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MULTIPOINT INITIAL-FINAL VALUE PROBLEM FOR THE MODEL
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The evolution of the free surface of the filtering fluid in a reservoir of limited power
is modeled by the Davis equation with homogeneous Dirichlet conditions. Depending on
the nature of the free term describing the internal source of the liquid, the model will be
deterministic or stochastic. The deterministic model has been studied in various aspects
by many researchers with different initial (initial-final value conditions). The stochastic
model is studied for the first time. The main result is the proof of the unique solvability
of the evolutionary model with an additive white noise and a multipoint initial-final value
condition.
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Introduction. Let 2 C R" be a bounded domain with boundary 02 of class C*°. In the
cylinder 2 x R, consider the evolutionary Davis model

(A — Ay = aAu — BA*u + f, (1)

u(z,t) = Au(x,t) =0, (z,t) € 02 x Ry, (2)

where A € R, o, € R, characterize the environment. Equation (1), together with
conditions (2), where the free term f = f(t) corresponds to the deterministic source
of the liquid, can be reduced to an evolution Sobolev type equation

Li = Mu + f, (3)

where the operators L € L(;§) and M € CI(i; F) act in some Banach spaces 4 and §.
The same problem (1), (2), where the external action f = f(t) is a white noise leads to a
stochastic Sobolev type equation

Ldu = Mudt + NdW. (4)

Here 4l is a Banach space, § is a real separable Hilbert space, the operators L € L(L;F),
M € Cl(; ), and W = W (t) is an §-valued Wiener K -process.
Take 7o = 0 and 7; € R, such that 7;_1 < 7; for j = 1,n. Equations (3), (4) can be
supplemented by a multipoint initial-final value condition
lim Py(u(t) — &) =0, Pi(u(r;) = &) =0, j=Tn. (5)
t—T10+
where P; are relatively spectral projectors [1].

At the end of the statement of the problem we note that three directions of the
solution of the problem (4), (5) are actively developing now. White noise is used to solve
the problem, which is understood as the generalized derivative of the Wiener K-process [2].
We also note the approach presented by the school of I.V. Melnikova, in which equation
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(4) is considered in Schwartz spaces, where the generalized derivative of a Wiener K-
process makes sense [3]. Meanwhile, a new approach is actively developing in the studies
of equation (4), where by "white noise" is meant the Nelson — Glickich derivative of the
Wiener K-process [4].

1. A Determinate Sobolev Type Equation. Let {{ and § be Banach spaces, operators
L € L(&;F) (that is, linear and continuous) and M € CI(;§) (i.e., linear, closed, and
densely defined). Let M be (L, p)-sectorial, p € {0}UN. Consider the Sobolev type equation
(3) equipped with condition

thm+ Po(u(t) —uog) =0, Pj(u(rj) —u;) =0, j=1,n. (6)

Moreover, we recall that the condition of an (L, p)-sectoriality of the operator M is a
sufficient condition for the existence of degenerate analytic semigroups of operators [5]

1 1
U'= o= [ (ub = M)"'Le"dp w F' = o— | L(nL — M)~"e'dp,
T r 27TZ r

defined on spaces 4 and § respectively. Introduce the kernels ker U" = {4°, ker " = F° and
the images imU" = U!, imF" = F' of these semigroups. Suppose that condition

Lol =4 F o =73, (A1)

is fulfilled. It holds either in the case of strong (L, p)-sectorial operator M on the right
(left), p € {0} UN or the reflexivity of space i (F).

Denote by Ly (My) contraction of operator L (M) on U¥ (domM NUF), k = 0, 1. If the
operator M is (L, p)-sectorial p € {0} UN, then L, € L(U*; F*), My € Cl(U*; F%), k=0, 1,

and there exists an operator M, € L(F°;U°), as well as a projector P = s — thr& Ut,
—

(Q=s— tlir& F*), splitting space i (§) according to (Al), and U' = imP (F' = imQ).
—

Introduce one more condition:
there exists an operator L' € L(F';U), (A2)

which occurs in the case of a strong (L, p)-sectoriality of the operator M, p € {0} UN.
It was shown earlier that (A1) together with the condition of (L, p)-sectoriality of the
operator M, p € {0} UN;, gives a strong (L, p)-sectoriality of the operator M on the right
(left), p € {0}UN, and if we add condition (A2) to them, we get a strong (L, p)-sectoriality
of the operator M, p € {0} UN [5]. Then the operator G = M; 'Ly € L£(U°) is nilpotent
of degree p, and the operator S = L' M, € CI(4!) is sectorial.

Finally, introduce one more important condition on the relative spectrum of an
operator M [6]:

ol(M) = U o (M), n €N, with o7 (M) # () contained in a bounded
=0

domain D; C C with a piecewise smooth boundary 0D; =1'; C C. (43)
Moreover D; N ok (M) =0 and Dy N D; = () for all j,k,1 =1,n,k # [.
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Construct relatively spectral projectors |6] P; € L(i) and Q; € L(F), j = 1,n, of the form

1
27rz

P, =

; (ML M) 'Ldu, Q; = —/ (uL — M) *du, j=1,n. (7)
It turns out that under the condition of (L, p)-sectoriality of the operator M and conditions
(A1), (A2), PP = PP; = P] and Q,;Q = QQ; = Q;, 7 = 1,n. Hence, in this case there

exists a projector Py = P — z  Poe L(4N).

Suppose that Condltlons (Al) (A3) are satisfied. Fix 19 = 0, 7; € Ry (151 < 75),
u; € 4, j = 0,n, and consider the multipoint initial-final value condition (6) for a linear
Sobolev type equation (3). A vector function u € C*([ro, 7.); 4) N C([70, Tn); ), satisfying
(3), is called a solution of (3); solution u = wu(t) of equation (3) satisfying (6) is called a
solution of a multipoint initial-final value problem (3), (6).

Theorem 1. [6] Let the operator M be (L, p)-sectorial, (A1) — (A3) hold. Then for any
vector-function f° € CP([1o, 7); §°) N CPT((10,7,); F°), f* € C([r0, 70]; F1) there exists a
unique solution of (3), (6), given by

_Zi;GqMolfO Z < t T; /Tt U;SLllejf(S)d5> _

J

2. The Spaces of Noises. Let Q = (2, 4, P) be complete probability space and let R
be the set of real nimbers endowed Borel o-algebra. A measurable mapping £ : @ — R
is called a random wvariable. Note that all random variables, having a normal distribution
(i.e. gaussian), are contained in space Ly see [4].

Consider two mappings f : J — Ly, matching each ¢ € J to a random variable £ € Ly,
and g : Ly x Q — R, matching each pair ({,w) to a point {(w) € R, where J C R is
some interval. By a stochastic process we call a mapping n : J x 2 — R, having the
form n = n(t,w) = g(f(t),w). Note that the stochastic process n = n(t,-), if t € J is
fixed, is a random variable, and the stochastic process n = n(-,w), if w € € is fixed, will
be called (sample) trajectory. A stochastic process 1 is called continuous, if for almost all
w € Q a trajectory n(t,w) is continuous on J.

Denote by P = P(TJ x Q;4) a space of stochastic processes. The space of continuous
stochastic processes Whose random variables belong to Ly is denoted by CLg,i.e.n € CLy,
if n(t,-) € Ly for all t € 3. Note that CLy is a subspace of P. Note that the space CLg in
particular contains those stochastic processes, whose all trajectories are continuous, and
all (independent) random variables are Gaussian.

Consider the operator K € L(R), whose spectrum o(K) is positive, i.e. o(K) € R.
This is possible when K positive and self-adjoint. The sequence of eigenvalues of the
operator K is denoted by {\;}. Suppose that the spectrum o(K) is discrete, finite and
is condensed only to the zero point. Enumerate in {\;} nonincreasing order, taking into
account their multiplicities.

Operator K is called nuclear, if Tr K = Z A < +00. We note that the linear span of
k=1
the set {¢r} of the corresponding eigenfunctions of the operator K is dense in R. Let us
define the Brownian motions, take the sequence {}, of independent random variables.
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Definition 1. A stochastic process
Bt)=p kasm (2k+1), t € Ry, (8)

15 called a Brownian motion, if

(W1) B(0) = 0 almost everywhere in 2, and the trajectories of stochastic process [5(t)
are almost surely continuous on R, ;

(W2) the trajectories of stochastic process [5(t) are almost surely undifferentiable at
any point t € Ry and on any interval 3 C Ry have unbounded variation.

As an example consider the Wiener K-process [4]
=Y VB ex, (9)
k=0

where [ (t) are Brownian motions, k € N.

Theorem 2. |2| For any nuclear operator K € L(4) and arbitrary sequence of Brownian
motions {&;} a Wiener K-process W € CLg.

For the solvability of problem (4), (5) we need another condition
QN = N. (A4)

Then the formal solution u = wu(t) of the multipoint initial-final problem (5) for equation
(4) has the form

u(t) = Us&o + Z
j=1

Theorem 3. Let the operator M be (L, p)-sectorial and conditions (A1)-(A4) be fulfilled .
Then for arbitrary U -valued Gaussian random variables &;, j = 0,n independent on W (t)
and satisfying (9), there exists a unique strong solution of (4), (5), given by (10).

/ ULy} QuNAW (s) + U706, + L) QNW ()| . (10)

3. The Davis Model. Consider problem (1), (2), where white noise appears as an external
action of f = f(t). Let § = L2(Q) and U = {u € WZ(Q) : u(z) = 0,2 € 9Q}. Operators L
and M are given by formulas L = A — A and M = aA — BA?,

domM = UN{u € WHQ) : Au(x) = 0,7 € 90}

Obviously, for all A € R operator L € L(;F), and for all « € R, 5 € R\ {0} operator
M € Cl(; F).

Lemma 1. For all A € R, o, 5 € Ry operator M is (L, 0)-sectorial.

Let {¢k} be an orthonormal set of eigenfunctions of the homogeneous Dirichlet problem
for the Laplace operator A in a domain €2, numbered in the nonincreas in a order of the
eigenvalues {\} taking into account their multiplicities. Since

[e.e]

(L = Myu =D (A = (i -+ )X + BAF) < u, 01 > o
k=1
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for any u € dom M, p € C, then

<Pk >
L— M) §j 11
(h < BN~ ah+ ph— )" =

The series in (11) converges absolutely and uniformly on any compact set in C, free of
points
BA\ —
=M——,keN. 12
i = A (12)
Since the spectrum o(A) negative, discrete, finite and condensed only to —oo, then
it follows from (12) that the L-spectrum o (M) operator M it real, discrete, finite and
condensed only to —oo. In considering the problem, we confine ourselves to the values
of the parameter A\ lying in the spectrum of the operator A. Therefore, from the set of
numbers (12) it is necessary to delete the numbers iy, with numbers k for which A = A.
So, let A € o(A), then we get

y P > Pk y P > Pk
L— M)
(i Ezﬁv—aM+uA M‘+z:5V—aA’

> A — Qv
= Z’(lﬁL/\kﬁk—)_l < on > pr = L (M),
=1

A — A
> A — < Pk > Pk
L—M)"LE(M '( AT : :
(v 2;" X Ak) BAZ — g + (X — Ap)

where the prime at the sum sign means the absence of summands with numbers & such that
A = ;. Hence it is not difficult to obtain the strong L-spectoriality of the operator M. For
the sake of simplicity, we take the operator N = (), then condition (9) is obviously satisfied.
Denote by {ux} a sequence of eigenvalues of the Laplace operator A with condition (2) in
a domain €2, numbered in nonincreasing order with taking into account their multiplicities,
and by {¢x} a sequence of eigenfunctions. Then

B S S ZAWM / 9B (s) o, (13)

=1 k=1 jwj€ol (M) k=1

(o — Buz)
. (& =) . .
the eigenvalues of a special constructed nuclear operator K. A prime at a sum sign means
the absence of terms such that A = py.

where v, = are the points of the L-spectrum of the operator M, {\;} are

Corollary 1. Let A € R, o, 5 € Ry, and conditions (A1) — (A4) be fulfilled. Let &; satisfy
(9). Then there exists a unique strong solution of (1), (2), (5), given by (13).
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MHOT'OTOYEYHA ST HAYAJIbBHO-KOHEYHA ST 3ATAYA
TIJISI MOIEJIN JEBUCA C AJJNTUBHBIM BEJIBIM
IITYMOM

A.C. Konxuna, FOxH0-YpanbcKuil rocy1apcTBeHHbIH YHUBEpCHTET, I. UeasOuncK

DBOMIOIMSA CBOOOTHOM MOBEPXHOCTH (DUILTPYIOMIEHCST KUAKOCTH B MJIACTE OTPAHUYEH-
HOII MOIITHOCTH MOJeNupyercs ypaBHenueM JleBuca ¢ omHOpOAHBIME yemoBusaMmu Jlupuxiie.
B 3aBucumoctu or xapakrepa CBOOOMHOIO UJIEHA,OMUCHIBAIOIIEr0 BHYTPEHHUN HCTOYHUK
KHUIKOCTH, MOJENb OYIeT AeTePMUHUPOBAHHON MK CTOXacTu4uecKoi. JleTepMuHupOBaHHAS
MOJETb U3YYaJaCh B PA3HBIX ACHEKTAaX MHOTUMHE HCCIIEIOBATENSIMI C PA3JINIHBIMU HAYATIb-
HBIMA (HAYAJIBLHO-KOHEIHBIMH) yCaoBusAMU. CTOXACTHYECKas MOJIEIh U3YJIaeTCsl BIEPBBHIE.
OCHOBHOI PE3yIbTAT-A0KO3ATEIHCTBO OHO3ZHAYHONW PA3PEITUMOCTH SBOTIOIUOHHON MOIETH
C aJIUTUBHBIM OEJIBIM IITyMOM W MHOTOTQUEYHBIM HAYAIHHO-KOHEUHBIM YCIOBUEM.
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