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This paper addresses some classes of linear and quasi-linear partial differential algebraic
equations (PDAEs), i.e. systems of partial differential equations with singular matrices
multiplying the higher derivatives of the desired vector-function. Such systems do not belong
to the class of the Cauchy — Kovalevskaya equations, and therefore do not not comply with
known existence theorems. The current research focuses on the first order evolutionary
systems with one variable and investigates PDAEs depending on the parameter. The concept
of index for PDAEs is introduced and various statements of initial boundary problems
are considered. The results obtained are used to simulate and analyze the heat and mass
exchange processes in power plants.
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Introduction and Statement of the Problem

Consider an evolutionary system of partial differential equations

A(Dy, Dy)u := A(x,t)Dyu + i Bj(x, ) Diu+ C(z,t)u = f(z,t), (z,t) €U, (1)

j=1

where A(x,t), Bj(z,t), C(x,t) are (n X n)-matrices, U = X x T C R? X = [z, 1],
T = [to,t1], Dy = 0/0t, D, = 9/0x, f(x,t), u = u(x,t) are the given and the desired
vector-functions, respectively. It is assumed that

det A(z,t) =0, det B,(x,t) =0V(z,t) € U, (2)

and that the entries of (1) are sufficiently smooth in some domain U that includes U . The
solution u(z,t) is searched for in the domain U. In this paper, we focus only on classic
solutions.

In what follows, by the solution of (1) we understand any vector-function u(x,t) that
has continuous partial derivatives in U with respect to x, t and turns (1) into an identical
relation in U.

The statement of the problem for partial differential equations usually includes initial
and boundary conditions. Here we consider the simplest cases:

ui(z,tg) = ¢;(x), ulzo,t) = ¥(t), v(z,t) = Diu(z,t), j=0,p, Du(x,t) = u(x,t). (3)
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Ever since the second half of the 20th century the field of mathematics addressing
equations with a noninvertible operator at the evolutionary term has played an important
role in various applications such as hydrodynamics (the Navier-Stokes equations), gas
dynamics (the Euler equations), electric and thermal engineering [1-§].

The study of such equations began with the work by L.S. Sobolev [1], that is why they
are often referred to as Sobolev equations [2]. It is quite common to treat such equations
by transition to the differential equations in the Banach spaces

Ad(t) + Bo(t) = £(t), te T, (4)

where A, B are some operators that put (4) into correspondence to (1) in the Banach
spaces, ker A # 0; and v(t), f(¢) are the desired and the given vector-functions,
correspondingly.

A significant contribution into this field of mathematics has been made by
G.A. Sviridyuk and his followers (see, for example, [2-7| and the references listed there).
Interesting results are also presented in [9-14]. Another approach to solving Sobolev
equations suggests transition to singular in some sense partial differential equations
with subsequent application of powerful methods of functional analysis [15, 16]. Some
promising results have been obtained for systems (1) with constant coefficient matrices
by employment of Furrier transformations and similar methods (see, for example, the
fundamental monographs [17,18| and the references listed there).

Finally, during the last 15-20 years it has become popular to employ the approach
based on the methods developed for the DAE theory [19-25]. According to the American
Mathematical Society, the term DAE is used for systems of ordinary differential equations
with a singular matrix multiplying the higher derivative of the desired vector-function.
Index is a notion used in the theory of DAEs for measuring the distance from a DAE to its
related ODE. The index is a nonnegative integer number that provides useful information
about the mathematical structure and potential complications in the analysis and the
numerical solution of the DAE. It also identifies the number of derivatives on which the
solution to the given DAE depends. However, there is still no agreement on how to calculate
the index of partial differential algebraic equations (PDAEs), and the current research aims
to provide some clarity on this matter. We will address a special case of (1) that comprises
partial differential equations, ordinary differential equations, and algebraic equations.

When studying PDAEs, we face the question whether we can classify them as
hyperbolic, elliptic, or parabolic, because the classic theory of partial differential equations
states that the type of the system predetermines the method of solution (see, for example,
[26]). Therefore, in what follows, we say that a PDAE is hyperbolic if it can be split
into: 1) a classic hyperbolic system; 2) differential subsystems with respect to x,t, where
the second variable is treated as a parameter; 3) a subsystem with a unique solution, in
particular, an algebraic system.

Remark 1. For the sake of simplicity, the dependence on ¢t and x sometimes will be
omitted, if this does not lead to misunderstanding. The inclusion V (x,t) € C*(U), i, >
1, where V' (z,t) is some matrix (in particular, a vector-function), denotes that all elements
of V(x,t) have continuous partial derivatives up to orders i,j in the domain U. If
i = j, then we say that the matrix V(z,t) is ¢ times differentiable in the domain U.
Vi(z) € CY(X), Va(t) € C(T) denote i-times differentiable matrices V;(x), Va(t). The
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continuous matrices are denoted as V(z,t) € C(U), Vi(z) € C(X), Va(t) € C(T) and
r[V(x,t)] = max{rank V(z,t), (z,t) € U}.

Now consider an example to illustrate some properties specific to PDAESs.

Example 1.
1 a1 Qo
A(Dy,D)u= [0 0 0 | Dut+
0 0 O
0 0 0 (0% iy (071 Qg Q7 (A8
+(0 e 1| D2u+ [0 et+2t 1 |Dou+|0 v 0 |u=/f
0 0 0 0 0 0 0 e o

Here u = (u1 Us u?,)T, f= (f1 fa fg)T, 5, o, i = 1,8 are numeric parameters,
v = v(x, t) is some smooth function, T stands for transposition. However, in this situation,
if & = 1 and v = 0, the system is solvable for any f; € CLY(U), f, € CH(U),
f3 € C*Y(U),y € CHY(U), if g(x,t) = [y(z,t) — (t + t?)e*] # 0 V(z,t) € U. Indeed,
the third equation of the system yields us = f3 — e®'uy. Substitute uz into the second
equation. We obtain uy = (fs — D, fs — D2 f3)/g(x,t). Therefore, the components us, us
are uniquely defined in the domain U and belong to C*'(U). Then, by substituting u,, us
into the first equation, we obtain an equation of the hyperbolic type

Dyuy + asDyur + aguq = (z,t) fr — azug — ouus,

where ¢(x,t) = fi — a1 Dyug — asDyug — agDyus — as Dyug — apug — agug. Hence, we can
say that the system is implicitly hyperbolic and the following equality is valid

t

uy = ¢ — ay(t —tg)) + /exp(ags)w(x — a3t — ), s)ds,

to
where ¢(z) is an arbitrary function.

Summarizing what has been said, we are drawn to the following conclusions:

1) the components uy, usz are fixed functions. Hence, we can set initial and boundary
conditions only in the form of the functions uy(x,ty), uz(xo,t), us(z,to), us(xo,t);

2) the equation is hyperbolic with respect to u;, and here we can set arbitrary initial
and boundary conditions (o, t), ui(z,ty) that satisfy the consistency conditions at the
point (zo, o). For example, ¢(x0) = (to) etc. [26];

3) if we perturb the free term f3 = f3 + esin(tx/€e?), then it can be readily seen that
at ¢ — 0 the following relations are valid: || f5 — fs|lcquy — 0, ||@ia — usa||cquy — 00, which
means that the solution is highly sensitive to changes in the initial data.

1. Auxiliary Information

Definition 1. [27] A pseudo inverse of the (m x n)-matriz M (z,t), t € U is defined as
an (n x m)-matriz M*(x,t) satisfying the following criteria

M(z, )Mt (z, )M (z,t) = M(z,t), M (z,t)M(z,t)M ™" (z,t) = M*(z,1),

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 7
u nporpammupoBanues (Becruuk FHOYpI'Y MMII). 2017. T. 10, Ne 2. C. 523



V.F. Chistyakov, E.V. Chistyakova

(M (z, )M (2, t))" = M (z,t)M(x,t), (M(z, )M (z,t))" = M(z,t)M*(z,1).

M™(z,t) exists for any matrix and any (z,¢) € U. If the matrix M (z,t) is square and
regular, then M~!(x,t) = M*(x,t), and M~*(z,t) € C*(U), if M(x,t) € C*(U).

Lemma 1. Let M(z,t) € C*(U) and rankM (z,t) = const = r V(z,t) € U.
Then:

1. There exist square matrices L(x,t), R(x,t) € C“(U) such that det L(z,t) #
0, det R(x,t) # 0 V(z,t) € U, L(z,t)M(z,t)R(x,t) = diag{l.,0}, where I, is
an identity matrixz of dimension v;

2. There exists the matriz M+ (x,t) € C(U).

If rank M(x,t) # const, (x,t) € U, then at least one element of M™(x,t) has a
discontinuity of the second kind in the domain U. The proof techniques can be found in
the monograph [28].

Now consider a higher order DAE depending on a parameter

Ap(Dp)u = ZAj(as,t)Dfu = f(x,1), (5)
k .
Ap(Dy)u = ZAj<x,t)D;u = f(x,1), (6)

where (z,t) € U, A;(z,t) are (n x n)-matrices at least from C(U), det Ay(z,t) =0, the
variables x and t are understood as parameters. Introduce the following notation.

Definition 2. The operator Q(D;) := 22.20 L;(x,t)D], where L;(x,t) are (nxn)-matrices
from C(U), with the property

(z,t)Dly Yy € CHY(U), det Ay(z,t) # 0 Y(x,t) € U,

Mw

Q (Dt OAk Dt

7=0

is called the Left Regularizing Operator (LRO) for the DAE (5). The smallest possible
number | is said to be the index of (5).

A similar definition of the LRO can be formulated for (6) by replacing D; with D,.

Lemma 2. If system (5) has index l, then the following alternative holds: det Ag(x,t) #
0V(z,t) €U for L =0, or det Ap(x,t) =0, (z,t) € U forl > 0.

Proof. Indeed, if | = 0, then LoA, = Aj V(x,t) € U, where det A, # 0 V(x,t) € U.
However, if [ > 0, then it follows from the definition of index that L; Ay = 0 V(z,t) € U.
This is valid for continuous matrices L; and Ay, if and only if det L; = det Ay = 0V(x,t) €

U.
(]

In other words, if we assume that the LRO exists, then the condition det Ay(z,t) =
0, (z,t) € U is not necessary. Moreover, the LRO guarantees solvability of the system for
any fixed z.
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Theorem 1. Let system (5) satisfy the conditions:

1. Aj(z,t) € C™(U), j = 0,k, m = max{(k — )n +r + 1,20}, r = r[Ag(z,1)],
i 20, f(z,t) € C¥(U);

2. The system has the LRO in U, which coefficients are either continuous or i times
partially differentiable with respect to x.

Then, system (5) is solvable for any f(x,t), and its solution for any fized x € X can
be written in the form

u(z,t) = Xg(z,t)c(z) + W(Dy) f(x,t),

p Ik
W(Dy)f(x,t) = /K(x, t,s)f(x,s)ds + Z Cj(z,t)D]f, (7)
to J=0
where Xq(x,t) is an (n x d(x))-matriz, K(z,t,s), C;(z,t) are (n X n)-matrices smooth
with respect to t, j = 0,1 — 1, rank X4(x,t) = d(x) Vt € T, c(x) is an arbitrary function.
If ¢(x) € C{(X), then u(z,t) € CH(U).

t
If I < k, the vector-function in (7) has the form W(Dy)f(z,t) = [ K(x,t,s)f(z, s)ds.

to

-
Proof. Denote ( = (uT D’ ... Dt(k_l)uT> . Then we can put the following first order
DAE into correspondence to (5):

({) Ak&,w) Dot <Ao(0x,t) A@{”@) ‘= <f(a(s)7t>)’ woet©

where v = (k — 1)n, A = (A; Ay ... Aj_1). System (5) has the LRO of the form
diag{1l,,%(D;)}, and the proof is based on application of the statement that was proved
in [29] for the situation when & = 1 and the coefficient matrices as well the free term depend
on t only. Note that all solutions to (5) are the solutions to the non-singular system

Ql(Dt) (0] Ak(Dt)y = Ql(Dt)f(iL‘,t), (x,t) € U (9)

If in Definition 1 matrices A;(x,t) and the vector-function € f(x,t) are either continuous
or i-times differentiable with respect to z, then any solution y = y(z,t) to (9) is either
continuous or i-times differentiable with respect to x. Hence, the solutions to (5) possess

the same properties.
(I

A similar theorem can be formulated for the DAE (6). Then, according to Theorem 1, the
general solution to (6) can be written in the form of the equalities:

U = Xd($7t>c(t) + W<Dx)f(xa t)a
-k

» 10
W(D)(.0) = [ Kloto)f(s.tds+ Y Cat)Dif 1o
j=0
xo
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2. Index for Linear PDAEs

Now, using the results from the previous section, introduce the concept of index for
PDAEs.

Definition 3. Let there exist an operator V,(Dy, D,) := Zé’:o L;(D,)Di, where L;(D,) =
S0 Li(x, )DL, Li(z,t) are (n x n)-matrices from C(U), with the property

Uy(Dy, D) o A(Dy, D,)y = A(D,)Dyy + A(D,)y Yy € C(U),

where . .
A(Dﬂc) = ZAi(I’t)D;’ A(DI) = ZAi(xvt)chv
i=0 =0

Ai(x,t), Aij(x,t) are (n x n)-matrices from C(U); it is assumed that the operator A(D,)
has the LRO in the domain U. The smallest possible | is said to be the index of system
(1) with respect to the variable t.

Due to the fact that the partial derivatives with respect to = and ¢ play equally
important roles in the system, the index with respect to x can be defined in a similar way.
If system (1) has index with respect to t, then, using formulas (10) and provided that the
initial data is sufficiently smooth, the original system can be reduced to a vector integral
differential equation resolved with respect to the evolutionary term

Do+ W(D,)A(D)u = W(Dy) f(w,t) + Xala, t)e(?). (11)

Now suppose that the conditions of Lemma 1 are satisfied. Then, by multiplying system
(9) by L(z,t) on the left and introducing the change of variable u = R(z,t)z, we obtain

( I 0 ) Dos i ( AND,) AP(D,) )Z _y (12)

0 0 (D) AZ(D,)
where g = L(z,t)f, A¥(D.) = >0 By, (z,t) DI + Ci(z,t), Bi(x,t), Ci(z,t), i,v =
1,2 are the blocks of the matrices LB,D’R, --- ,LZ?leBjDéR and LAD:R +

L37¥_, BiDJR+ LCR, correspondingly.

Example 2. Set in Example 1 a; = 0, as = 0. Then the system has the form of the
relation (12), where

Ail(Dx) = a3D, + ag, Aiz(Dx) = (yD, + a7 asD, + ag), A%l(Dw) =0,

xt xt
99 (et 1 9 et +2t 1 v(z,t) 0
Al(Dm)_(o O)D’f+< 0 0)D$+< et 1)

Differentiate the second and the third equations of the system with respect to t. We get

(1 0 )Dm+(AP@m “%aﬂ)u:ﬁ (13)

0 AP(D.) 0 AP(D:)
- xt xt
where A2*(D,) = < xf) 8 ) Dfﬂ—f-( e 0+ 2 8 ) Dx—i-( Dt;éft’ ) 8 ) . The operator

A?2(D,) is index 2, if g(z,t) = [y(z,t) — (t + t*)e*] # 0 V(x,t) € U. Here the LRO has
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1 0

the form Q(D,) = (—D D2

> . Moreover, in formula (10) we have that d = 0 and

et 1

—1
W(D,) = (g(m ) O) Qo(D,). Therefore, system (11) in this case has the form

Dyu + ( A%léDz) W(gf)(fég()l)z) )u - <W(D£1)th2> /= <£) ‘

Theorem 2. Let one of the following conditions be satisfied for system (12):
1. The operator A¥(D,) has the LRO in the domain;
2. A2(D,) = 0 and the operator A*'(D,) o AI*(D,) has the LRO in the domain U.

Then: 1) under conditions of Theorem 1 the DAE (1) has index 1 with respect to t in the
domain U; 2) if condition 2 of Theorem 1 is satisfied, then the DAFE (1) has index 2 with
respect to t in the domain U.

Proof. Transform the DAE (1) to the form (12). Differentiate the second block equation
of (12) with respect to t. We obtain

(AﬁEg Mﬁaﬂ)Dﬂ+(§§gg %333)2‘9‘<5;)"‘@D’“®

where AY(D,) = D,By;(x,t)D, + D,Cy;(x,t), j =1,2.

Multiply the first block equation of (12) by the operator Af'(D,) and deduct the
result from the second equation. This yields a system A(D,)D;z + A(D,)z = g, where
the operators A(D, ) and ¥;(D;, D, ) from Definition 3 can be written in the form A(D,) =
diag{lra A%Q(Doc)}a \Ill<Dt7 Dx) = _A2{T(D ) IO ) DtL(l’,t), D, = diag{lra DtIn—r}~

1 T n—r

Let the second part of the statement be satisfied. If we again differentiate the second
block equation of (12) with respect to ¢t and deduct the first equation, multiplied by
A2Y(D,), from the second one, we arrive at

(5 0)pe (6 —apiboniny )= "

where h = (9] Dygd — A3N(Da)gi) ", @(D,) = A(D,) — A3(D,)A}(D,). Since the
operator A¥(D,)A1?%(D,) has the LRO, we therefore fulfill the first part of the theorem

and can perform similar transformations. Here operators from Definition 3 have the form
A(D,) = diag{I,, _Afl(Dw)A%Q(Dx)}a

I, I, 0
\I[l(Dh Da:) = <_@(Dx) In—r) Dt (—A%l(Dz) In—r) DtL(xat)'
|

Remark 2. The paper [23] graded systems (1), where the operator A??(D,) has the LRO,
as index (1,1). According to this definition, the system from Example 1 has index (1,1) at
d # 1 and index (1,2) at § = 1.
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There is also one more important remark to be made. Let the first part of Theorem 2
be satisfied. Then system (12) entails the equality A3*(D,)zs = —A(D,)z1 + g2, where
(:f 2) ==z

Using formula (10), express z; through 2, and substitute the result into the first block
equations of the DAE (12). We arrive at the system of integral differential equations

resolved with respect to the evolutionary term
Dyzy + [AN(Dy) — APW(D,)AT (D,)]z1 = h(z,t), (16)

where h(z,t) = g1 — AM*(D.) X4(z,t)c(t) — Ai?(D,)W(D,)g2. Eq. (16) without its integral
part is a linear differential equation, which can be further investigated to find out whether
it belongs to the class of hyperbolic, parabolic, or elliptic equations.

A similar system can be derived if the second condition of Theorem 2 is satisfied.

3. Hyperbolicity Criteria for Singular Systems

In this section we discuss techniques for finding the index of system (1) as well as
criteria for assigning the system to a certain type. It is quite challenging to actually
construct the matrices L(z,t) and R(z,t) that would transform the original system to the
form (16) and possess the same smoothness as the matrix A(z,t). For example, consider

A(z,t) = (

1 —sinw(z,t)  cosw(x,t)
cosw(z,t) 14sinw(x,t))’

where g(x,t) is some arbitrary smooth function. It can be readily seen that this matrix
has a constant rank in any domain U. Below, we will focus on hyperbolic systems only.

If system (1) is regular, i.e. det A(z,t) # 0V(z,t) € U, the hyperbolicity is understood
as in [26]. In what follows, we provide criteria which, in terms of input data, guarantee
that system (1) has index 1 with respect to ¢ in the domain U and possesses an implicit
hyperbolic structure.

Definition 4. If the matriz pencil NA(z,t) + B(x,t) satisfies the conditions:
L r[A(z,t)] = r; 2. det[AA(z,t) + B(z,t)] = ag(z, )\ + -+, ap(x,t) # 0 V(z,t) € U,

then we say that the pencil satisfies the rank-degree criterion in the domain U.

Definition 5. If the pencil of continuous matrices ANA(x,t) + uB(x,t) + C(x,t) satisfies
the conditions:

1. v[A(z,t)] = <n, r[(A(z,t)|B(z,t))] =1 + 12 < m;
2. det[AA(z,t) + uB(x,t) + C(z,t)] = ap(z, )N p™> + - -+, ag(z,t) # 0 V(x,t) € U,

then we say that the pencil satisfies the double rank-degree criterion in the domain U (or,
in terms of [30], has a simple structure).

Lemma 3. If:

1. A(z,t), B(xz,t), C(z,t) € CY(U);
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2. The matriz pencil NA(z,t) + B(x,t) satisfies the rank-degree criterion in U;

3. The matriz pencil ANA(x,t) + pB(x,t) + C(x,t) satisfies the double rank-degree
criterion in U.

Then:

1. Compliance with the the second point of the lemma entails that there exists such

square matrices P (z,t), Q1z,t) € C*(U) that det Pi(z,t)Q1(x,t) # 0 V(z,t) € U,
Py, ) MA (e, £) + B(z, ]Qu (2, 1) = A (g 8) " (‘](967 2 2) . an

2. Compliance with the the third point of the lemma entails that there exists such square
matrices P(z,t), Q(z,t) € C*(U) that det P(z,t)Q(z,t) # 0 ¥(z,t) € U,

P(z,t)[MN(z,t) + pB(z,t) + C(z, 1)|Q(x,t) =

[r 0 0 J(l’,t) 0 Blg(l’,t) 011(1},t) Cm(l',t) 0
=\ 0O 0 O + M 0 Ig 0 + 021<37,t) CQQ(I’,t) 0 s (18)
0 00 0 0 0 0 0 I,

where r +, +v = n, J(x,t), Bis(x,t), Ci(z,t), i = 1,2 are the matriz blocks of
corresponding dimensions.

Remark 3. If o = n —r (here this is equivalent to rank(A(z,t)|B(x,t)) = n V(z,t) € U),
then the simple structure condition coincides with the rank-degree criterion. When the
matrices of the pencil A(x,t) + puB(z,t) + C(x,t) depend only on t and the matrices
A(z,t), (A(x,t)|B(z,t)) have a constant rank in the domain, the lemma on reducibility to
the form (18) was announced in [31]. The lemma for two variables was proved in [23]. In
this work we omit the requirement for the ranks to be constant because they follow from
condition 2 of Definition 5.

Theorem 3. Let in system (1):
1. Az,t), By(z,t), p=1, C(x,t) € C(U), i,j > 1;

2. The matriz pencil NA(z,t) + By (x, t) satisfy the rank-degree criterion in U or matriz
pencil NA(z,t) + uBy(z,t) + C(z,t) have a simple structure in U;

3. All roots of the polynomial
det[AA(z,t) + D(x,t)] = 0, (19)

where D(z,t) = By (z,t) + [I, — S(z,1)S* (x,1)]C(z,t), S(z,t) = (A(z,t)| Bi(,1)),

are real and simple, and
§ < Az, t) < Ao(z,t) < - < Np(x, 1), Appa(z,t) =0, N\ (2,8) =0 V(a,t) € U,

where § 1s some real number.
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Then:
1. System (1) has indez 1 in the domain U with respect to t;
2. System (1) is implicitly hyperbolic;

3. System (1) has indez (1,0) if matriz pencil NA(x,t)+ By (x,t) satisfy the rank-degree
criterton in U in terms of Remark 2;

4. System (1) has indezx (1,0) if matriz pencil NA(z,t) + uBi(x,t) + C(z,t) have a

simple structure in U in terms of Remark 2.

Proof. Multiply (1) by the matrix P and introduce the change of variable u = @)z, where
P, @) are matrices from Lemma 3. We obtain

]7" 0 O J 0 BIS Gll G12 G13
0 0 0|Diz+ |0 I, 0 |Dyz+|Ga G Gas|z=Pf, (20)
000 00 0 0o 0 I

where G;;(z,t), i = 1,2, j =1,2,3 are blocks of the matrix PAD,(Q + PBD,Q + PCQ.
It is readily seen that if we multiply the last line by G13, Gy3 and deduct the result from
the first and second lines, we can turn the latter ones into zero. Therefore, the matrix P
can initially be chosen so that these blocks are zero. Now prove that the eigenvalues of the
matrix J coincide with the roots of the polynomial (19). Consider a polynomial

det Pdet[AA + D]det Q = det[\PAQ + PBQ + P(I, — SQQ'S")P~PCQ] =

I, 00 J 0 DBis Gy G2 0
=det [ A 0 0 0]+ 0 [Q 0 + 7 G21 G22 0 s
0 00 0 0 O 0 0 I,

where Q = diag{Q, Q}, Z = P(I, — SQQ~'ST)P~'. Direct calculation shows that Z =

(8 ?1) , where Z; is some block, and det P det[]AA + D]det Q = det PQ det[\I, + J].
p
Hence, according to [26], we can choose the matrices P, @ so that the matrix J will be

diagonal. Rewrite system (20) as

[p 0O 0 0 Jl 0 O Bl4 Gll Glg G13 0

0 Iq 0 0 0 0 0 By Gzl GQQ G23 0 .

00 00|P% 0 0, 0P Gy Gp Gy o D
0 000 000 0 0o 0 0 I,

where J; = diag{\,---, A\ }. If we write down (21) as the DAE (12), then the
corresponding blocks take the form

11 _(Ji O G G 12 (0 0 Giz 0
A (Dm)_(() O) D$+(G21 Goo » A (Da) = By Boy D+ Gy 0)7

21 (0 0 G G 22 (1, O Gss 0
wo) = (o o) oo (G Ge) aroa = (5 o) e (1)

where the operator A??(D,) has an LRO of the form diag{l,, D,I,}. Taking into

consideration the form of the matrix J, this fact proves the theorem. -
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4. The PDAEs Based Mathematical Models

In view of what has been said above, consider modelling of some processes in power
plants. Such models include equations describing fluid motion (for instance, water, oil fuel
etc.) in pipelines of the network. The motion of incompressible, viscous liquid substances
is described by a system of the Navier — Stokes equations, which can be written down in
the form of a PDAE

(5 )0 (2 )6 (4)-05). =

where u = (u; us uz)", 9(Z,t) = (q1(Z,t) g2(Z,t) g3(Z,t) 0)7 is a given vector-function.
u; = uj(Z,t), j = 1,3 are coordinate velocities of fluid particles at the point (Z,t) =
(x,y,2,t), p=p(Z,t)is a pressure at the point (Z,1),

Au = D?uy + Djuz + D?us, divu = Dyu; + Dyus + D,us, grad u = (Dyug Dyusy DZU3)T

are the Laplas operator, divergence, and gradient, correspondignly; ww(u) is the Jacobian
of the vector-function u. The linearized version of (24) is called the Stokes system

A(Dy, Dy, Dy, D,)U =

(502 50 -C5) =) w

The system is written in a dimensionless form, i.e. it is assumed that fluid viscosity and
density are equal to 1. Various forms of systems (24), (23) have been studied in the immense
number of research works. In particular, system (23) was considered on the basis of the
transition to (4) (see, for example, |6], [12]). A number of Russian and foreign researchers
tried to apply the DAEs theory to the investigation of (23), and the paper [32]| seems to
be the first work of such kind.

System (23) has the same structure as the DAE (12), so if we set A}! = Al
A2 = —grad, A¥' = div, A?? = 0, then, by repeating the reasoning of Theorem 2 and
taking into consideration divgrad = A, we obtain

(I3 0 u —Al3;  grad u
\IJQ OA(Dt,Dm,Dy,Dz)U — ( 0 _A ) Dt (p> + < TAI3 —Tgrad 1Y ’

where
(L 0\(L 0 L 0\(IL 0 e
@2"(-:r 1) (() Dt> —div 1> (() Dt>’ T =divAL.

. . Is 0O (I3 0
Using the expression ( 0 D, ) = ( 0 ) + < 0

WUy as a sum from Definition 3

(L0 0 0 0 0Y s
%_(—TO)+<4NO>Q+(01>Q'

Therefore, we can assume that system (23) has index 2 with respect to t.

o O
)

) Dy, write down the operator
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Such a transformation is not possible if the DAE (24) is nonlinear. However, we can

apply the operator
= I3 0 I3 0O 0 0
%_<—div 1)[(0 0)+<0 1)Dt}’

to the nonlinear system to reduce its index. As a result we get

(5 3) () (3 22) () () - (580) oo

It is well-known from the DAE theory, that the index reduction considerably increases
computational reliability.

The index is preserved whatever approximations we use. For example, expand the
desired function and the known function in a Fourier series with respect to spatial variables

UZt) =Y U0 @D, g(Zt) = G, ()P, i =T,
v=0 v=0

where v = (v4,15,v3), v, j = 1,3 are integer numbers,

U, (t) = (ury(t) uz(t) usn(t) po(t)) ", Gu(t) = (g1 (t) g2 (t) g5 (t) 0) "
Substitute the expansions obtained into (23). We derive an infinite sequence of the DAEs

—qy 0 0 —il/l
0 —(qy 0 —il/g
0 0 —q, —ivs

—ivy —ivg —ivs 0

Uy(t) = Gu(1), (25)

Sl
co o~
coro
or oo

where g, = v + V3 + V2. System (25) has index 2 in terms of Definition 2, i.e. there exists
the operator Qy = Lo + Li(d/dt) + Lo(d/dt)?, where Lo, Ly, Lo — (4 x 4) are matrices
with constant elements. The operator can be constructed following the algorithm from
Theorem 2.

The method of lines is another way of approximating partial differential equations.
For the sake of simplicity, we consider a two-dimensional Navier — Stokes system in the
domain U = G X [to, t1], G =[0,1] x [0, 1]. Introduce on G a uniform grid in the x and y
directions with the time step h.

Consider the system

O (t) = Dvp(t) + Aapjr(t) — [0k Dy k(t) + wj k() Agvj i (t)] = frjm,
;i (t) — Aw;p () + Agpjn(t) — [0j5(0) Ayw; g (t) + w; k(£) Ayw; i (t)] = fajin,
Ax’l)%k(t) + Ayw]'7k(t) = 0, (26)
where the difference operators have the form:
Am§j,k = (§j+!,k - §j,k)/h7 Af§j,k = (§j,k - §j—1,k)/h,

Aysik = (Gt — k) /e Dgin = (ke — Ga—1) /By A= Az + A Ay,
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Gjk 1s an arbitrary grid function. The values of the desired functions are assumed to have
been derived from the initial boundary conditions, if the index is zero.
Introduce a vector-function

Un(t) = (Cu(t) G(t) -+ Cvaa(t) T, Palt) = (m(t) not) -+ mvoa(t)7,

where N = 1/h, (;(t) = (vj1(t) wjn(t) vj2(t) wia(t) -+ vin-1() win-1(t)), n;(t) =
(pj1(t) pja(t) --- pjn-1(t)) and rewrite (26) as a DAE

(450 () (B 59 () ()-
= Fyn(t), (27)

where Dy, My, Sy are the matrices of the appropriate dimension, Fy(t) is a vector-
function composed of the functions fi j, f2;r and components of the initial and boundary
conditions.

To control where fluid flows as well as to control fluid pressure, it is common to use
hydraulic circuits. The hydraulic circuit graph can be presented by a full (m X n)-matrix
A of nodes and lines that identically describes the structure and the orientation of the
circuit: a;; = 1, if the line ¢ comes from the node j; a;; = —1, if the line ¢ comes into the
node j; a;; = 0, if the node j does not belong to the line 7 (i = 1, n, j = 1, m). It is
assumed that the first and the second Kirchhoff circuit laws are satisfied: 1) at any node
the amount of fluid flowing into the node is equal to the amount of fluid flowing out of
that node; 2) the sum of pressure drops in any closed loop is zero. The connection between
the flow rate of the line ¢ and the pressures py,;(t), Dpizi(t) on its ends is expressed as

pbx,i(t) — pbzx,z<t) + hl (t) = ’f'l<t)Xl(t) + So’ixi@) + S14 |Xi (t)’ Xi<t), (28)

where 7;(t) > 0 is an inertia parameter of the line, h;(¢) is a hydraulic head, so; > 0
and s;; > 0 are pipe frictions corresponding to the stream-line and turbulent flows. The

relations (28) and the equations following from the Kirchhoff laws can be written in the
form of the DAE

(% ) (3 ) (3 (7)-

_ ( H(t) + Ay P*(t) ) (20)

Q(t)
where (A A7) = AT, R = diag{ro(t),r1(t),...,ma(t)}, So = diag{so1, 502,50},
So = ding{sia sz}, [XO = {xa®hlxe()l: ... [x.(0)}, X&) is an n-

dimensional vector-function of the flow rates in pipelines; P(¢) is an m;-dimensional
vector-function of the unknown pressures at nodes; P*(t) is an mo-dimensional vector-
function of the known pressures; my + my = m; H(t) is an n-dimensional vector-function
of hydraulic heads; Q(t) is an m4-dimensional vector-function of inflows; rank.A; = my. It
was previously shown in [33] that if we have a non-linear term in the system, there exists
an operator Qy = Lo + Li(d/dt) + Ly(d/dt)?, where Ly, Ly, Lo are constant matrices of
the appropriate dimension, that transforms the DAE (29) to the normal form. Due to the
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fact that the block structure of (27) is identical to that one of (29), the same technique
can be applied to prove existence of such an operator for the DAE (27).

Models of complex power plants are typically described by quasi-linear DAEs, the
study of which is quite challenging even when we deal with the simplest models. Consider a
quasi-linear PDAE that describes heat exchange in a steam straight-through boiler, which
can be primitively represented as a pipe with flowing fluid (water, steam, vapor-water)
heated by hot gases and emission from the fuel combustion.

The conservation laws allow us to write down the following PDAE

ap 0 0 () x, 0 0 Uy
0 ayp O Dilu | + 0 0 0 D, |uy | +
0 0 0 us 0 0 x4 Uus
c1[t(ur, p) — ug] 0
+ | —alt(ur,p) — ug] + coug — csu | = | q(x,t) |, (30)
—CoU9 + c3u 0

where wu; is fluid heat content; us is pipe wall temperature; uz is gas enthalpy; t(uy,p)
is fluid temperature; p is fluid pressure; x,,, X,  are the flow and gas rates in the lines
v, K; 11, Goa, C1, Co, Co are some parameters responsible for the circuit general geometry and
properties of hear exchange; q(x, t) is radiation heat flow. The gas flow rates and pressures
are found when solving (29).

Problem (30) can be generalized as follows

A(x,t)Dyu + B(z,t)Dyu + Clu, z,t) = f(z,t), (z,t) € U,

where C(u, z,t) is a given in R" x U vector-function, and applied to investigation of more
relevant models.
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O IIOHATUN NMHJAEKCA JTVNOPEPEHIINAJIBHO-
AJITEBPAUYECKINX YPABHEHUI B YACTHHBIX ITPOU3BO/JIHKIX,
BOSHMNKAIOIINX TPV MOAEJINMPOBAHNUN ITPOIIECCOB

B SHEPTETNYECKNX YCTAHOBKAX

B.®. Yucmaxos, E.B. Hucmaxosa
WNueTuTyT ARHAMAKE CHCTeM u Teopuu yupasienns nM. B.M. Matpocosa CO PAH,
r. pkyrck

B crarne PaCcCMaTPUBAIOTCA HEKOTOPBhIC KJIaCChL JUHEHHBIX M KBa3WJUHEHHBIX

nuddepenuuansro-anrebpandeckux ypasuenuit (JAY) B uacrHbix npoussoiubix. o
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JAY B 9acTHBIX MPOW3BOAHBIX B pabOTE MOHUMAIOTCS CUCTEMBI ¢ BHIPOXKIEHHBIMU BO BCEH
0bJ1acTH OIPE/IeTeHNsT MATPUIIAME [IPU CTAPIINX TPOU3BOAHBIX UCKOMON BEKTOP-(MYHKIUH.
Onu me apasworca cucremamu tuna Komm — KoBaseBckoil, u yTBep:kaeHust 0 pa3peniuMOCTH
B 00I11IeM ciryuae OTCyTCTBYIOT. KOHKpEeTHRIM OObEKTOM U3y YeHNs SIBJISIOTCS IBOJTIOIMOHHBIE
CHCTEeMBI ¢ OJHON mpocTpaHcTBeHHON niepementoil. [Tposemennr uccnemopanusa JIAY Bbico-
KOT0O TIOPS/IKA, 3aBUCAIINX OT napamerpa. Ha 3Toii ocHOBe BBeseHO ToHATHe HHaekca J[TAY
B YACTHBIX [TPOU3BOMIHBIX. PacCMOTPEHbI MOCTAHOBKYE HAYAIBLHO-KPAEBBIX 3aja4 mist JAY
B YACTHBIX TPOU3BOAHBIX. [10/TyUeHHbIE PE3YABTATHI MTPUMEHSIOTCS /IS aHAIN3a MOIesei
IIPOTIECCOB TEIIOMACCOOOMEHA B SHEPTETHYECKUX YCTAHOBKAX.

Karoweswie caosa: duddepenyuaivho-arzebpouieckue YpasHEeHU; 4acmuble npou3eoo-
Hote; unmezpo-duddepenuyuaibnoie YpasHenus; NPocmpancmeo peuenut; undexc, modeau
IHEPLEMUECKUT YCTNAHOGOK.
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