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The article is devoted to the study of some mathematical models describing heat
transfer processes. We examine an inverse problem of recovering a control parameter
providing a prescribed temperature distribution at a given point of the spatial domain.
The parameter is a lower order coe�cient depending on time in a parabolic equation.
This nonlinear problem is reduced to an operator equation whose solvability is established
with the help of a priori estimates and the �xed point theorem. Existence and uniqueness
theorems of solutions to this problem are stated and proved. Stability estimates are exposed.
The main result is the global (in time) existence of solutions under some natural conditions
of the data. The proofs rely on the maximum principle. The main functional spaces used
are the Sobolev spaces.
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Introduction

We study the problem of recovering a lower order coe�cient depending on time
together with a solution in heat transfer mathematical models. This control parameter
allows to ensure a given temperature distribution at a given point of spatial domain. Let
G be a bounded domain in Rn with boundary Γ and Q = (0, T ) × G. The mathematical
model can be written as

ut − L0u+ p(t)u = f(x, t), (t, x) ∈ Q, (1)

L0u = A0u+B0u,A0u =
n∑

i,j=1

∂xi(aij(x)uxj), −B0u =
n∑
i=1

ai(x)uxi + a0(x)u.

Equation (1) is furnished with the initial and boundary conditions

u|t=0 = u0, Bu|S = g(t, x), S = (0, T )× Γ, (2)

where
Bu = σ(

n∑
i,j=1

aij(x)niuxj + b(x)u) + (1− σ)u,

ni is the i-th coordinate of the unit outward normal to Γ, σ(x) ∈ C(Γ) is a continuous
function taking two values 0, 1. Thus, on di�erent connectedness components the boundary
condition can be of di�erent type (Dirichlet, Neumann, or Robin boundary condition). Let
Γi = {x ∈ Γ : σ(x) = i} (i = 0, 1), Si = (0, T ) × Γi. The unknowns in (1), (2) are the
solution u and the function p(t). The overdetermination conditions are written as

u(x0, t) = ψ(t). (3)

where ψ(t) is some function speci�ed below.
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Determination of a single unknown time-dependent property such as the capacity,
conductivity or di�usivity from additional local or non-local measurements of the main
dependent variable at the boundary or inside the space domain represents a classical
example of a coe�cient identi�cation problem (see, for instance, [1,2]). Problem (1) � (3)
is classical and was studied by many authors. Numerical methods of solving the problem
are developed in [3�5]. For local (in time) solvability results, see, for instance, [6, 7]. The
book [8, Ch. 6] contains some abstract theory of such problems and its applications. In
particular, the conditions for a local (in time) solvability of (1) � (3) are presented in
Corollary 9.4.2 of [8]. Moreover, similar result is also exposed in [9]. Some results on close
inverse problems can be found in [10�13]. Inverse problems with integral overdetermination
conditions are studied in [14�18]. The structure of the paper is as follows. In Section 1 we
formulate our results. The main result is Theorem 4 which is a global (in time) existence
and uniqueness theorem for solutions to the problem (1) � (3). Some stability estimates
are given in Theorem 3. The solvability conditions are stated in terms of some inequalities
and the proof relies on the maximum principle. Section 2 is devoted to the proofs of the
main results.

1. Preliminaries

Given Banach spaces X,Y , the symbol L(X, Y ) stands for the space of linear
continuous operators de�ned on X with values in Y . Let E be a Banach space. By
Lp(G;E) (G is a domain in Rn) we denote the space of strongly measurable functions
de�ned on G with values in E endowed with the norm ∥∥u(x)∥E∥Lp(G) [19]. We employ

also the spaces Ck(G) comprising functions continuous in G with all their derivatives up
to order k admitting continuous extensions on the closure G. The Sobolev space notations
are conventional, i.e., W s

p (G;E), W
s
p (Q;E), etc. (see the de�nitions in [19, 20]). If E = C

(E = R) or E = Cn (E = Rn) then the latter space is denoted byW s
p (Q). Similarly, we use

the notations W s
p (G) or C

k(G) rather than W s
p (G;E) or C

k(G;E). Thus, the membership

u ∈ W s
p (G) (or u ∈ Ck(G)) for a given vector-function u = (u1, u2, . . . , uk) means that

every of its component ui belongs to W
s
p (G) (or C

k(G)). The norm of the vector is just
the sum of the norms of the coordinates. Given an interval J = (0, T ), put W s,r

p (Q) =
W s
p (J ;Lp(G)) ∩ Lp(J ;W r

p (G). Respectively, W
s,r
p (S) = W s

p (J ;Lp(Γ)) ∩ Lp(J ;W r
p (Γ)).

Consider the direct problem (1), (2). In what follows we assume that G is a bounded
domain in Rn with boundary Γ ∈ C2 (see the de�nition in [21, p. 17]). Expose the
conditions on the data of the problem. All spaces below and the coe�cients of equation
(1) are assumed to be real. Fix p > n + 2 (this condition simpli�es the arguments and it
can be weakened). Let q = p/(p− 1). Denote Bδ(x0) = {y ∈ Rn : |y − x0| < δ}.

The conditions on the coe�cients of the operators L0, B are as follows:

aij ∈ C1(G), ai, a0 ∈ Lp(G), b ∈ C1(Γ). (4)

The matrix {aij} is symmetric and the ellipticity condition

∃δ1 > 0 :
n∑

i,j=1

aijξiξj ≥ δ1|ξ|2 ∀ξ ∈ Rn, x ∈ G, (5)

holds. The conditions on the data are of the form

u0(x) ∈ W 2−1/p
p (G), g(t, x) ∈ W 1−1/2p,2−1/p

p (S0) ∩W 1/2−1/2p,1−1/p
p (S1), (6)
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f ∈ Lp(Q), B(0, x)u0|Γ = g(0, x) ∀x ∈ Γ, (7)

u0(x) ≥ 0 (x ∈ G), g(t, x) ≥ 0, f ≥ 0 ((t, x) ∈ Q). (8)

We also use some additional conditions

ψ ∈ W 1
p (0, T ), ∃δ2 > 0 : |ψ(t)| ≥ δ2 ∀t ∈ [0, T ], ψ(0) = u0(x0), (9)

∃δ0 > 0 : Bδ0(x0) ⊂ G, aij ∈ W 2
p (Bδ0(x0)), ai, a0 ∈ W 1

p (Bδ0(x0)), (10)

∇u0(x) ∈ W 2−1/p
p (Bδ0(x0)). (11)

Assume that Qδ = (0, T )×Bδ(x0), Q
γ = (0, γ)×G. Present some auxiliary statements.

Replace the equation (1) with the equation

Lu = ut − L0u = f(x, t), (t, x) ∈ Q. (12)

Theorem 1. Assume that conditions (4) � (7) hold. Then there exists a unique solution
to (2), (12) such that u ∈ W 1,2

p (Q). Under the additional conditions (10), (11), a solution
u possesses the property ∇u ∈ W 1,2

p (Qδ) for all δ < δ0. If condition (8) is valid then the
function u is nonnegative in Q.

Proof. If S0 = S or S1 = S then we can refer to the standard theorems on solvability
(see, for instance, [21, Theorem 9.1, Ch. 4] in the case of the Dirichlet conditions or [21,
Theorem 10.4, Ch. 8] in the case of more general boundary conditions). Examine our case.
First we take homogeneous initial and boundary conditions in (2). Let D(A) = {u ∈
W 1,2
p (Q) : Bu|S = 0}. The claim in the case of L0 = A0 results from Theorem 12.2 in [22].

In the general case the result is a consequence of Theorems 12.2 and 3.2 in [22]. To refer
to Theorem 3.2 we need an additional estimate for the norm ∥B0∥Lρ(0,T ;L(Eθ,∞,E0)) for some
θ ∈ (0, 1) and ρ > max(1/(1 − θ), p), where E0 = Lp(G) and Eθ,∞ = (E0, D(A))θ,∞ is
the space obtained by the real interpolation method (see the de�nitions [19]). Since the
operator B0 is independent of t, it su�ces to establish the estimate

∥B0u∥Lp(G) ≤ c∥u∥W s
p (G), s < 2,

and use the embedding Eθ,∞ ⊂ W s
p (G) for θ > s/2 (which follows from the embedding

(1.1) in [22] and Theorem 5.2 in [23]). This estimate results from the embedding theorems
and conditions (4). We infer

∥B0u∥Lp(G) ≤ c∥u∥W 1
∞(G) ≤ c1∥u∥W s

p (G), s ∈ (1 + n/p, 2).

The claim of the theorem in the case of nonhomogeneous initial and boundary conditions
follows from the conventional theorems on extension of the boundary conditions inside the
domain (see, for instance, Theorem 7.3 in [24]).

The proof of the fact that a solution u possesses the property ∇u ∈ W 1,2
p (Qδ) for all

δ < δ0 under conditions (10), (11) is realized with the �nite di�erence method with the
use of Lemma 4.6 of Ch. 2 in [25]; it is similar to that in the proof of Theorem 1.1 in [9]
or in the proof of Theorem 3.1 in [26].

Di�erent maximum principles for parabolic equations can be found in [27].
Unfortunately, they are not applicable in our case. Under stronger conditions on coe�cients
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we can refer to the generalized maximum principle in [22, Theorem 17.1]. We use
conventional arguments those involved in the proof of the maximum principle for

generalized solutions. Let u− =

{
u(t, x), if u(t, x) ≤ 0;

0, if u(t, x) > 0.
Note that u− ∈ W 1

p (Q) (see [21,

Sect. 4 of Ch. 2]). Moreover, we have that u−|S0 = 0 and u−|t=0 = 0. Multiply (11) by u−

and integrate the result over G. Integrating by parts and using the boundary conditions
we obtain that

1

2

d

dt

∫
G

(u−)2 dx+ δ1

∫
G

|∇u−|2 dx+
∫
Γ

b(u−)2 dΓ−
∫
Γ

g(t, x)u−dΓ ≤

≤
∫
G

fu− dx+ |
∫
G

n∑
i=1

aiuxiu
− + a0|u−|2 dx|.

Since the data are of constant sign, we derive that

1

2

d

dt

∫
G

(u−)2 dx+ δ1

∫
G

|∇u−|2 dx ≤ |
∫
G

n∑
i=1

aiuxiu
− + a0|u−|2 dx|+ |

∫
Γ

b(u−)2 dΓ|. (13)

All summands on the right-hand side of (13) are estimated similarly. We use the conditions
on the data, the H�older inequality, embedding theorems, and interpolation inequalities.
Estimate the summands on the right-hand side under the integral sign. We have∣∣∣∣ ∫

G

aiuxiu
− dx

∣∣∣∣ ≤ Ji(t)∥∇u−∥L2(G)∥u−∥L2p/(p−2)(G) ≤

≤ c1Ji(t)∥∇u−∥L2(G)∥u−∥W s
2 (G), Ji(t) = ∥ai∥Lp(G), s = n/p.

(14)

Next, the inequalities (see [19])

∥u∥W s
2 (G) ≤ c2∥u∥sW 1

2 (G)∥u∥
1−s
L2(G), |ab| ≤ ε

|a|r

r
+

|b|r′

r′εr′/r
(ε > 0),

1

r
+

1

r′
= 1,

imply that the right-hand side of (14) is estimated as

ε∥∇u−∥2L2(G) + c(ε)Ji(t)
2p/(p−n)∥u−∥2L2(G),

where 2p/(p − n) ≤ p (since p > n + 2). All summands on the right-hand side of (13)
except for the last of them are estimated similarly. The estimate for the last summand is
simpler. We have

|
∫
Γ

b(u−)2 dΓ| ≤ c∥u∥2L2(Γ)
≤ c1∥u−∥2W s1

2 (G)
≤ ε∥∇u−∥2L2(G)+ c(ε)∥u−∥2L2(G) (s1 ∈ (1/p, 1)).

In this case inequality (13) can be rewritten as

1

2

d

dt

∫
G

(u−)2 dx+ δ1

∫
G

|∇u−|2 dx ≤ c2ε∥∇u−∥2L2(G) + c(ε)J0(t)∥u−∥2L2(G),

where c2, c(ε) are some positive constants and J0 ∈ L1(0, T ). Choosing c2ε = δ1, we arrive
at the inequality

y′(t) ≤ cJ0(t)y(t), y(0) = ∥u−∥2L2(G)|t=0 = 0.

Hence, we can conclude that u− = 0 almost everywhere in Q, i.e., u ≥ 0 a.e. in Q. 2
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Corollary 1. There exists λ0 > 0 such that −L0 + λ for all λ ≥ λ0 is an isomorphism of
the space {u ∈ W 2

p (G) : Bu|Γ = 0} onto Lp(G) (see [22, Remark 3.1 (b)]).

In view of Corollary 1 we assume below that the problem L0u = f ∈ Lp(G), Bu|Γ = 0
has a unique solution u ∈ W 2

p (G), otherwise we make the change of variables u = veλt in
(1) and reduce the arguments to this case.

Theorem 2. Let conditions (4) � (7) hold. Then, for γ ≥ 0, a solution u ∈ W 1,2
p (Q)

to (2), (12) with homogeneous initial and boundary conditions (i.e., u0 ≡ 0, g(t, x) ≡ 0)
satis�es the estimate

∥ue−γt∥W 1,2
p (Q) + |γ|∥ue−γt∥Lp(Q) ≤ c∥fe−γt∥Lp(Q).

Fix an arbitrary δ3 < δ0. If conditions (10), (11) are ful�lled then the following estimate
holds:

∥∇xue
−γt∥W 1,2

p (Qδ3
) + |γ|∥∇xue

−γt∥Lp(Qδ3
) ≤

c(∥∇xfe
−γt∥Lp(Qδ0

) + ∥fe−γt∥Lp(Q)), γ ≥ 0.

The constant c in this estimates is independent of the parameter γ ≥ 0.

Proof. Let u = veγt. Equation (12) is transformed to the equation

vt − L0v + γv = e−γtf(x, t) with v|t=0 = 0, Bv|S = 0.

Next, we refer to the estimate in Theorem 3.1 of [26] and make the inverse change of
variables.

2
Remark 1. Generally speaking our reference to Theorem 3.1 in [26] is not exact, since
the case of di�erent boundary conditions on di�erent connectedness components of the
boundary is not treated there. However the proof of Theorem 3.1 remains valid in this
case as well, since it is based on a partition of unity and local considerations.

Lemma 1. Let u(t) ∈ W 1
p (0, T ) and u(0) = 0. Then there exists a constant c > 0

independent of γ > 0 such that

∥e−γtu∥Lp(0,T ) ≤
c

γ
∥e−γtut∥Lp(0,T ).

The proof is elementary and we omit it.
Denote by Φ a solution to (12), (2) assuming that conditions (4) � (7) are ful�lled. We

impose the following additional constraints on the data:

ψt ≤ Φt(t, x0) a.e. on (0, T ), L0Φ ≤ 0 a.e. on Q, ∃δ4 > 0 : ψ(t) ≥ δ4 ∀t ∈ (0, T ). (15)

Assume that R(Φ) = ∥Φi∥L∞(Q) + ∥∇Φi∥L∞(Qδ0
), β(t) = ψ̃′(t)/ψ(t), ψ̃′(τ) = ψ(τ) −

Φ(τ, x0), r(t) = −β(t)e−
∫ t
0 β(τ) dτ , R0(Φ) = ∥r(t)∥Lp(0,T ).

Now we can state our main results. The former half of Theorem 3 below (the existence
theorem) is known (see, for instance, [9]). However, we present here this formulation for
completeness of the exposition.
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Theorem 3. Let conditions (4) � (7) and (9) � (11) hold. Then there exists a constant
γ0 ≤ T such that on the segment [0, γ0] there exists a unique solution (u, p) to (1) �
(3) with the property u ∈ W 1,2

p (Qγ0), ∇u ∈ W 1,2
p ((0, γ0) × Bδ(x0))) for all δ < δ0,

and p(t) ∈ Lp(0, γ0). Assume that ui(x), gi(t, x), fi(t, x), ψi(t) (i = 1, 2) are two di�erent
collections of the data satisfying the conditions of the theorem and the functions Φi (i =

1, 2) are solutions to (1), (2), where p(t) ≡ 0. Denote ri(t) = −βi(t)e−
∫ t
0 βi(τ) dτ (βi(t) =

(ψ′
i(t)−Φ′

i(t,x0))

ψi(t)
), �x a number R > 0, and assume that R(Φi) + R0(Φi) ≤ R (i = 1, 2).

Then there exist numbers γ0 and c0(R) > 0 such that there exist unique solutions (ui, pi)
(i = 1, 2) to (1) � (3) on the time segment [0, γ0] satisfying the inequalities

∥p1 − p2∥Lp(0,γ0) ≤ c0(R)(∥β1 − β2∥Lp(0,γ0) + ∥ψ1 − ψ2∥W 1
p (0,γ0)

+

+∥Φ1 − Φ2∥L∞(Qγ0 ) + ∥∇(Φ1 − Φ2)∥L∞((0,γ0)×Bδ0
(x0)).

Theorem 4. Let conditions (4) � (11), (15) hold. Then there exists a unique solution to
(1) � (3) such that u ∈ W 1,2

p (Q), p(t) ∈ Lp(0, T ) and ∇u ∈ W 1,2
p (Qδ) for all δ < δ0. The

function p(t) is nonnegative and

p(t) ≥ c0(Φt(t, x0)− ψt(t))

ψ(t)
, ∀t ∈ [0, T ],

where c0 is a positive constant depending on the norms of the data.

Remark 2. As it is easily seen, the statement of Theorem 4 remains valid if we change
all signs in inequalities (8), (15), i.e., the functions −u0,−g(t, x),−f(t, x),−Φ(t, x),−ψ
meet conditions (8), (15).

2. Proofs of the Main Results

Proof of Theorem 3. Let Φ be a solution to (2), (12). Make the change of variables
u = v + Φ. We obtain that

Lv + p(t)(v + Φ) = 0, v|t=0 = 0, v|S = 0, v(t, x0) = ψ(t)− Φ(t, x0) = ψ̃(t).

Next, we make the following change of variables: v = ωe−
∫ t
0 p(τ) dτ . We infer

Lω + p(t)e
∫ t
0 p(τ) dτΦ = 0, ω|t=0 = 0, ω|S = 0, ω(t, x0) = ψ̃(t)e

∫ t
0 p(τ) dτ . (16)

Put x = x0 â (16). We arrive at the equation

ψ̃′e
∫ t
0 p(τ) dτ + ψ(t)p(t)e

∫ t
0 p(τ) dτ = L0ω(t, x0).

Denote α(t) = e
∫ t
0 p(τ) dτ . The equations can be rewritten as

ψ̃′α + ψ(t)α′ = L0ω(t, x0). (17)

Expressing the function α, we arrive at the equality

α(t) = e−
∫ t
0 β(τ) dτ +

∫ t

0

L0ω(τ, x0)

ψ(τ)
e−

∫ t
τ β(ξ) dξ dτ. (18)
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Thus, we have

α′(t) = −β(t)e−
∫ t
0 β(τ) dτ +

L0ω(t, x0)

ψ(t)
− β(t)

∫ t

0

L0ω(τ, x0)

ψ(τ)
e−

∫ t
τ β(ξ) dξ dτ, (19)

where the function ω is a solution to the problem

Lω = −α′(t)Φ, ω|t=0 = 0, Bω|S = 0. (20)

Hence, we infer ω = L−1(−α′Φ). Denote α0(t) = α′(t). In view of (19), (18), we derive
that

α0(t) = r(t) + S(α0(t)), α(t) =

∫ t

0

α0(τ) dτ + 1, (21)

S(α0) =
L0ω(t, x0)

ψ(t)
− β(t)

∫ t

0

L0ω(τ, x0)

ψ(τ)
e−

∫ t
τ β(ξ) dξ dτ, ω = L−1(−α0Φ). (22)

Demonstrate that equation (21) is uniquely solvable in the class α0(t) ∈ Lp(0, T ). Estimate
the norm of S. The embedding theorems (see [19]) ensure that

|L0ω(t, x0)| ≤ c∥L0ω∥W s
p (Bδ3

(x0)), s ∈ (n/p, 1), δ3 < δ0. (23)

Next, we consider the summands in the main part of the operator L0. Since a function of
the class Cρ(G) is a pointwise multiplier in W s

q (G) with s < ρ (see, for instance, the item
3.3.2 in [28]), we have

∥aijωxixj∥W s
p (Bδ3

(x0)) ≤ c∥ω∥W 2+s
p (Bδ3

(x0))
≤ c1∥ω∥(2+s)/3W 3

p (Bδ3
(x0))

∥ω∥(1−s)/3Lp(Bδ3
(x0))

. (24)

Lower order summands are estimated similarly. Note that the embedding theorems ensure
that ai, a0 ∈ C1−n/p(Bδ0(x0)). The de�nition of the norm in W s

p yields

∥aiωxi∥W s
p (Bδ3

(x0)) ≤ c1∥ai∥W s
p (Bδ3

(x0))∥ωxi∥C(Bδ3
(x0))

+

+c1∥ai∥C(Bδ3
(x0))

∥ωxi∥W s
p (Bδ3

(x0)) ≤ c2∥ω∥W 1+s
p (Bδ3

(x0))
≤

≤ c3∥ω∥(1+s)/3W 3
p (Bδ3

(x0))
∥ω∥(3−s)/3Lp(Bδ3

(x0))
.

(25)

Estimates (23) � (25) imply that there exist constants θ ∈ (0, 1) and c4 > 0 such that

|L0ω(t, x0)| ≤ c4∥ω∥θW 3
p (Bδ3

(x0))
∥ω∥1−θLp(Bδ3

(x0))
. (26)

Now we estimate the norm ∥e−γtS(α0)∥Lp(0,T ). The above de�nition of the operator S
yields

∥e−γtS(α0)∥Lp(0,T ) ≤ c5∥e−γtL0ω(t, x0)∥Lp(0,T ) + c6∥β∥Lp(0,T )

∫ T
0
e−γτ |L0ω(τ)| dτ ≤

≤ c7∥e−γtL0ω(t, x0)∥Lp(0,T ).
(27)

Inequalities (26), (27) and Lemma 1 imply the estimate

∥e−γtS(α0)∥Lp(0,T ) ≤ c8∥e−γtω∥θLp(0,T ;W 3
p (Bδ3

(x0))
∥e−γtω∥1−θLp(Qδ3

) ≤
≤ c9

γ1−θ ∥e−γtω∥θLp(0,T ;W 3
p (Bδ3

(x0))
∥e−γtωt∥1−θLp(Qδ3

).
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Next, applying Theorem 2 and the de�nition of ω, we obtain the estimate

∥e−γtS(α0)∥Lp(0,T ) ≤ c10
γ1−θ (∥e−γtα0Φ∥Lp(Q) + ∥e−γtα0∇Φ∥Lp(Qδ0

)) ≤
≤ c10

γ1−θ ∥e−γtα0∥Lp(0,T )R(Φ), (28)

where the constant c10 is independent of γ and the norms of the data, and it depends
on the norms of the coe�cients of the equation, the constants in embedding theorems,
interpolation inequalities and T . Choose a constant γ0 such that

c10

γ1−θ0

R(Φ) = 1/2. (29)

In this case we have the estimate

∥e−γtS(α0)∥Lp(0,T ) ≤
1

2
∥e−γtα0∥Lp(0,T )

for all γ ≥ γ0. Thus, the operator S is contractive in some equivalent norm of the space
Lp(0, T ) and, thereby, (21) is solvable with respect to the function α0 = α′(t). Obviously,
this solution satis�es the estimate

∥e−γtα′∥Lp(0,T ) ≤ 2∥r(t)e−γt∥Lp(0,T ), γ ≥ γ0.

In particular, we infer

∥α′∥Lp(0,T ) ≤ 2eγ0T∥r(t)∥Lp(0,T ) = c1(R(Φ), R0(Φ)). (30)

We can restore the function α = 1 +
∫ t
0
α0(τ) dτ . Given a function α, �nd a solution ω to

the problem (20). Fix t0 ≤ T and estimate

∥
∫ t

0

α′(τ) dτ∥C([0,t0]) ≤ t
1/q
0 ∥α′∥Lp(0,t0) ≤ t

1/q
0 c1(R,R0).

Choose t0 so that t
1/q
0 c1(R,R0) = 3/4. In this case α ≥ 1− 3/4 = 1/4 > 0 on [0, t0] and we

can construct the function
∫ t
0
p(τ) dτ = ln(1 + α(t)). Respectively, p(t) = α′(t)/(1 + α(t)).

Obviously, p(t) ∈ Lp(0, t0). Verify that the functions p(t), ω(t) are a solution to the inverse
problem (16). Integrating (19), we obtain (18) whose transformation validates equality
(17) and, hence, ψ̃′α+ ψ̃(t)α′ = L0ω(t, x0)−α′Φ(t, x0). On the other hand, taking x = x0
in (20), we have ω′(t, x0) = L0ω(t, x0) − α′Φ(t, x0). Hence, ω

′(t, x0) = (ψ̃α)′ and thereby

ω(t, x0) = αψ̃ = e
∫ t
0 p(τ) dτ ψ̃, i.e., equalities (16) hold. Proceed with stability estimates.

Assume that we have two collections of the data ui(x), gi(t, x), fi(t, x), ψi(t) (i = 1, 2) and
functions Φi (i = 1, 2) are solutions to (1), (2) with these data and p(t) ≡ 0. The respective
functions αi meet the equations

α′
i(t) = ri(t) + Si(α

′
i(t)), i = 1, 2,

where the operators Si are de�ned as in (22), but instead of ω we take solutions to the
problem

Lωi = −α′
i(t)Φi, i = 1, 2, ωi|t=0 = 0, Bωi|S = 0. (31)
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Thus, ωi = L−1(−α′
iΦi) and

Si(α
′
i) =

L0ωi(t, x0)

ψi(t)
− βi(t)

∫ t

0

L0ωi(τ, x0)

ψi(τ)
e−

∫ t
τ βi(ξ) dξ dτ.

Choose the parameter γ0 as in (29), where we take the quantity R from the conditions
of the theorem rather than R(Φ). Next we choose t0 as before inserting the quantity R
rather than R0(Φ) and R(Φ). In this case a solution (ui, pi) to our problem satisfying the
above initial and boundary data exists on the segment [0, γ0] (γ0 = t0). The corresponding
functions α1, α2 satisfy the estimate

αi(t) ≥ 1/4, ∥αi∥W 1
p (0,T )

≤ c(R). (32)

We have

S1(α
′
1)− S1(α

′
2) =

L0(ω1−ω2)(t,x0)
ψ1(t)

+ L0ω2

(
1

ψ1(t)
− 1

ψ2(t)

)
−

−β1(t)
∫ t
0
L0(ω1−ω2)(τ,x0)

ψ1(τ)
e−

∫ t
τ β1(ξ) dξ dτ−

−
∫ t
0
L0ω2(τ, x0)

(
β1(t)e

−
∫ t
τ β1(ξ) dξ

ψ1(τ)
− β2(t)e

−
∫ t
τ β2(ξ) dξ

ψ2(τ)

)
dτ.

(33)

Subtracting equalities (31) for i = 1, 2, we infer

Lω1 − Lω2 = L(ω1 − ω2) = −(α′
1(t)− α′

2(t))Φ1 + α′
2(Φ1 − Φ2).

Repeating the arguments those in the proof of (28), we obtain the inequality

∥e−γtL0(ω1 − ω2)(t, x0)∥Lp(0,γ0) ≤ c10
γ1−θ (∥e−γt(α′

1 − α′
2)∥Lp(0,γ0)c(R)+

+c1(R)(∥Φ1 − Φ2∥L∞(Qγ0 ) + ∥∇(Φ1 − Φ2)∥L∞((0,γ0)×Bδ0
(x0)))).

(34)

The claim of the theorem follows from (32) � (34), the equality α′
1−α′

2 = r1−r2+S1(α
′
1)−

S1(α
′
2), and some simplest estimates.

2

Proof of Theorem 4. Let the conditions of the theorem hold. As in Theorem 3 we
reduce the problem to the study of equation (21) and justify its solvability. Since the norm
of S is less than 1 and the operator is linear, a solution to (21) can be found using the
method of successive approximations beginning with α0 = 0. Successive approximations
are written as

αi(t) = r(t) + S(αi−1(t)). (35)

In view of (15), α1 = r(t) ≥ 0. Assume that the function αi−1 is nonnegative. Demonstrate
that αi is nonnegative too. The corresponding function ωi is a solution to (20), i.e., we
have

Lωi = −αi−1Φ, ωi|t=0 = 0, Bωi|S = 0.

Since condition (8) is ful�lled, by Theorem 1 Φ ≥ 0 a.e. in Q. By condition L0Φ ≤ 0 a.e.
and αi−1 ≥ 0 a.e. Hence, L0(−αi−1Φ) ≥ 0 a.e. Consider the problem

Lω∗ = −αi−1L0Φ, ω
∗|t=0 = 0, Bω∗|S = αi−1BΦ|S = αi−1g(t, x) ≥ 0.
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By Theorem 1 a solution ω∗ is nonnegative in Q. De�ne the function ω̃ = L−1
0 ω∗. We have

ω̃|t=0 = 0, Bω̃|S = 0 (by construction), ω̃ ∈ W 1,2
p (Q), and L0ω̃ ∈ W 1,2

p (Q). Moreover, we
can conclude that

ω∗
t − L0(ω

∗ − αi−1Φ) = 0.

Applying L−1
0 to this equality, we can claim that ω̃t−(L0ω̃−αi−1Φ) = 0. Hence, ω̃t−L0ω̃ =

−αi−1Φ. In view of the uniqueness theorem, we derive that ωi = ω̃ and thus L0ω
i = ω∗ ≥ 0

a.e. Consider equality (35) and recall the de�nition of S (see (22)):

S(αi−1) =
L0ω

i(t, x0)

ψ(t)
− β(t)

∫ t

0

L0ω
i(τ, x0)

ψ(τ)
e−

∫ t
τ β(ξ) dξ dτ.

Since β(t) ≤ 0, every summand here is nonnegative and in view of (35), αi ≥ 0 a.e. Since
the limit α0 is a strong limit of the sequence αi in the space Lp(0, T ), we conclude that

α0 ≥ 0 a.e. In this case the function
∫ t
0
p(τ) dτ = ln(

∫ t
0
α0(τ) dτ + 1) is de�ned on the

whole segment [0, T ], respectively the function p(t) = α′

1+α(t)
is a solution to our problem.

Establish the desired estimate. We have (see (30)) that∫ t

0

p(τ) dτ =

∫ t

0

α′(τ)

1 + α(τ)
dτ ≤ T 1/q∥α′∥Lp(0,T ) ≤ c1(R,R0)T

1/q, q = p/(p− 1).

From (21), it follows that α′(t) = p(t)e
∫ t
0 p(τ) dτ ≥ r(t) ≥ 0. Thus,

p(t) ≥ r(t)/T 1/qc1(R,R0) = r(t)c0, t ∈ [0, T ].
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ÎÏÐÅÄÅËÅÍÈÅ ÏÀÐÀÌÅÒÐÀ È ÓÏÐÀÂËÅÍÈÅ Â ÏÐÎÖÅÑÑÀÕ
ÒÅÏËÎÏÅÐÅÍÎÑÀ

Ñ.Ã. Ïÿòêîâ, Î.Â. Ãàâðèëåíêî

Þãîðñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, ã. Õàíòû-Ìàíñèéñê

Ñòàòüÿ ïîñâÿùåíà èçó÷åíèþ íåêîòîðûõ ìàòåìàòè÷åñêèõ ìîäåëåé, îïèñûâàþùèõ
ïðîöåññû òåïëîïåðåíîñà. Ìû ðàññìàòðèâàåì îáðàòíóþ çàäà÷ó î âîññòàíîâëåíèè óïðàâ-
ëÿþùåãî ïàðàìåòðà, êîòîðûé îáåñïå÷èâàåò çàäàííîå òåìïåðàòóðíîå ðàñïðåäåëåíèå â
äàííîé òî÷êå ïðîñòðàíñòâåííîé îáëàñòè. Äàííûé ïàðàìåòð � åñòü ìëàäøèé êîýôôè-
öèåíò â ïàðàáîëè÷åñêîì óðàâíåíèè, çàâèñÿùèé îò âðåìåíè. Ýòà íåëèíåéíàÿ çàäà÷à
ñâîäèòñÿ ê îïåðàòîðíîìó óðàâíåíèÿ, ðàçðåøèìîñòü êîòîðîãî óñòàíàâëèâàåòñÿ ïðè ïî-
ìîùè àïðèîðíûõ îöåíîê è òåîðåìû î íåïîäâèæíîé òî÷êå. Ñôîðìóëèðîâàíû è äîêà-
çàíû òåîðåìû ñóùåñòâîâàíèÿ è åäèíñòâåííîñòè ðåøåíèé ýòîé çàäà÷è. Óñòàíîâëåíû
îöåíêè óñòîé÷èâîñòè. Ãëàâíûé ðåçóëüòàò � ãëîáàëüíàÿ ïî âðåìåíè òåîðåìà ñóùåñòâî-
âàíèÿ ðåøåíèé ïðè íåêîòîðûõ åñòåñòâåííûõ óñëîâèÿõ íà äàííûå çàäà÷è. Äîêàçàòåëü-
ñòâî îïèðàåòñÿ íà ïðèíöèï ìàêñèìóìà. Èñïîëüçóåìûå ôóíêöèîíàëüíûå ïðîñòðàíñòâà
� ïðîñòðàíñòâà Ñîáîëåâà.

Êëþ÷åâûå ñëîâà: òåïëîïåðåíîñ; ðàñïðåäåëåííîå óïðàâëåíèå; ìàòåìàòè÷åñêàÿ ìî-

äåëü; ïàðàáîëè÷åñêîå óðàâíåíèå; îáðàòíàÿ çàäà÷à; êðàåâàÿ çàäà÷à.
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