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The article is devoted to the study of some mathematical models describing heat
transfer processes. We examine an inverse problem of recovering a control parameter
providing a prescribed temperature distribution at a given point of the spatial domain.
The parameter is a lower order coefficient depending on time in a parabolic equation.
This nonlinear problem is reduced to an operator equation whose solvability is established
with the help of a priori estimates and the fixed point theorem. Existence and uniqueness
theorems of solutions to this problem are stated and proved. Stability estimates are exposed.
The main result is the global (in time) existence of solutions under some natural conditions
of the data. The proofs rely on the maximum principle. The main functional spaces used
are the Sobolev spaces.
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Introduction

We study the problem of recovering a lower order coefficient depending on time
together with a solution in heat transfer mathematical models. This control parameter
allows to ensure a given temperature distribution at a given point of spatial domain. Let
G be a bounded domain in R” with boundary I' and @ = (0,7") x G. The mathematical
model can be written as

u — Lou+ p(t)u = f(x,t), (t,z) € Q, (1)

Lou = Agu + Bou, Agu = Z O, (aij(7)uy;), —Bou = Z a;(x)uy, + ap(x)u.

ij=1 i=1

Equation (1) is furnished with the initial and boundary conditions

U|j=o = ug, Buls=g(t,z), S=(0,T)xT, (2)
where n
Bu = O'(Z aij ()N, + b(z)u) + (1 — o)u,
ij=1

n; is the i-th coordinate of the unit outward normal to I', o(x) € C(I') is a continuous
function taking two values 0, 1. Thus, on different connectedness components the boundary
condition can be of different type (Dirichlet, Neumann, or Robin boundary condition). Let
Ii={zel: o) =1} (i =0,1), S; = (0,7) x I;. The unknowns in (1), (2) are the
solution u and the function p(t). The overdetermination conditions are written as

(o, t) = (t). (3)

where () is some function specified below.
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Determination of a single unknown time-dependent property such as the capacity,
conductivity or diffusivity from additional local or non-local measurements of the main
dependent variable at the boundary or inside the space domain represents a classical
example of a coefficient identification problem (see, for instance, [1,2]). Problem (1) — (3)
is classical and was studied by many authors. Numerical methods of solving the problem
are developed in [3-5]. For local (in time) solvability results, see, for instance, [6,7]. The
book |8, Ch. 6] contains some abstract theory of such problems and its applications. In
particular, the conditions for a local (in time) solvability of (1) — (3) are presented in
Corollary 9.4.2 of [8]. Moreover, similar result is also exposed in [9]. Some results on close
inverse problems can be found in [10-13]. Inverse problems with integral overdetermination
conditions are studied in [14-18]. The structure of the paper is as follows. In Section 1 we
formulate our results. The main result is Theorem 4 which is a global (in time) existence
and uniqueness theorem for solutions to the problem (1) — (3). Some stability estimates
are given in Theorem 3. The solvability conditions are stated in terms of some inequalities
and the proof relies on the maximum principle. Section 2 is devoted to the proofs of the
main results.

1. Preliminaries

Given Banach spaces XY, the symbol L(X,Y) stands for the space of linear
continuous operators defined on X with values in Y. Let E be a Banach space. By
L,(G;E) (G is a domain in R") we denote the space of strongly measurable functions
defined on G with values in £ endowed with the norm |/[|u(z)||z| 7, [19]. We employ
also the spaces C*(G) comprising functions continuous in G with all their derivatives up
to order k admitting continuous extensions on the closure G. The Sobolev space notations
are conventional, i.e., W7 (G; E), W;(Q; E), etc. (see the definitions in [19,20]). If £ = C
(E=R)or £ =C" (£ =R") then the latter space is denoted by W (Q). Similarly, we use
the notations W3 (G) or C*(G) rather than W3(G; E) or C*(G; E). Thus, the membership
u € Wi(G) (or u € C*(@G)) for a given vector-function u = (uy,us, ..., u;) means that
every of its component u; belongs to W:(G) (or C*(G)). The norm of the vector is just
the sum of the norms of the coordinates. Given an interval J = (0,7, put W;"(Q) =
W3 (J; Lp(G)) N Ly(J; W (G). Respectively, W (S) = W (J; L,(I')) N Ly, (J; Wi (T)).

Consider the direct problem (1), (2). In what follows we assume that G is a bounded
domain in R™ with boundary I' € C? (see the definition in [21, p. 17]). Expose the
conditions on the data of the problem. All spaces below and the coefficients of equation
(1) are assumed to be real. Fix p > n 4 2 (this condition simplifies the arguments and it
can be weakened). Let ¢ = p/(p — 1). Denote Bs(zo) = {y € R" : |y — zo| < 0}.

The conditions on the coefficients of the operators Ly, B are as follows:

a;; € Cl(a), a;, ag € LP(G), be OI<F) (4)
The matrix {a;;} is symmetric and the ellipticity condition
301> 0: > a;&& > 0]’ VEER", € G, (5)
ij=1
holds. The conditions on the data are of the form
up(x) € WpQ_l/p(G), g(t,x) € W;—1/2p,2—1/p(50) N W;/Q_l/Qp’l_l/p(Sl), (6)
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fe€Ly,Q), B(0,x)uplr = g(0,z) Yz €T, (7)
up(z) >0 (v € G), g(t,z) >0, f >0 ((t,z) € Q). (8)
We also use some additional conditions
v e W (0,T), 3b2>0: [o(t)] =62 VE € [0,T], 1(0) = up(w), (9)
EI(SO >0: 350(330) C G> Q5 € WpQ(Béo(xU))> a;, ap € Wpl<B50<x0))’ (10)
Vug(x) € Wg_l/p(Bgo(fL‘o)). (11)

Assume that Qs = (0,T) x Bs(z0), Q" = (0,7) x G. Present some auxiliary statements.
Replace the equation (1) with the equation

Lu =w — Lou = f(z,t), (t,z)€ Q. (12)

Theorem 1. Assume that conditions (4) — (7) hold. Then there ezists a unique solution
to (2), (12) such that w € W *(Q). Under the additional conditions (10), (11), a solution
u possesses the property Vu € W*(Qs) for all § < do. If condition (8) is valid then the
function u is nonnegative in Q).

Proof. If Sy = S or S; = S then we can refer to the standard theorems on solvability
(see, for instance, [21, Theorem 9.1, Ch. 4] in the case of the Dirichlet conditions or |21,
Theorem 10.4, Ch. 8] in the case of more general boundary conditions). Examine our case.
First we take homogeneous initial and boundary conditions in (2). Let D(A) = {u €
W,*(Q) : Bu|g = 0}. The claim in the case of Ly = Ay results from Theorem 12.2 in [22].
In the general case the result is a consequence of Theorems 12.2 and 3.2 in [22|. To refer
to Theorem 3.2 we need an additional estimate for the norm || Bol|,(0.7:(Ey o, 50)) for some
6 € (0,1) and p > max(1/(1 — 0),p), where Ey = L,(G) and Ep = (Ey, D(A))g o 18
the space obtained by the real interpolation method (see the definitions [19]). Since the
operator By is independent of ¢, it suffices to establish the estimate

| Boul| ) < ellullwse): s <2

and use the embedding Fy ., C W (G) for 6 > s/2 (which follows from the embedding
(1.1) in [22] and Theorem 5.2 in [23]). This estimate results from the embedding theorems
and conditions (4). We infer

1Boullz, ) < cllullwie < allulwe), s € (1+n/p,2).

The claim of the theorem in the case of nonhomogeneous initial and boundary conditions
follows from the conventional theorems on extension of the boundary conditions inside the
domain (see, for instance, Theorem 7.3 in [24]).

The proof of the fact that a solution u possesses the property Vu € W]}’Q(Q(;) for all
d < do under conditions (10), (11) is realized with the finite difference method with the
use of Lemma 4.6 of Ch. 2 in |25]; it is similar to that in the proof of Theorem 1.1 in |9]
or in the proof of Theorem 3.1 in [26].

Different maximum principles for parabolic equations can be found in [27].
Unfortunately, they are not applicable in our case. Under stronger conditions on coefficients

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 53
u nporpammupoBanues (Becrunk FOYpI'Y MMII). 2017. T. 10, Ne 2. C. 51-62



S.G. Pyatkov, O.V. Goncharenko

we can refer to the generalized maximum principle in |22, Theorem 17.1]. We use

conventional arguments those involved in the proof of the maximum principle for
. . ot x), ifu(t,z) <0; _ 1

generalized solutions. Let u~ = { 0. ifult.e) >0 Note that u= € W, (Q) (see [21,

Sect. 4 of Ch. 2]). Moreover, we have that u~|g, = 0 and u™ |—o = 0. Multiply (11) by u~

and integrate the result over G. Integrating by parts and using the boundary conditions

we obtain that

1d
—— (u_)2dx+51/ |Vu_\2dx+/b(u_)2df—/g(t,x)u‘dfS
2dt Jg G r r

§/fu_dx+|/Zaiuxiu_+ao|u—|2dx|.
G =1
G

Since the data are of constant sign, we derive that

1d 2 9
Sdr ). dx+51/\Vu | x<\/2alu%u + aplu”| dx]—l—]/ )2dl|. (13)

All summands on the right-hand side of (13) are estimated similarly. We use the conditions
on the data, the Holder inequality, embedding theorems, and interpolation inequalities.
Estimate the summands on the right-hand side under the integral sign. We have

fwwudﬁﬁJﬂMVumdmw|mmpM@s »
< adiOIVu e llvlwse), i) = llallL,@), s =n/p.

Next, the inequalities (see [19])

la” " 11
* rler’/r (e>0), r + o L

lullws o) < eallullivy e llulliyie) labl <e
imply that the right-hand side of (14) is estimated as
ellVuIZ ) + c(e) Ji) P lu |11,

where 2p/(p —n) < p (since p > n + 2). All summands on the right-hand side of (13)
except for the last of them are estimated similarly. The estimate for the last summand is
simpler. We have

|/ )2 dU| < cllullL,wy < allu G g < el VullL,e) +ele)llu™ [, (s1 € (1/p,1)).

In this case inequality (13) can be rewritten as

1d _ _ _ _
s [ e 6 [ 190 P < e Va g + el [
G G

where ¢y, ¢(¢) are some positive constants and Jy € L1(0,T). Choosing cee = 01, we arrive
at the inequality

y'(t) < cdo(D)y(t), y(0) = [[u[[7,)l=0 = 0.
Hence, we can conclude that v~ = 0 almost everywhere in @, i.e., u > 0 a.e. in Q. 0
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Corollary 1. There exists A\g > 0 such that —Lo+ X\ for all X > \g is an isomorphism of
the space {u € WZ(G) : Bu|r = 0} onto L,(G) (see [22, Remark 3.1 (b)]).

In view of Corollary 1 we assume below that the problem Lyu = f € L,(G), Bu|r =0
has a unique solution u € W2(G), otherwise we make the change of variables u = ve™ in

(1) and reduce the arguments to this case.

Theorem 2. Let conditions (4) — (7) hold. Then, for v > 0, a solution u € W,*(Q)
to (2), (12) with homogeneous initial and boundary conditions (i.e., ug = 0, g(t,z) =0)
satisfies the estimate

lue™ lyr2 gy + YlIlue™ @) < cllfe™™ L,@-

Fiz an arbitrary 03 < 0g. If conditions (10), (11) are fulfilled then the following estimate
holds:
IVarue™ 2,y + WIIVaue™ |, (s, <

c(IVafe iy + 16 L@) 72 0.

The constant c wn this estimates is independent of the parameter v > 0.

Proof. Let u = ve?. Equation (12) is transformed to the equation
v; — Lov +yv = e " f(x,t) with v|,—g =0, Bv|s = 0.

Next, we refer to the estimate in Theorem 3.1 of [26] and make the inverse change of
variables.

O
Remark 1. Generally speaking our reference to Theorem 3.1 in [26] is not exact, since
the case of different boundary conditions on different connectedness components of the
boundary is not treated there. However the proof of Theorem 3.1 remains valid in this
case as well, since it is based on a partition of unity and local considerations.

Lemma 1. Let u(t) € W,(0,T) and u(0) = 0. Then there exists a constant ¢ > 0
independent of v > 0 such that

< Ly(0,T)-

~ c.
le™ " ul|z,0.1) < ;He Ty

The proof is elementary and we omit it.
Denote by ® a solution to (12), (2) assuming that conditions (4) — (7) are fulfilled. We
impose the following additional constraints on the data:

Py < Py(t, z0) a.e. on (0,7), Ly® <0 a.e.on Q, 394 > 0: () >4Vt € (0, 7). (15)

Assume that R(®) = [|1®].@ + IVillzwas,): 1) = ¢'(6)/4(1), ¥'(1) = (1) —
®(7,20), 7(t) = —B(t)e” o PO Ry(@) = [r(t)]| 10,1

Now we can state our main results. The former half of Theorem 3 below (the existence
theorem) is known (see, for instance, [9]). However, we present here this formulation for
completeness of the exposition.
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Theorem 3. Let conditions (4) — (7) and (9) — (11) hold. Then there exists a constant
Yo < T such that on the segment [0,7] there exists a unique solution (u,p) to (1) —
(3) with the property u € W;*(Q™), Vu € W;2((0,7%) x Bs(xg))) for all § < &,
and p(t) € L,(0,7). Assume that u;(x), g:(t,x), fi(t,x),¢i(t) (i = 1,2) are two different
collections of the data satisfying the conditions of the theorem and the functions ®; (i =
1,2) are solutions to (1), (2), where p(t) = 0. Denote r;(t) = —Bi(t)e~ hoBimdr (8,(1) =
M), fix a number R > 0, and assume that R(®;) + Ro(P;) < R (i = 1,2).

¥i (1)
Then there exist numbers o and co(R) > 0 such that there exist unique solutions (u;, p;)

(1=1,2) to (1) — (3) on the time segment [0, 70| satisfying the inequalities
1P1 = P2l 2,090) < co(R)([1B1 = Ball2,000) + 11 — Y2llwa000)+

1 — Pl L (@) + [V(P1 = Po) | Lec (0170 x Bs, (w0))-

Theorem 4. Let conditions (4) — (11), (15) hold. Then there exists a unique solution to
(1) — (3) such that u € W}*(Q), p(t) € Ly(0,T) and Vu € W,*(Q5) for all § < &. The
function p(t) is nonnegative and

co(Pe(t, o) — u(t))
P(t)

where ¢y is a positive constant depending on the norms of the data.

p(t) > , vt € 10,7,

Remark 2. As it is easily seen, the statement of Theorem 4 remains valid if we change
all signs in inequalities (8), (15), i.e., the functions —ug, —g(t,x), —f(t,x), =P (¢, z), =
meet conditions (8), (15).

2. Proofs of the Main Results

Proof of Theorem 3. Let ® be a solution to (2), (12). Make the change of variables
u = v + ®. We obtain that

Lo+ p()(0+ @) =0, vlcg = 0, v]s = 0, v(t,z0) = $(t) — B(t, 70) = G(t).
Next, we make the following change of variables: v = we™ Jop(™dr We infer
Lw+ p(t)eh PD4d = 0, w),_o =0, w|s =0, w(t,zg) = (t)elos P, (16)
Put x = x¢ B (16). We arrive at the equation
Jelormdr 4 Y(t)p(t )efOtp(T) 9T = Low(t, x0).
Denote a(t) = eloP(T)d7 The equations can be rewritten as
Vo +p(t)a = Low(t, xp). (17)

Expressing the function «;, we arrive at the equality

t
t Low(T,x ¢
a(t) = e JoBdr Me, [z BE)ds g (18)
0 U(T)
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Thus, we have

1) — —a(pye-Jismar | Low(t zo) " Low(T, %0) ¢ sie)ae
a'(t) B(t)e + o) ﬁ(t)/o e e dr, (19)

where the function w is a solution to the problem
Lw=—d'(t)®, wli=o =0, Bw|s=0. (20)

Hence, we infer w = L™!(—a/®). Denote ag(t) = o/(t). In view of (19), (18), we derive
that

ao(t) = r(t) + S(ao(t)), a(t):/o ao(r)dr + 1, (21)

Slag) = % - B(t)/o W{B_ JrB&E gr oy = LY (—ag®). (22)

Demonstrate that equation (21) is uniquely solvable in the class ag(t) € L,(0,T"). Estimate
the norm of S. The embedding theorems (see [19]) ensure that

| Low(t, xo)| < ¢l Lowllwg (s, @a)): $ € (n/p;1), b3 < o. (23)

Next, we consider the summands in the main part of the operator Ly. Since a function of
the class C*(G) is a pointwise multiplier in W7 (G) with s < p (see, for instance, the item
3.3.2 in [28]), we have
(2+5)/3 (1-5)/3
HaZ]wIZIJHWS(B(SS(ﬂ?O)) < C||W||W2+3(353(x0)) > C1||WHW3835 ” HLp(ISBa (z0)) (24)
Lower order summands are estimated similarly. Note that the embedding theorems ensure
that a;, a0 € C*~"/?(Bjs,(x0)). The definition of the norm in W yields

||aiw$¢

Wis (Bsy (z0)) = cl||ai||W§(353(fvo))Hw% C(B(;:S(xo))"‘_

Wi (Bs, o)) < Collwllwire sy, o)) <

+01Hai ’C m waz

(25)
(1+s)/3 H || (3—s /3

< cgflw ng (Bsg (z0)) Lp(Bsg(

Estimates (23) — (25) imply that there exist constants # € (0,1) and ¢4, > 0 such that
| Low(t, 20)| < callwllivs sy, @on 19l L, (s, (o0)y- (26)

Now we estimate the norm ||e~7S(ao)]|z,0,r)- The above definition of the operator S
yields

le™S(a0) |, 01) < eslle™ Low(t, 7o)z, 0.m) + CallBllLy0m) fy €[ Low(7)| dr <
< crlle™ Low(t, 20) | 1, 0,7)- 27

Inequalities (26), (27) and Lemma 1 imply the estimate

le™"S(ao)l|,0.1) < cslle™ wHLp(OTW3(35 oy lle”7w HLP (Qs5) =
< g
— ,\/179

||€77tW||ip(0,T;W5’(B¢53 z0)) ||€ Wt||Lp(Q63)
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Next, applying Theorem 2 and the definition of w, we obtain the estimate

le™S(a0) L 01) < 25 (le™ a0z, @ + e V|1, @) <

<
< 05 lle gl 1, (0.0 R(P), (28)

71—9

where the constant cjp is independent of v and the norms of the data, and it depends
on the norms of the coefficients of the equation, the constants in embedding theorems,
interpolation inequalities and 7'. Choose a constant vy such that

C10
Yo
In this case we have the estimate
_ 1,
le™7S (o)l L, 0,1) < §||6 Y|z, 0.1)

for all v > ~y. Thus, the operator S is contractive in some equivalent norm of the space
L,(0,T) and, thereby, (21) is solvable with respect to the function ag = o/(t). Obviously,
this solution satisfies the estimate

le™ e/ [l 00y < 2lr®)e ™ ll,0m), ¥ = 0.

In particular, we infer
1/l 0y < 2677 [ ()|, 0.m) = cL(R(®), Ro(®)). (30)

We can restore the function o =1 + fot ap(7) dr. Given a function «, find a solution w to
the problem (20). Fix ¢y < T and estimate

t
| /0 o/ (7) dlleqoe < 1107 | Ly0t0) < toer(R, Ro).

Choose t( so that t(l)/qcl(R, Ry) = 3/4. In this case « > 1—3/4=1/4 > 0 on [0,ty] and we
can construct the function fot p(7) dr = In(1 + «(t)). Respectively, p(t) = o/ (t)/(1 + «a(t)).
Obviously, p(t) € L,(0,ty). Verify that the functions p(t),w(t) are a solution to the inverse
problem (16). Integrating (19), we obtain (18) whose transformation validates equality
(17) and, hence, ¥'a+ 9 (t)a’ = Low(t, z9) — &'®(t,20). On the other hand, taking z = x¢
in (20), we have w'(t,z9) = Low(t, o) — &/ ®(t, z0). Hence, w'(t,x9) = ()" and thereby
w(t, o) = i) = eloP™Mdry) e, equalities (16) hold. Proceed with stability estimates.
Assume that we have two collections of the data u;(x), g:(t, z), f;(t,x),¥;(t) (i = 1,2) and
functions ®; (i = 1, 2) are solutions to (1), (2) with these data and p(¢) = 0. The respective
functions «; meet the equations

ai(t) = ri(t) + Sieg(t), i =1,2,

where the operators S; are defined as in (22), but instead of w we take solutions to the
problem
L(JJZ' = —Ck;(t)q)“ 1= 1, 2, wi‘t:() = 0, Bwi|g =0. (31)
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Thus, w; = L™ (—a}®;) and

i Lowi(t,ﬂfo) A ¢ Lowi(T, ZEU) —fjﬂi(ﬁ)df
Silal) = T -l [ e o

Choose the parameter vy as in (29), where we take the quantity R from the conditions
of the theorem rather than R(®). Next we choose ty as before inserting the quantity R
rather than Ry(®) and R(®). In this case a solution (u;, p;) to our problem satisfying the
above initial and boundary data exists on the segment [0, ] (7o = to). The corresponding
functions oy, ay satisfy the estimate

ai(t) 2 1/4, [laillwiomr) < e(R). (32)

We have

P1(t) 2(t)

—p1(t) (fLo(ui+(i))(wo)e, J7 B1(&) dE (33)

t Bi(t)e~ J£BLEOAE g, (p)e— I B2(€) de
- fo L0w2(7—7 xo)( : wl (7-) - - 1/12(T) dT

Lo (w1 —w T
S1(04) — S(og) = M) 4 1y (1 — 1)

Subtracting equalities (31) for i = 1,2, we infer
Lwy — Lwy = L(wy — ws) = —(a(t) — ay(t)) Py + ab(Py — Dy).

Repeating the arguments those in the proof of (28), we obtain the inequality

le™" Lo(wr — wa)(t, 20) |, 000) < 575 ([le7 (0 = ab) [, 000 (R)+

(34)

e (R)([| @1 — ol Lo (@uo) + [[V(P1 — Po)ll 1o ((0.90) % Bs,y (0))))-
The claim of the theorem follows from (32) — (34), the equality o] —ab = r1 —ro+S1 (o)) —
Si(ad), and some simplest estimates.

O

Proof of Theorem 4. Let the conditions of the theorem hold. As in Theorem 3 we

reduce the problem to the study of equation (21) and justify its solvability. Since the norm

of S is less than 1 and the operator is linear, a solution to (21) can be found using the

method of successive approximations beginning with o = 0. Successive approximations
are written as

al(t) = r(t) + S (1)) (35)

In view of (15), o' = r(t) > 0. Assume that the function o’~! is nonnegative. Demonstrate
that o' is nonnegative too. The corresponding function w’ is a solution to (20), i.e., we
have

Lw' = —a''®, w'—g =0, Bw'lg = 0.

Since condition (8) is fulfilled, by Theorem 1 ® > 0 a.e. in (). By condition Ly® < 0 a.e.
and o'~! > 0 a.e. Hence, Lo(—a'~'®) > 0 a.e. Consider the problem

Lw* = —a" ' Ly®, w*|i—o =0, Bw*|s =o' 'Bd|s =a' lg(t,x) > 0.
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By Theorem 1 a solution w* is nonnegative in Q. Define the function @ = L; 'w*. We have
Dl=o = 0, Bi|s = 0 (by construction), @ € W,»*(Q), and Low € W,*(Q). Moreover, we
can conclude that '

wi — Lo(w* — o' 1®) = 0.
Applying L, ! to this equality, we can claim that &; — (Lo@ —a'~1®) = 0. Hence, &; — Lo =

—a'~1®. In view of the uniqueness theorem, we derive that w® = & and thus Low® = w* > 0
a.e. Consider equality (35) and recall the definition of S (see (22)):

oty = ) _ gy [ L lr0n) o g

Since 3(t) < 0, every summand here is nonnegative and in view of (35), a’ > 0 a.e. Since
the limit o is a strong limit of the sequence o' in the space L,(0,T), we conclude that
ag > 0 a.e. In this case the function [} p(r)dr = In([] ap(r)dr + 1) is defined on the
whole segment [0, 7], respectively the function p(t) = ﬁ;(ﬂ is a solution to our problem.
Establish the desired estimate. We have (see (30)) that

t t C(/(T)
dr = | ————dr <T"Y9|| < (R, Ry)TY, g=p/(p—1).
[ otvar = [ S ar < T < (R RO = p/(p=1)

From (21), it follows that o/(t) = p(t)eftf P dr > r(¢) > 0. Thus,

p(t) > r(t)/TY9e1 (R, Ry) = 7(t)co, t € [0,T).
O
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OIIPEJAEJIEHUE ITAPAMETPA 11 VIIPABJIEHINE B IIPOLIECCAX
TEIIJIOITEPEHOCA

C.I. ITamxos, O.B. I'aspuaenxo
FOropckuit rocy1apcTBeHHBIH YHUBEPCUTET, I. XaHThI-MaHCHIiCK

CraTbsi MOCBAIIEHA U3YYE€HUIO HEKOTOPHIX MATEMATHIECKUX MOJAETEH, OMUCHIBAIOIINX
MpoITecchl Teroneperoca. Mbr paccMaTpiuBaeM 00PaTHYIO 337a9y 0 BOCCTAHOBJIEHUN YTTPaB-
JISIIOIIEro mapaMeTpa, KOTOPBIH obecrednBaeT 3a/JaHHOE TEMIIEPATYPHOEe PACIpe/ieieHne B
MAaHHOM TOYKe MPOCTPAHCTBEHHOM obsacTu. /lauublil mapamerp — ecTh Myammnuii Koaddu-
[HEHT B TapaboIUYecKOM YPaBHEHUU, 3aBUCANIAN OT BPEMEHH. DTa HEJTUHEHHAs 337a9a
CBOJIUTCS K OMEPATOPHOMY yPABHEHWUSI, PA3PEIMMOCTh KOTOPOTO YCTAHABIUBACTCS TIPU TI0-
MOIIU ANPUOPHBIX OIEHOK M TEeOPEMbl O HENOABMKHON Touke. ChOopMyMpoBaHbl U T0KA-
3aHBI TEOPEMBI CYIIECTBOBAHUS U €IWHCTBEHHOCTU DEIEHUH 3TOM 3a7a4uu. YCTAHOBJIEHBI
OIEHKW yCTOMYMBOCTH. [JIABHBIN pe3yabTar — r00ajibHAs 110 BPEMEHH TeOPEMa, CYIIECTBO-
BaHWA PEIIeHN TPU HEKOTOPBIX €CTECTBEHHBIX YCIOBUAX HA MAaHHbIE 3aJa4u. JlokazaTennb-
CTBO OIMUPAETCsT HA MPUHIUI MakcuMyMa. Vcnomb3yemblie (hyHKIMOHATBHBIE TPOCTPAHCTBA
— npocrpancrsa CobosieBa.

Karouesvte caosa: menaonepenoc; pacnpedesentoe Yynpasienue; Mamemamuieckas Mo-

dean; napabosuneckoe ypasrenue; obpammuas 3adava; Kpaesas 3a0a4a.
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