍ, 2002. �
Ñ. 10.

32. Áîÿðèíöåâ Þ.Å. Çàìå÷àíèå î íåÿâíîé ðàçíîñòíîé ñõåìå, àïïðîêñèìèðóþùåé ñèñòåìó
óðàâíåíèé Ñòîêñà / Þ.Å. Áîÿðèíöåâ, Ò.Ï. Áîÿðèíöåâà // ×èñëåííûå ìåòîäû àíàëèçà è
èõ ïðèëîæåíèÿ. � Èðêóòñê: ÑÝÈ ÑÎ ÀÍ ÑÑÑÐ, 1983. � Ñ. 127�131.

22 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 2, pp. 5�23



ÎÁÇÎÐÍÛÅ ÑÒÀÒÜÈ

33. Chistyakova E.V. Investigation of the Unsteady-State Hydraulic Networks by Means of
Singular Systems of Integral Di�erential Equations / E.V. Chistyakova, Nguyen Duc Bang //
Âåñòíèê ÞÓðÃÓ. Ñåðèÿ: Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå. � 2016. �
Ò. 9, � 1. � C. 59�72.

34. Áîÿðèíöåâ, Þ.Å. Ðåãóëÿðíûå è ñèíãóëÿðíûå ñèñòåìû ëèíåéíûõ îáûêíîâåííûõ äèôôå-
ðåíöèàëüíûõ óðàâíåíèé / Þ.Å. Áîÿðèíöåâ. � Íîâîñèáèðñê: Íàóêà, 1980.

Âèêòîð Ôèëèìîíîâè÷ ×èñòÿêîâ, äîêòîð ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, ãëàâíûé
íàó÷íûé ñîòðóäíèê, Èíñòèòóò äèíàìèêè ñèñòåì è òåîðèè óïðàâëåíèÿ èì. Â.Ì. Ìàò-
ðîñîâà ÑÎ ÐÀÍ (ã. Èðêóòñê, Ðîññèéñêàÿ Ôåäåðàöèÿ), chist@icc.ru.

Åëåíà Âèêòîðîâíà ×èñòÿêîâà, êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, íàó÷íûé
ñîòðóäíèê, Èíñòèòóò äèíàìèêè ñèñòåì è òåîðèè óïðàâëåíèÿ èì. Â.Ì. Ìàòðîñîâà ÑÎ
ÐÀÍ (ã. Èðêóòñê, Ðîññèéñêàÿ Ôåäåðàöèÿ), elena.chistyakova@icc.ru.

Ïîñòóïèëà â ðåäàêöèþ 28 ôåâðàëÿ 2017 ã.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 2. Ñ. 5�23

23




