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We consider the problem of noninertial objects identi�cation under nonparametric

uncertainty when a priori information about the parametric structure of the object is not

available. In many applications there is a situation, when measurements of various output

variables are made through signi�cant period of time and it can substantially exceed the

time constant of the object. In this context, we must consider the object as the noninertial

with delay. In fact, there are two basic approaches to solve problems of identi�cation: one of

them is identi�cation in "narrow" sense or parametric identi�cation. However, it is natural

to apply the local approximation methods when we do not have enough a priori information

to select the parameter structure. These methods deal with qualitative properties of the

object. If the source data of the object is su�ciently representative, the nonparametric

identi�cation gives a satisfactory result but if there are "sparsity" or "gaps" in the space

of input and output variables the quality of nonparametric models is signi�cantly reduced.

This article is devoted to the method of �lling or generation of training samples based on

current available information. This can signi�cantly improve the accuracy of identi�cation of

nonparametric models of noninertial systems with delay. Conducted computing experiments

have con�rmed that the quality of nonparametric models of noninertial systems can be

signi�cantly improved as a result of original sample "repair". At the same time it helps to

increase the accuracy of the model at the border areas of the process input-output variables

de�nition.
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Introduction

Simulation of discrete-continuous systems is of considerable interest due to the practice
prevalence of situations when some components of the output variables are measured
through signi�cant periods of time which are substantially bigger then the time constant
of the object. For example, transient process of dynamic object can be completed in
20 minutes, but output variable measurements are carried out after 2 hours. Here we
consider the problem of identi�cation of multidimensional static systems with delay under
nonparametric uncertainty, when the model parametric structure of the process is not
known. In other words, the a priori information about the process under study is not
enough to more or less objectively de�ne the model of the process within the parameter
vector. In this case, the identi�cation of the problem can be considered in the framework
of nonparametric system [1]. It should be noted that further used nonparametric Nadaraya
� Watson estimation of regression function refers to the category of local approximation
methods as opposed to parametric methods.

In nonparametric identi�cation of multidimensional static objects with delay quality
of the resulting model depends heavily on the initial data. Sample of observations of the
input and output variables can have a number of disadvantages [2]. They can be of di�erent
nature, come out of measurement error, the functioning of the investigated process and
various control discreteness of input and output variables. Here we consider the problem
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of identi�cation of stochastic systems when the sample of observations contains "sparsity"
in the regulated area of the process.

Note that for solving the problem of identi�cation within the parametric approach, the
problem is not so acute. But in nonparametric identi�cation it requires special attention.
In case of nonparametric identi�cation there can arise a situation when the forecast of
output variable is inaccurate or even can not be calculated because of an uncertainty type
[0/0]. This is typical for the nonparametric regression function estimation on observations
that is used to solve this problem. To some extent, this is "payment" for the absence of the
stage of parametric structure de�nition of the investigated process model. The selection of
parametric structure within the parameter vector is a quite di�cult task and it requires
signi�cant research e�orts.

The distribution of the observations sample in the space of input and output variables
plays an important role in nonparametric estimation. Often there is a need to supplement
the initial learning sample in order to eliminate the "sparsity" in certain subregions of
the investigated process. Below we discuss methods, techniques of supplement of the
initial learning sample, which, ultimately, lead to models improvement of the object under
nonparametric identi�cation.

1. The Problem Statement

Consider a multi-dimensional static object with delay, its general scheme is shown in
Fig. 1 [3, 4].

Fig. 1. The General Scheme of the Investigated Object

In Fig. 1 we accepted the following notation: A is an unknown object operator, the
input vector of the object u(t) = (u1(t), u2(t), ..., um(t)) ∈ Ω(u) ⊂ Rm has dimension
m, the output variable vector of the object x(t) = (x1(t), x2(t), ..., xn(t)) ∈ Ω(x) ⊂ Rn

has dimension n, t is continuous time, ∆t is control discreteness of input and output
variables of the process; ξ(t) is a random noise vector; Gu, Gx are control units of input and
output variables with random noise gu(t), gx(t) which have zero mathematical expectations
and bounded variances; ut and xt are measurement of variables u(t) and x(t) at discrete
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time. Thus, by measuring the values of input and output variables, we obtain a sample
{ui, xi, i = 1, s}, where s is the sample size, which is said to be the initial sample of
observations.

It is clear that, if we conduct another experiment on the same object, we get di�erent
sample with another distribution of input and output variables in space of observations. In
particular, the subregion with large amount of observations may be replaced by sparsity.

The content of the identi�cation problem is to construct a nonparametric model of
the investigated process based on available learning sample {ui, xi, i = 1, . . . , s} under
conditions of incomplete information, when it is di�cult to parameterize the model. The
asymptotic properties of nonparametric estimations of regression functions have been
studied in detail in [5]. Analysis of smoothing properties of nonparametric estimations
of regression functions have been considered in su�cient detail in the monographs [6, 7].
Note that the sparsity of the sample in the space of input and output variables should not
be confused with the gaps in the data. It is necessary to restore the sparsity areas due to the
internal properties of nonparametric Nadaraya � Watson estimation. However, it should be
clearly understood that generated elements included in the initial learning sample do not
contain information about the object, because they are not actual data obtained on-site.
We use these generated elements in computing nonparametric estimation to eliminate the
uncertainty of type [0/0]. It should be noted that we supplement the sample of observations
with new elements that are not measured on a real object, however, they are generated
on the basis of the initial learning sample which re�ects properties of the real object.

2. Parametric Identi�cation

In the construction of models of discrete-continuous processes there dominates a
parametric identi�cation or identi�cation in "narrow" sense [3, 4]. The parametric
identi�cation of stochastic systems is based on two main phases: parameterization of the
model and estimation of the parameter vector with the sample of observations of input and
output variables of the process. In other words, in the �rst stage we select the parametric
structure of the model, for example:

xα(t) = f(u(t− τ), α), (1)

where f is a certain function, α is a parameter vector, τ is delay. At the second stage, we
estimate the parameters α on the basis of the available sample {ui, xi, i = 1, s}. There are
many methods and algorithms to get these estimations [3].

In this way, the main di�culty lies in the choice of a parametric structure of the object
(1). This is the most di�cult stage for researchers. Here it would be appropriate to recall
the phrase of Democritus: "Even a slight deviation from the truth, in the future leads to
in�nite error".

3. Nonparametric Identi�cation

In most cases, we have little information about the object and only a few qualitative
properties of the investigated object, such as uniqueness or ambiguity, the linearity of the
dynamic object or non-linearity and others. In this case, the a priori information is not
su�cient to select the parametric structure of the object. It is proposed to use identi�cation
methods in a "broad" sense. On this occasion, professor N.S. Raybman in the preface to
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the book [4] mentions: "priori information about the object in the identi�cation in a broad
sense is absent or very poor, so we have to previously solve the large number of additional
problems. These problems include: system parametric structure selection and model class
assignment. . . ". As a model of the object we take the nonparametric estimation of the
regression function Nadaraya � Watson [1, 8]:

xs(u) =

∑s
i=1 xi

∏m
j=1Φ(c

−1
s (uj − uj

i ))∑s
i=1

∏m
j=1Φ(c

−1
s (uj − uj

i ))
, (2)

where bell-shaped function Φ(c−1
s (uj − uj

i )), i = 1, s and smoothing parameter cs satis�es
the convergence conditions [4, 5].

Parameter cs is determined by solving the problem of minimizing a quadratic criterion
of di�erence between the object and model output, based on a sliding exam when in the
model (2) the i-th variable is excluded:

R(cs) =
s∑

k=1

(xk − xs(uk, cs))
2 → min

cs
, k ̸= i. (3)

Estimation xs(u) (2) based on sample {ui, xi, i = 1, s} belongs to the class of local
approximations. Note that the function Φ(c−1

s (uj−uj
i )), i = 1, s, j = 1,m has the following

property:

Φ(c−1
s (uj − uj

i )) =

{
> 0, if c−1

s |uj − uj
i | < η,

= 0, otherwise,
(4)

where i = 1, s, j = 1,m, η is a constant depending on the choice of a particular bell-shaped
function Φ(c−1

s (uj − uj
i )), the argument is determined by the values of (uj − uj

i ) and the
smoothing parameter cs. Value of the argument (c

−1
s (uj − uj

i )) of the bell-shaped function
with random value of uj depends on the value of cs. For example, if we select a triangular
kernel as the bell-shaped function:

Φ(c−1
s (uj − uj

i )) =

{
1− c−1

s |uj − uj
i |, if c−1

s |uj − uj
i | ≤ 1,

0, else,
(5)

then η = 1. Below, we discuss the cs-neighborhood of the point u = uj, j = 1,m for �xed
cs. In the analysis of nonparametric estimation of the regression function from observations
(2) may arise situations when none of the elements of the learning sample {ui, xi, i = 1, s}
belongs to cs-neighborhood of u = uj, j = 1,m, which lead, in view (4), to uncertainty (2)
of the form [0/0].

Estimation xs(u
′) at the point u′ = (u′

1, u
′
2, ..., u

′
m) is restored on the basis of the

sample elements that are in the cs-neighborhood of the point u′. The obvious is the fact
that the accuracy of estimation depends on the number of items on which this estimation is
computed. In case when there are no elements of learning sample in the cs-neighborhood
of the point u′, it impossible to give the estimation. In this case there is a problem of
uncertainty of the form [0/0]. One possible way to get an estimation is to increase the
value of smoothing parameter cs. In some cases, it helps to provide a forecast (to avoid
uncertainty), but the forecast xs(u

′) can be inaccurate.
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The accuracy of nonparametric estimation (2) depends on the sample of observations
{ui, xi, i = 1, s}. In many practical problems, even for the same process under investigation
the samples {ui, xi, i = 1, s} in di�erent time intervals may di�er signi�cantly, which a�ect
on the accuracy of forecast xs(u). Hence, there is a problem of generating the working
learning sample based on the initial sample {ui, xi, i = 1, s}. In the initial learning sample
there are sparsity and subregions with large amount of observations of the domain Ω(x, u)
(Fig. 2).

Fig. 2. Correlation Field of Input Variables for Initial Sample

In Fig. 2 subdomains with sparsity and boundary points where Nadaraya � Watson
nonparametric estimation (2) is inaccurate are marked with asterisks. Our task is to
algorithmically convert the initial sample shown in Fig. 2 into a working sample, for
example, shown in Fig. 3.

Fig. 3. Correlation Field of Input Variables for Working Sample

Note that although we are interested in the case of m-dimensional vectors u ∈ Ω(u) ⊂
Rm, for the simplicity of visualization the two-dimensional vector u ∈ Ω(u) ⊂ R2 is
presented in the �gures.
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4. Method of Working Sample Generation

The main idea of generation of a working sample {ũi, x̃i, i = 1, N}, N > s based on the
initial sample {ui, xi, i = 1, s} lies in the fact that the sparsity of the �eld is complemented
by new sample items that are included in the working sample according to a particular
algorithm.

The idea of sample generation is the following: we generate working samples based on
initial observations using di�erent methods. In particular, this idea is used in the bootstrap
methods [9]. Bootstrap methods are widely used in statistical analysis in estimating the
distribution parameters and hypothesis testing [10, 11].

Generally speaking, it should be noted that only the initial sample of observations
of input and output variables {ui, xi, i = 1, s} contains information on the investigated
process. We need the newly created elements only to improve the e�ciency of
nonparametric models, because they are based on local approximation methods. It should
be understood that the generated new points do not contain information about the object.
Over time, when there are new real measurements of object variables, they are naturally
included in the initial learning sample.

Algorithm of generating new working sample is the following.
� Using initial sample {ui, xi, i = 1, s} �nd value of smoothing parameter cs by

minimizing the criterion (3) for cs.
� Denote by ρk the number of the sample elements {ui, xi, i = 1, s}, which are located

in cs-neighborhood of the k-th element. In other words, choose those points of the sample
{ui, xi, i = 1, s}, which satisfy the inequality: if

∏m
j=1Φ(c

−1
s (uj

k−uj
i )) > 0, then the element

ui is in cs-neighborhood of uk.
� Calculate the average number of elements ρav. in cs-neighborhoods of the original

sample elements using the following formula:

ρav. = s−1

s∑
i=1

ρi. (6)

� Calculate the Euclidean distance between all elements of the sample {ui, xi, i = 1, s}:

d(ui, uj) =

√√√√ m∑
l=1

(ul
i − ul

j)
2. (7)

Let Ω′ be a set of all distances d(ui, uj), i = 1, s, j = 1, s, i > j.
� Select elements of the initial sample {ui, xi, i = 1, s} between which the distances d

are minimal. For example, {ui, xi, i = 1, s1}, s1 < s. As it is shown by numerous numerical
studies, the size of new sample s1 ranges from 1/2 to 2/3 of the initial sample size s. Among
all the elements of the set Ω′ ⊂ Ω we �nd the minimum value of dmin(ui, uj) and begin to
form a new sample set Ω̃ ⊂ Ω, including in it the couple members ui, uj, and excluding
them from the set Ω′. Then �nd in the set Ω′ the following minimum distance between
elements of the initial sample, which is also included in the sample set. If dmin(ui, uj) = 0,
then the elements ui and uj coincide, we include in the sample set only one element which
was not previously included. Repeat this procedure until a new set Ω̃ will not contain
about 70% of elements of the initial sample. We suggest to select 70% of the sample
due to numerous computational experiments. So, Ω̃ is a set of all elements that make up
domains with a su�cient number of elements.
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� Check the following condition for all the elements of sample set Ω̃:

ρk < ρav., k = 1; s1. (8)

If (8) is satis�ed, then we exclude the k-th element from the sample set Ω̃.
� Thus, all elements of the sample set Ω̃ are excluded from the original sample

{ui, xi, i = 1, s}. We obtain the sample {ui, xi, i = 1, s′}, s′ < s. All the elements of
the sample are located in sparsity subdomains. This sample also contains the boundary
elements.

Next, consider the generation of new elements to be included in the working sample
{ũi, x̃i, i = 1, N}, N > s.

� Check the following condition for the sample size s′: ρi < ρav., i = 1, s′. If the
condition is satis�ed, then we generate k elements in cs-neighborhood of the point ui ,
where ki = ρav. − ρi, i = 1, s′. For example, if there are 7 elements (ρi = 7) of the initial
sample {ui, xi, i = 1, s} in cs-neighborhood of the element ui and an average is 6 (ρav. = 6),
we do not generate any new element, but if ρi = 4, then we generate 2 additional elements.
These elements ũk are generated according to the following rule:

ũj
ki = uj

i + ζjkcs, j = 1,m, i = 1, s′, k = 1, ki, (9)

where ζjk is a random variable distributed according to a uniform law in the interval [−1; 1],
uj
i is a value of input variables ui. In the cs-neighborhood of the point ui we generate
elements ũk.

� For generated elements u = ũ object output values x(t) are not known, so for these
elements we calculate the estimation of the output variable xs(ũ) (2) based on the initial
sample {ui, xi, i = 1, s}. Thus, for each value of ũ, obtained by (9), we calculate the
estimation of xs(ũ). If there is a situation of uncertainty, i.e. in the cs-neighborhood there
are no elements, then we increase the value of smoothing parameter cs. Generate elements
and the initial learning sample form a new working sample {ũi, x̃i, i = 1, N}, N > s. So,
new working sample consists of observations {ui, xi, i = 1, s} and generated elements.

� New elements are randomly generated in cs-neighborhood of the initial sample
elements, so some of them may be located too close to each other, for example, the distance
between them is less than or equal to a su�ciently small value ε, de�ned experimentally,
or even coincide. Such generated elements are not of interest, and they should be removed.
Note that we remove the arti�cially generated sample elements. To do this, we calculate
the value of the average distance between the points of the main sample {ui, xi, i = 1, s}:

dav. =
2

s(s− 1)

s∑
i=1

s∑
j=1

d(ui, uj), i < j, (10)

where d(ui, uj) is the distance between the elements ui and uj, which is calculated by (7).
� Determine the distance from the arti�cially generated element to all elements of

the new sample. Next, we �nd the value of the minimum distance dmin, if dmin < ε,
where ε = adav., then this item is removed from the sample. The value of the coe�cient
a is determined experimentally so that the size of the working sample in 1.5 - 2 times
bigger then the size of the initial sample {ui, xi, i = 1, s}. Thus, all the extra are deleted.
By selecting di�erent values of the coe�cient a, we can adjust the size of the generated
sample.
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� After the working sample is generated, calculate estimation (2), de�ning a new value
of smoothing parameter cs according to (3). In (2) for values xi we use the object output
for the observations of the initial sample {ui, xi, i = 1, s} and model output value for the
generated elements, as for them there is no way to calculate the output value of the object.

Thus, the new generated sample elements are located in sparsity subdomains (Fig. 3).
The sample size is increased, on average, in 1, 5 � 2 times, depending on the original sample
size. In calculation of the non-parametric estimation of regression function there is a large
number of observations in the cs-neighborhood of the initial observations sample, so we
improve the accuracy of modelling and eliminate uncertainty in calculations.

This method of the working sample generation can improve the accuracy of recovery
of nonparametric estimation of the regression function (2) for the boundary points due to
the fact that in the cs-neighborhood of these points we generate some new elements.

The peculiarity of the above described method is that there is no need to speci�cally
allocate the boundary elements of the initial sample. However, it must be done in order to
estimate how accuracy of modelling is changed. This is easily done by statistical modelling
methods.

5. Computer Modelling

In computer modelling of supplement of the initial sample {ui, xi, i = 1, s} we get
the working sample {ũi, x̃i, i = 1, N}, N > s. For the simplicity of visualization consider
two-dimensional vector u ∈ Ω(u) ⊂ R2. Without loss of generality, let the investigated
object be described by:

x(u) = u1 + u2 + ξ, (11)

where ξ is a uniformly distributed random noise:

ξ = kΘx, (12)

where coe�cient k determines the level of interference, Θ is a random variable distributed
according to a uniform law with zero expectation in the range of [−1; 1].

It should be noted that we take a uniform distribution law to toughen the simulation
conditions, because normal and similar law of distribution is more natural in practice. The
coe�cient k, in fact, determines the percentage of interference. Thus, for example, for 5%
noise: k = 0, 05.

Let the values of the input variables be distributed in the range of [0; 3]. Thus we have
a sample of observations {ui, xi, i = 1, 100}. The initial observations sample is generated
in such a way that in the space of input and output variables there are subdomains of
sparsity with a small number of items (Fig. 2).

Construct a nonparametric estimation of the regression function xs(u) (2) on the basis
of the initial sample of observations. Note again that the dependence of (11) is unknown,
but only the sample {ui, xi, i = 1, 100} is given. We present the following results when the
nature of the relationship is non-linear, and the dimension of the vector x is 10. But �rst,
let us consider the two-dimensional case in more detail.

We use the non-parametric model (2). If there is a situation of uncertainty of the
forecast at u = u′ based on the original sample of observations {ui, xi, i = 1, 100}, in cs-
neighborhood of the point u = u′ there are no sample elements, the forecast value xs(u

′)
is assigned to be equal to the expectation of the output variable x.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 2. Ñ. 124�136

131



E.A. Chzhan, A.V. Medvedev

As a result of the above-described methods we receive new sample {ũi, x̃i, i = 1, 281},
which includes elements of the original sample and generated, which now is called the new
learning sample. Then we conduct an experiment with this sample {ũi, x̃i, i = 1, 281} in
the sliding test mode. In addition, from (11) we generate a new sample {ui, xi, i = 1, 100}
uniformly distributed in the space of input and output observations and use it as the
examining sample.

The relative approximation error has the following form:

W =

√√√√√√√
1
s

s∑
i=1

(xi − xsi)
2

1
s−1

s∑
i=1

(xi − m̂x)
2
, (13)

where m̂x is the estimation of expectation of the output variable x, xi is the result of
measurement of output variable x when u = ui, xsi is the value of nonparametric estimation
when u = ui.

In Table 1 the following notation is used: "before" is the relative error for the initial
sample, "after" is the relative error for the working sample, which includes the elements of
the original sample and generated with the proposed method, A is the number of elements
of examining sample for which it is impossible (because of an uncertainty [0/0]) to receive
the forecast based on the initial sample, B is the number of such elements based on the
working sample.

Table 1

Results of modelling of object (11)

Sample Error "before" Error "after" A B
Examining sample 0,363 0,141 28 0
Initial sample 0,136 0,096 4 0
Border points of the initial
sample

0,135 0,084 3 0

As it can be seen from Table 1, the use of the working sample leads to two times
improvement of estimation accuracy in average. Furthermore, the use of the working
sample allows getting forecast for all examining sample points.

As we use the nonparametric models so parameterization is not required, these models
are robust to the type of nonlinearity. Consider the results of modelling of the nonlinear
object. Let the object be described by the following equation:

x(u) = u2
1 − 2 sin u2 + ξ, (14)

where ξ is a uniformly distributed noise (12), input variables u1, u2 ∈ [0; 3]× [0; 3]. We use
(14) to generate the initial learning sample {ui, xi, i = 1, s}.

The sample also contains sparsity. The size of the initial sample is 200 elements. Then,
using the above algorithm we generate new elements. The size of the working sample is
453 element. We carry out series of experiments similar to the case of simulation of linear
object. The results are shown in Table 2.
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Table 2

Results of modelling of the object (14)

Sample Error "before" Error "after" A B
Examining sample 0,838 0,237 4 0
Initial sample 0,212 0,113 0 0
Border points of the initial
sample

0,347 0,155 0 0

As it can be seen from Table 2, we can not get the estimation for 4 elements of
the examining sample in the case of using the original sample. If we use the working
sample, generated using the proposed method, there is no uncertainty and we can get
the estimation for all sample elements. In addition, if we use the working sample, the
nonparametric estimation xs(u) is two times more accurate.

Consider results of the above experiments for the high dimensional vector u. Assume
that the investigated object has the form:

x(u) = 0, 5u1 − sinu2 + 0, 3u2
3 + u4 − 0, 3u5 + u6 + 2u7 + 2 cos u8 + u9 + u10 + ξ. (15)

The size of the initial and examining sample is 300 elements. In the sample, as well
as in previous experiments, there are subdomains of sparsity and the lack of observations.
The results of similar experiments are shown in Table 3. As it is seen from the experiment
results, the use of the new working sample increases the accuracy of identi�cation.

Table 3

Results of modelling of the object (15)

Sample Error "before" Error "after" A B
Examining sample 0,812 0,612 51 0
Initial sample 0,427 0,277 1 0

6. A Practical Example

Consider the results of applying the proposed method by the example of the oxygen-
converter steel smelting process simulation. The process is described by the controlled and
uncontrolled variables. The controlled input variables are the following:

� material consumption, t: raw iron (u1), scrap (u2), lime (u3), broken electrodes (u4),
�ux (u5), agglomerate �uxed (u6), coal (u7);

� oxygen blowdown, m3 (u8);
� heating oxygen, m3 (u9);
uncontrolled variables:
� the chemical composition of raw iron, %: silicon Si (µ1), magnesium Mn (µ2), sulfur

S (µ3), phosphorus P (µ4);
� temperature of iron, ◦C (µ5);
� converter load, t (µ6);
and output variables, which are responsible for the quality of the �nished steel:
� metal turndown temperature, ◦C (x1);
� the chemical composition of the metal on turndown, %: aluminum Al (x2), carbon

C (x3), magnesium Mn (x4), sulfur S (x5), phosphorus P (x6).
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Thus, there are 15 input and 6 output variables which describe the investigated object.
We have 176 oxygen-converter steel heats. It is necessary to get a model of the process.
Due to the fact that the a priori information is not su�cient, it is proposed to use a
nonparametric estimation (2).

The simulation, as in the previous case, has two stages. At the �rst stage we use the
initial sample of observations, obtained by measuring the input and output variables of
the process, as a learning sample. At the second stage, using the proposed method we
generate new elements. The simulation results are presented in Table 4.

Table 4

Results of modelling of the oxygen-converter steel heats

Output variable Error "before" Error "after" A B
The metal turndown
temperature (x1)

0,99 0,51 19 0

Aluminum, Al (x2) 1 0,63 30 0
Carbon, C (x3) 1 0,59 24 0
Magnesium, Mn (x4) 0,95 0,64 18 0
Sulfur, S (x5) 0,85 0,35 15 0
Phosphorus, P (x6) 1 0,49 18 0

We use the proposed methodology to supplement the initial sample of observations.
Using of the new learning sample leads to improvement of modelling accuracy. It should
be noted that we make the estimation for all elements of the initial sample. For example,
for the variable x3 (carbon concentration) model provides a forecast for the whole sample.

Conclusion

The main purpose of this article is to improve the accuracy of nonparametric
identi�cation by supplement the initial sample obtained on the real object with new
elements. It should be noted once again that the identi�cation of noninertial process with
delay is carried out in conditions of nonparametric uncertainty, when it is impossible to
get the parametric model due to lack of a priori information. In many practical problems
the distribution of measurements of input and output variables of the object is often
substantially non-uniform, there can be subdomains of sparsity. Use of nonparametric
identi�cation algorithms, based on Nadaraya � Watson estimation, leads to a rather rough
models, if the size of the initial sample of observations is small. Earlier, we noted that the
new generated elements of working sample do not replace observations on the object, but
from a computational point of view, signi�cantly improve the accuracy of nonparametric
identi�cation algorithms. We should also keep in mind that the new elements of the working
sample are generated on the basis of available initial observations, so they are indirectly
related to the object under investigation. In conclusion, we present the results of modelling
of the oxygen-converter steel smelting process. We apply the method of working sample
generation which allows to signi�cantly increase the accuracy of the model.
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Î ÍÅÏÀÐÀÌÅÒÐÈ×ÅÑÊÎÌ ÌÎÄÅËÈÐÎÂÀÍÈÈ ÌÍÎÃÎÌÅÐÍÛÕ
ÁÅÇÛÍÅÐÖÈÎÍÍÛÕ ÑÈÑÒÅÌ Ñ ÇÀÏÀÇÄÛÂÀÍÈÅÌ

À.Â. Ìåäâåäåâ, Å.À. ×æàí

Ñèáèðñêèé ôåäåðàëüíûé óíèâåðñèòåò, ã. Êðàñíîÿðñê

Ðàññìàòðèâàåòñÿ çàäà÷à èäåíòèôèêàöèè áåçûíåðöèîííûõ îáúåêòîâ ñ çàïàçäûâà-

íèåì â óñëîâèÿõ íåïàðàìåòðè÷åñêîé íåîïðåäåëåííîñòè, ò.å. êîãäà àïðèîðíûå ñâåäåíèÿ

î ïàðàìåòðè÷åñêîé ñòðóêòóðå èññëåäóåìîãî îáúåêòà îòñóòñòâóþò. Âî ìíîãèõ ïðèëî-

æåíèÿõ âîçíèêàåò ñèòóàöèÿ, êîãäà èçìåðåíèå òåõ èëè èíûõ âûõîäíûõ ïåðåìåííûõ

îñóùåñòâëÿåòñÿ ÷åðåç çíà÷èòåëüíûå ïðîìåæóòêè âðåìåíè è ìîãóò ñóùåñòâåííî ïðå-

âûøàòü ïîñòîÿííóþ âðåìåíè îáúåêòà. Â ýòîé ñâÿçè ïðèõîäèòñÿ ðàññìàòðèâàòü îáúåêò

êàê áåçûíåðöèîííûé ñ çàïàçäûâàíèåì. Â ñóùíîñòè, äëÿ ðåøåíèÿ çàäà÷ èäåíòèôèêà-

öèè èñïîëüçóþòñÿ äâà îñíîâíûõ ïîäõîäà: îäèí èç íèõ � ýòî èäåíòèôèêàöèÿ â ≪óç-

êîì≫ ñìûñëå èëè ïàðàìåòðè÷åñêàÿ èäåíòèôèêàöèÿ ëèáî ïðè íåäîñòàòêå àïðèîðíûõ

ñâåäåíèé äëÿ âûáîðà ïàðàìåòðè÷åñêîé ñòðóêòóðû åñòåñòâåííî ïðèìåíèòü ìåòîäû ëî-

êàëüíîé àïïðîêñèìàöèè, êîòîðûå â ïîñëåäíåì ñëó÷àå èñïîëüçóþò â êà÷åñòâå àïðèîð-

íûõ ñâåäåíèé ëèøü êà÷åñòâåííûå ñâîéñòâà èññëåäóåìîãî îáúåêòà. Â ñëó÷àå, åñëè
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èñõîäíûå äàííûå îá îáúåêòå äîñòàòî÷íî ïðåäñòàâèòåëüíû, òî íåïàðàìåòðè÷åñêàÿ èäåí-

òèôèêàöèÿ äàåò óäîâëåòâîðèòåëüíûé ðåçóëüòàò, åñëè æå â ïðîñòðàíñòâå âõîäíûõ è

âûõîäíûõ ïåðåìåííûõ èìåþò ìåñòà ðàçðåæåííîñòè, òî êà÷åñòâî íåïàðàìåòðè÷åñêèõ

ìîäåëåé ñóùåñòâåííî ñíèæàåòñÿ. Íàñòîÿùàÿ ñòàòüÿ ïîñâÿùåíà ìåòîäèêå çàïîëíåíèÿ

èëè ãåíåðàöèè îáó÷àþùèõ âûáîðîê íà îñíîâàíèè èìåþùåéñÿ òåêóùåé èíôîðìàöèè.

Ýòî ïîçâîëÿåò ñóùåñòâåííî ïîâûñèòü òî÷íîñòü íåïàðàìåòðè÷åñêèõ ìîäåëåé ïðè èäåí-

òèôèêàöèè áåçûíåðöèîííûõ ñèñòåì ñ çàïàçäûâàíèåì. Ïðîâåäåííûå âû÷èñëèòåëüíûå

ýêñïåðèìåíòû ïîäòâåðäèëè, ÷òî êà÷åñòâî íåïàðàìåòðè÷åñêèõ ìîäåëåé áåçûíåðöèîí-

íûõ ñèñòåì ìîæåò áûòü ñóùåñòâåííî óëó÷øåíî â ðåçóëüòàòå ≪ðåìîíòà≫ èñõîäíîé âû-

áîðêè. Îäíîâðåìåííî çíà÷èòåëüíî ïîâûøàåòñÿ òî÷íîñòü ìîäåëè íà ãðàíèöå îáëàñòåé

îïðåäåëåíèÿ âõîäíûõ-âûõîäíûõ ïåðåìåííûõ ïðîöåññà.

Êëþ÷åâûå ñëîâà: íåïàðàìåòðè÷åñêàÿ èäåíòèôèêàöèÿ; àíàëèç äàííûõ; âûáîðêà;

êîìïüþòåðíîå ìîäåëèðîâàíèå.
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