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The linear system of partial di�erential equations is considered. It is assumed that there

is an irreversible linear operator in the main part of the system. The operator is assumed

to enjoy the skeletal decomposition. The di�erential operators of such system are assumed

to have su�ciently smooth coe�cients. In the concrete situations the domains of such

di�erential operators are linear manifolds of smooth enough functions with values in Banach

space. Such functions are assumed to satisfy additional boundary conditions. The concept of

a skeleton chain of linear operator is introduced. It is assumed that the operator generates

a skeleton chain of the �nite length. In this case, the problem of solution of a given system

is reduced to a regular split system of equations. The system is resolved with respect to the

highest di�erential expressions taking into account certain initial and boundary conditions.

The proposed approach can be generalized and applied to the boundary value problems in

the nonlinear case. Presented results develop the theory of degenerate di�erential equations

summarized in the monographs MR 87a:58036, Zbl 1027.47001.

Keywords: ill-posed problems; Cauchy problems; irreversible operator; skeleton

decomposition; skeleton chain; boundary value problems.

Introduction

Consider linear equation

BL

(
∂

∂x

)
u = L1

(
∂

∂x

)
u+ f(x), (1)

where linear bounded operator B acting from linear space E to E has no inverse operator.
Di�erential operators

L

(
∂

∂x

)
=

∂n

∂tn
+

∑
k0+k1+···+km≤n−1

ak0...km(x)
∂k0+···+km

∂tk0∂xk1
1 . . . xkm

m

,

L1

(
∂

∂x

)
=

∑
k0+k1+···+km≤n1

bk0...km(x)
∂k0+···+km

∂tk0∂xk1
1 . . . xkm

m

, n1 < n.

Here coe�cients ak0...km : Ω ⊂ Rm+1 → R1, bk0...km : Ω ⊂ Rm+1 → R1 are su�ciently
smooth and de�ned in Ω, 0 ∈ Ω. The domains of de�nition of operators L,L1 consist of
linear manifolds E∂ of su�ciently smooth functions in Ω with their values in E, which
satisfy certain system of homogeneous boundary conditions. An abstract function f : Ω ⊂
Rm+1 → E of argument x = (t, x1, . . . , xm) is assumed to be given and the problem is to
�nd the solution u : Ω ⊂ Rm+1 → E∂.
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The operator B is assumed to be independent of x. If the operator B has an inverse
bounded operator then equation (1) is called regular and otherwise it is called irregular
equation. If E = RN and detB ̸= 0, then (1) is the system of linear partial di�erential
equations (PDE) of Kovalevskaya type, and we have a well known regular problem of the
PDE theory. The foundation of many branches of modern general theory of PDE systems
was constructed by I.G. Petrovskii [1]. In regular case the initial conditions for (1) can be
de�ned as follows

∂iu

∂ti

∣∣∣∣
t=0

= φi(x1, . . . , xm), i = 0, 1, . . . , n− 1. (2)

Here functions φi are analytical functions in Ω. If f is an analytic function of t, x1, . . . , xm

in Ω, then the Cauchy problem (1), (2) is not only solvable but also well-posed in class of
analytic functions.

The well-posedness of the Cauchy problem is a challenging issue even for linear PDE
systems in spaces of non-analytic functions. They are usually solved in a class of functions
satisfying certain estimates [1].

Irregular models enable study of systems behavior in critical situations [2]. At present,
the basis of relevant theory is constructed for certain classes of equations. For example, the
theory and numerical methods for di�erential-algebraic equations has been constructed.

The intensive studies of more complex theory of irregular PDE and abstract irregular
di�erential operator equations are conducted but there are still a lot of unexplored
problems.

If B is a normally solvable operator, x ∈ R1 then the approach in the theory of
equations of the form (1) can be based on the splitting of the Banach space into a direct
sum in accordance to Jordan structure of the operator B [3�5] and G.A. Sviridyuk's results
from the theory of semigroups with kernels [6]. These approaches are applied to various
problems [7, 8].

In this �eld analytical methods were proposed for constructing classical and generalized
solutions of the Cauchy problem for ordinary operator-di�erential equations with x ∈ R1

in Banach spaces with irreversible operator in the main part.
The theory of irregular operator-di�erential PDEs in Banach spaces in the multi-

dimensional case with x ∈ Rn, n ≥ 2, is to be constructed. There are only initial results
in this �eld published in preprints. Therefore, the construction of the general theory of
equations of the form (1) with irreversible operator B is of theoretical interest. It is also
important for the state of the art mathematical models of compex systems [2, 9, 10].

It is to be outlined that classical initial Cauchy conditions (2) for equation (1) play
very limited role. Indeed, because of the irreversibility the operator B time direction
is characteristic and functions φi can not be arbitrary selected in the initial conditions
(2)! Then there appears a question of reasonable formulation and methods of solution of
non-classic boundary problems, taking into account the structure of the operator B. The
objective of the present work is to solve this problem. In Sec. 2 and Sec. 3 this problem is
solved for irreversible operator B which enjoy skeleton decomposition B = A1A2, where
A1 ∈ L(E → E1), A2 ∈ L(E1 → E), and E1 is a normed space.

The remainder of the paper is organized as follows. Sec. 1 presents an introduction
concerning the skeleton chains of linear operators using results [4]. The concept of regular
and singular skeleton chains is introduced. It is proved that the operator B must be
nilpotent in case of singular skeleton chain. In Sec. 2 it is assumed that the noninvertible
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operator B generates a skeleton chain of linear operators of �nite length p and it is
demonstrated that irregular equation (1) can be reduced to the recurrent sequence of
p+ 1 equations. It is to be noted that each equation of this sequence is regular under the
natural restrictions on di�erential operators L,L1 and certain initial-boundary conditions.
Therefore if the operator B has a skeleton chain of length p then the solution of irregular
equation (1) can be reduced to a regular system from the (p+ 1)-th equation.

The proposed approach can be employed for wide range of concrete problems (1) due
to �nite length of the skeleton chain of the �nite-dimensional operator B.

The formulas connecting the solution of (1) with the solution of reduced regular system
are derived. This result allows us in Sec. 1 to set new well-posed non-classic boundary
conditions for (1) for which the equation enjoys a unique solution what is demonstrated
in Sec. 2. For applications, it is important that this solution can be found by solving the
sequence of regular problems proposed in this paper. Corresponding results and examples
are given in Sec. 3 and Sec. 4.

1. Skeleton Chains of Linear Operator

Let B ∈ L(E → E), and B = A1A2, where A2 ∈ L(E → E1),A1 ∈ L(E1 → E), and
E1, E are linear normed spaces. The following de�nitions can be introduced.

A decomposition B = A1A2 is called a skeleton decomposition of the operator B.
Introduce a linear operator B1 = A2A1. Obviously B1 ∈ L(E1 → E1). If the operator
B1 has a bounded inverse or it is null operator acting from E1 to E1, then B generates a
skeleton chain {B1} of length 1. Then the operator B1 can be called a skeleton-attached
operator to the operator B. This chain is called singular if B1 = 0 and regular if B1 ̸= 0. If
B1 is an irreversible non-null operator then it is assumed to have a skeleton decomosition
B1 = A3A4, where A4 ∈ L(E1 → E2), A3 ∈ L(E2 → E1), and E2 is new linear normed
space. Obviously in this case A2A1 = A3A4 and an operator B2 = A4A3 ∈ L(E2 → E2)
can be introduced. If it turns out that B2 has a bounded inverse or B2 ≡ 0, then B has a
skeleton chain {B1,B2} of length 2. The chain {B1,B2} is singular if B2 = 0 and regular
otherwise. Also, the third case is possible: operator B2 is irreversible non null operator.
Then chain length is greater than 2 and one should continue chain's construction.

Indeed, this process can be continued for a number of linear operators by introduction
of the normed linear spaces Ei, i = 1, . . . , p and by bounded operators construction A2i ∈
L(Ei−1 → Ei), A2i−1 ∈ L(Ei → Ei−1), which satisfy the following equalities

A2iA2i−1 = A2i+1A2i+2, i = 1, 2, . . . , p− 1. (3)

Equation (3) de�nes a sequence of linear operators {B1, . . . ,Bp} as follows

Bi = A2iA2i−1, i = 1, 2, . . . , p. (4)

Obviously Bi ∈ L(Ei → Ei). Here the operator Bp either has a bounded inverse or Bp

is a null operator acting from Ep to Ep. This process can be formalized as the following
de�nition.

De�nition 1. Let B = A1A2 and operators {Ai}2pi=1 satisfy (3). Let operators
{B1, . . . ,Bp} be de�ned by (4), operators {B1, . . . ,Bp−1} be noninvertible, and operator
Bp have a bounded inverse or be a null operator acting from Ep to Ep. Then the operator
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B generates a skeleton chain of linear operators {B1, . . . ,Bp} of length p. If Bp ̸= 0 then
the chain is regular, if Bp = 0 then the chain is called singular. Operators {B1, . . . ,Bp}
are called skeleton-attached to operator B.

The most important linear operators generating skeleton chains of the �nite lenghts
are given below:

1. Let E = Rm, then a square matrix B : Rm → Rm with detB = 0 obviously has
skeleton chain {B1, . . . ,Bp} of decreasing dimentions. The �nal matrix Bp will be
regular or null matrix, detBi = 0, i = 1, . . . , p− 1.

2. Let E be an in�nite dimentional normed space, then a �nite operator B =
n∑

i=1

⟨·, γi⟩zi,

where {zi} ∈ E, γi ∈ E∗ has a skeleton chain consisting of �nite number of matrices
{B1, . . . ,Bp} of decreasing dimentions. Here B1 = ||⟨zi, γj⟩||ni,j=1 is the �rst element
of this chain, detBi = 0, i = 1, . . . , p− 1. Bp is a null matrix or detBp ̸= 0.

Here according to De�nition 1 the length of the chain p = 1 if det[⟨zi, γj⟩]ni,j=1 ̸= 0 or
⟨zi, γj⟩ = 0, i, j = 1, 2, . . . , n. In general case the chain always consists of �nite number of
matrices.

Using (3), (4) and De�nition 1 the following result can be formulated.

Lemma 1. If the operator B has a skeleton chain of length p then

Bn = A1A3 . . .A2n−1Bn−1A2n−2A2n−4 . . .A2, n = 1, . . . , p+ 1, (5)

where B1,B2, . . .Bp are elements of the skeleton chain of the operator B.

From Lemma 1 it follows

Corollary 1. If the operator B has a singular skeleton chain of length p, then B is a
nilpotent operator of index p+ 1.

To proof the Corollary it is su�cient to put n = p + 1 and demonstrate that Bp+1 is
a null operator because Bp is a null operator due to the above introduced de�nition of a
singular skeleton chain.

2. Reduction of Abstract Irregular Equation to the Sequence

of Regular Equations

The operator B and linear operators {Ai}2pi=1 from a skeleton chain of the operator
B are assumed to be independent of x and commutative with linear operators L and
L1. In this paragraph for sake of clarity it is assumed that operators L and L1 can be
di�erent from the introduced above di�erential operators L( ∂

∂x
), L1(

∂
∂x
) and equation can

be considered in abstract form
BLu = L1u+ f. (6)

Equation (1) can be considered as a special case of equation (6). Obviously, the introduced
commutativity condition is ful�lled for (1) with linear operator B independent of x and
introduced di�erential operators L( ∂

∂x
), L1(

∂
∂x
).
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Let us reduce equation (6) to a system of p+ 1 equations which are regular in certain
conditions imposed on operators L,L1. Let us start with the simple case when p = 1.
Introduce a system of two equations

B1Lu1 = L1u1 +A2f, (7)

L1u = −f +A1Lu1. (8)

where u ∈ E and u1 ∈ E1. The decomposed system (7) � (8) can be obtained by formal
multiplication of (6) by the operator A2 from the skeleton decomposition of the operator
B and making notation u1 = A2u.

It is to be noted that system (7), (8) is splitted and B1 is an invertible operator.
Therefore if the operators B1L − L1, and L1 have bounded inverse operators then a
unique solution can be constructed. Of course without additional conditions there remains
a question: Does a constructed solution u(x) satisfy (6)?

Let us introduce two lemmas establishing the link between (6) and system (7), (8) to
answer that question.

Lemma 2. Let u∗ satisfy (6) and operator L1 have left inverse. Then a pair u∗
1 = A2u

∗, u∗

satis�es (7), (8).

Proof. Based on conditions of the Lemma the following equality is satis�ed

A1A2Lu
∗ = L1u

∗ + f. (9)

From (9) because of commutativity condition the following equality is valid

A1LA2u
∗ = L1u

∗ + f (10)

and
A2A1LA2u

∗ = L1A2u
∗ +A2f. (11)

The latter equality demonstrates that u∗
1 = A2u

∗ is a solution of (7). Substitution u∗
1 into

the right hand side of (8) yields the following equation with respect to u with the known
right hand side

L1u = −f +A1A2Lu
∗.

Here the operators commutativity property is employed. The solution exists for such
equation. Indeed, due to (9) right hand side of the equation is equal to L1u

∗. Hence
for given u∗ and u∗

1 = A2u
∗ the right hand side belongs to the range of the operator L1.

Therefore, L1u = L1u
∗. Since the operator L1 has left inverse, then u∗ is a unique solution

to (8) for u1 = A2u
∗. Lemma 2 is proved.

2

Lemma 3. Suppose that a pair (u∗
1, u

∗) is a solution to (7), (8). Let the operator L1 have
right inverse L−1

1 . Then element u∗ satis�es (6).

Proof. The element −f +A1Lu
∗
1 belongs to the range of operator L1, because a pair u

∗
1, u

∗

satis�es (7), (8). Hence u∗ = L−1
1 (−f + A1Lu

∗
1) because −f + A1Lu

∗
1 ∈ R(L1), where

R(L1) is the range of the operator L1. It is to be demonstrated that the constructed
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element u∗ satis�es (6) because by hypothesis u∗
1 satis�es (7). Indeed, substitution of the

constructed u∗ into (6), where B = A1A2, yields

A1A2LL
−1
1 (−f +A1Lu

∗
1) = A1Lu

∗
1.

Taking into account operators commutativity, the following equality is valid

A1L{A2L
−1
1 (−f +A1Lu

∗
1)− u∗

1} = 0. (12)

Since A1 and L are linear operators then it remains to verify that in (12) the element in
brackets is zero. Since u∗

1 ∈ E1 satis�es (7), where B1 = A2A1, then the following equality
is valid

A2(A1Lu
∗
1 − f) = L1u

∗
1. (13)

Hence A2(A1Lu
∗
1 − f) ∈ R(L1) and u∗

1 = L−1
1 A2(A1Lu

∗
1 − f), where L−1

1 is the right
inverse to the operator L1. Since A2L1 = L1A2 then A2 = L−1

1 A2L1. This yields
A2L

−1
1 = L−1

1 A2L1L
−1
1 . From equality L1L

−1
1 = I it follows that the right inverse L−1

1

is also commutative with the operator A2. Then (13) can be represented as

A2L
−1
1 (A1Lu

∗
1 − f)− u∗

1 = 0.

Thus we have shown that expression in brackets in (12) is zero. Lemma 3 is proved.

2
Let us concentrate on general case of skeleton chain of arbitrary �nite length p. We

assume operator B to have a skeleton chain {B1, . . . ,Bp}, p ≥ 1, and linear operators
{Ai}2pi=1 represent decomposition of Bi which skeleton is attached to B. Introduce

ui =
i∏

j=1

A2ju, i = 1, . . . , p, (14)

where ui ∈ Ei, ui = A2iui−1, u0 := u.
If u0 satis�es (6) then for p ∈ N by De�nition 1 we get equalities

BpLup = L1up +

p∏
j=1

A2jf, (15)

L1ui = −
i∏

j=1

A2jf +A2i+1Lui+1, (16)

L1u = −f +A1Lu1. (17)

For p ≥ 2 there is a connection between the solution of (6) and system (15) � (17). In
particular the following two lemmas can be formulated.

Lemma 4. Let u∗ satisfy (6) and operator L1 have left inverse. Then elements u∗
i =∏i

j=1A2ju
∗, i = p, p− 1, . . . , 1 satisfy (15), (16), and u∗ satis�es (17).

Lemma 5. Let elements u∗
p, u

∗
p−1, . . . , u

∗
1, u

∗ satisfy (15) � (17) and operator L1 have right
inverse. Then element u∗ determined from (17) of spitted system (15) � (17) is a solution
to (6).
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Proof of Lemma 4 and Lemma 5 for any natural number p can be reduced to
employment of the skeleton chain via operators {Aj}2pj=1 and repeats of stages of the
proofs of Lemmas 2 and 3 for the case of p = 1. Based on Lemmas 1�5 the following main
result can be formulated.

Main Theorem. Let irreversible bounded operator B have a skeleton chain
{B1, . . . , Bp}. Let operator BpL − L1 have a bounded inverse with a domain in Ep. Let
operator L1 be de�ned on domains Ei, i = 1, . . . , p and E. Let operator L1 have an inverse
bounded operator on Ei, i = 1, . . . , p or E. Then system (15) � (17) enjoys a unique
solution {u∗

p, u
∗
p−1, . . . , u

∗
1, u

∗}, where

u∗
p = (BpL− L1)

−1

p∏
j=1

A2jf,

u∗
i = L−1

1 {−
i∏

j=1

A2jf +A2j+1Lu
∗
i+1}, i = p− 1, . . . , 1,

u∗ = L−1
1 {−f +A1Lu

∗
1}.

Moreover, element u∗ satis�es (6) and u∗
i =

∏i
j=1 A2ju

∗, i = 1, . . . , p.
By setting the initial-boundary conditions to ensure the reversibility of the operators

L1 and BpL−L1 with speci�c di�erential operators L and L1 and using the Main Theorem
the existence and uniqueness theorems can be derived. Moreover, the formula obtained in
Theorem can e�ectively build the desired classical solution of (1) with su�cient smoothness
of f : Ω ⊂ Rm+1 → E and the coe�cients of the di�erential operators L and L1. Such
applications of the theory are discussed further in section 3.

3. The Existence and Methods of Constructing Solutions

of Nonclassic BVP with Partial Derivatives

Consider the system

B
∑

k1+k2≤n

ak1k2
∂k1+k2u(x, t)

∂tk1∂xk2
=

∑
k1+k2≤m

ck1k2
∂k1+k2u(x, t)

∂tk1∂xk2
+ f(x, t). (18)

Herem < n,B is a constantN×N matrix, detB = 0, ak1k2 , ck1k2 are numbers, an0̸=0, a0n =
0, c0m ̸= 0, cm0 = 0. The vector-functions u(x, t) = (u1(x, t), . . . , uN(x, t))

T , f(x, t) =
(f1(x, t), . . . , fN(x, t))

T are supposed to be de�ned and analytical for −∞ < x, t < ∞.
Let rankB = r < N. Then based on [11] B = A1A2, where A1 is an N × r matrix,

A2 is an r × N matrix. Let us introduce an r × r matrix B1 = A2A1 and assume that
detB1 ̸= 0. Then taking into account Lemma 3, the solution to (18) can be reduced to
the successive solution of (7), (8), which are in this case as follows:

B1

∑
k1+k2≤n

ak1k2
∂k1+k2u1(x, t)

∂tk1∂xk2
=

∑
k1+k2≤m

ck1k2
∂k1+k2u1(x, t)

∂tk1∂xk2
+A2f(x, t), (19)

∑
k1+k2≤m

ck1k2
∂k1+k2u(x, t)

∂tk1∂xk2
= −f(x, t) +A1

∑
k1+k2≤n

ak1k2
∂k1+k2u1(x, t)

∂tk1∂xk2
, (20)
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where detB1 ̸= 0, u1(x, t) = (u11(x, t), . . . , u1r(x, t))
T , r < N, u1 = A2u. By hypothesis

an0 ̸= 0, c0m ̸= 0, therefore for system (18) one may introduce the initial conditions

∂iu(x, t)

∂xi

∣∣∣∣
x=0

= 0, i = 0, 1, . . . ,m− 1, (21)

A2
∂iu(x, t)

∂ti

∣∣∣∣
t=0

= 0, i = 0, 1, . . . , n− 1. (22)

The vector-function u1(x, t) based on Kovalevskaya theorem can be de�ned as a unique
solution to system (19) with initial conditions

∂iu1(x, t)

∂ti

∣∣∣∣
t=0

= 0, i = 0, 1, . . . , n− 1.

By substitution of vector u1(x, t) into the right hand side of (20), the desired vector u(x, t)
can be found as a unique solution to the Cauchy problem (20), (21).

Consider system

B
∂nu(x, t)

∂xn
=

(
∂

∂t
− a2

∂2

∂x2

)
u(x, t) + f(x, t), n ≥ 3. (23)

As in system (18), B is a singular N ×N matrix with rankB = r < N, B = A1A2, B1 =
A2A1, detB1 ̸= 0. Let f(x, t) = (f1(x, t), . . . , fN(x, t))

T be a vector-function de�ned for
0 ≤ x ≤ 1, 0 < t < ∞, continuous with respect to x and analytical by t, u = (u1, . . . , uN)

T .
The objective is to construct a solution of (23) in Ω = {0 ≤ x ≤ 1, 0 < t < ∞}. Based

on Lemma 4 and the Main Theorem introduce system of two equations (u1 = A2u)

B1
∂nu1(x, t)

∂xn
=

(
∂

∂t
− a2

∂2

∂x2

)
u1(x, t) +A2f(x, t), (24)(

∂

∂t
− a2

∂2

∂x2

)
u(x, t) = −f(x, t) +A1

∂nu1(x, t)

∂xn
(25)

with initial-boundary conditions

∂iu1(x, t)

∂xi

∣∣∣∣
x=0

= 0, i = 0, 1, . . . , n− 1, (26)

u(x, t)|t=0 = 0, (27)

u(x, t)|x=0 = 0, u(x, t)|x=1 = 0. (28)

Since detB1 ̸= 0 then the vector-function u1(x, t) based on Kovalevskaya theorem can be
de�ned as a unique solution of Cauchy problem (24) �(26). Substitute u1(x, t) into the
right hand side of (25). A unique solution of the �rst boundary value problem (25), (27),
(28) is constructed for the heat equation using known formula (here readers may refer to
p. 215 in [12]), using the source function. The constructed solution u(x, t) will be a classic
unique solution of (23) in domain Ω = {0 ≤ x ≤ 1, 0 < t < ∞}. This solution satis�es
the initial conditions

A2
∂iu(x, t)

∂xi

∣∣∣∣
x=0

= 0, i = 1, . . . , n− 1

and (27), (28).
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4. Skeleton Decomposition in the Theory of Irregular ODE

in a Banach Space

Consider the simplest irregular ODE

B
du(t)

dt
= u(t) + f(t), (29)

f(t) : [0,∞) → E, B ∈ L(E → E). Let {B1, . . . ,Bp} be a skeleton chain of the operator
B. Then from the Main Theorem the following results can be formulated.

Theorem 1. Let {B1, . . . ,Bp} be a regular skeleton chain, the function f(t) be (p− 1)-
times di�erentiable. Then equation (29) with initial condition

p∏
j=1

A2ju(t)|t=0 = c0, c0 ∈ Ep (30)

enjoys a unique classic solution u0(t, c0). Here

u0(t, c0) = −f(t) +A1
du1

dt
, (31)

where u1 is de�ned uniquely (see the Main Theorem).

Let us outline the scheme for construction of the function u1(t, c0) in solution (31) to
problem (29), (30):

1. If p = 1 then u1(t, c0) satis�es the regular Cauchy problem{
B1

du1

dt
= u1 +A2f(t),

u1(0) = c0.

2. If p ≥ 2 then the function u1(t, c0) can be constructed by the following recursion Bp
dup

dt
= up +

p∏
j=1

A2jf(t),

up(0) = c0.

ui(t, c0) = A2i+1
dui+1(t, c0)

dt
−

i∏
j=1

A2jf(t), i = p− 1, p− 2, . . . , 1.

Theorem 2. Let {B1, . . . ,Bp−1, 0} be a singular chain of length p ≥ 1, 0 is a null operator
acting from Ep to Ep. Then B is a nilpotent operator and the homogeneous equation
Bdu

dt
= u has only trivial solution. In this case, if the function f(t) is p-times di�erentiable

then the unique classic solution of (29) can be constructed as follows

un(t) = −f(t) +B
d

dt
un−1(t), u0(t) = −f(t), n = 1, 2, . . . , p.

Here the function up(t) is a unique classic solution of (29).
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Conclusion

This paper reports on the novel method of skeleton chains initiated in [4] for the linear
operators in order to produce new non-classical boundary value problems for systems of
di�erential and integral-di�erential equations with partial derivatives arising in modern
mathematical modelling.
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Î ÏÎÑÒÐÎÅÍÈÈ ÐÅØÅÍÈÉ ÍÅÐÅÃÓËßÐÍÛÕ ÑÈÑÒÅÌ
Ñ ×ÀÑÒÍÛÌÈ ÏÐÎÈÇÂÎÄÍÛÌÈ ÍÀ ÎÑÍÎÂÅ ÒÅÎÐÈÈ
ÑÊÅËÅÒÍÛÕ ÐÀÇËÎÆÅÍÈÉ ËÈÍÅÉÍÛÕ ÎÏÅÐÀÒÎÐÎÂ

Ä.Í. Ñèäîðîâ1,2, Í.A. Ñèäîðîâ3

1Èíñòèòóò ñèñòåì ýíåðãåòèêè èìåíè Ë.À. Ìåëåíòüåâà ÑÎ ÐÀÍ, ã. Èðêóòñê
2Èðêóòñêèé íàöèîíàëüíûé èññëåäîâàòåëüñêèé òåõíè÷åñêèé óíèâåðñèòåò, ã. Èðêóòñê
3Èðêóòñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, ã. Èðêóòñê

Ðàññìàòðèâàþòñÿ ëèíåéíûå ñèñòåìû óðàâíåíèé ñ ÷àñòíûìè ïðîèçâîäíûìè. Â

ãëàâíîé ÷àñòè ñèñòåì ñòîèò ëèíåéíûé íåîáðàòèìûé îïåðàòîð, äîïóñêàþùèé ñêåëåò-

íîå ðàçëîæåíèå. Âõîäÿùèå â ñèñòåìó äèôôåðåíöèàëüíûå îïåðàòîðû èìåþò äîñòàòî÷-

íî ãëàäêèå êîýôôèöèåíòû. Îáëàñòè îïðåäåëåíèÿ äèôôåðåíöèàëüíûõ îïåðàòîðîâ â

êîíêðåòíûõ ñèòóàöèÿõ, ðàññìîòðåííûõ â ðàáîòå, ñîñòîÿò èç ëèíåéíûõ ìíîãîîáðàçèé

äîñòàòî÷íî ãëàäêèõ ôóíêöèé ñî çíà÷åíèÿìè â áàíàõîâîì ïðîñòðàíñòâå ïîä÷èíåííûõ

äîïîëíèòåëüíûì ãðàíè÷íûì óñëîâèÿì. Ââîäèòñÿ ïîíÿòèå ñêåëåòíîé öåïî÷êè ëèíåéíî-

ãî îïåðàòîðà, ñòîÿùåãî â ãëàâíîé ÷àñòè ñèñòåìû. Ïðåäïîëàãàåòñÿ, ÷òî ýòîò îïåðàòîð

ïîðîæäàåò ñêåëåòíóþ öåïî÷êó êîíå÷íîé äëèíû. Â ýòîì ñëó÷àå ðåøåíèå èñõîäíîé ñè-

ñòåìû ñâîäèòñÿ ê ðåãóëÿðíîé ðàñùåïëåííîé ñèñòåìå óðàâíåíèé, ðàçðåøåííûõ îòíîñè-

òåëüíî ñòàðøèõ äèôôåðåíöèàëüíûõ âûðàæåíèé ñ îïðåäåëåííûìè íà÷àëüíî-êðàåâûìè

óñëîâèÿìè. Óêàçàíû âîçìîæíûå îáîáùåíèÿ ïðåäëîæåííîãî ïîäõîäà è ðàññìîòðåíî åãî

ïðèëîæåíèå ê ïîñòàíîâêå ãðàíè÷íûõ çàäà÷ â íåëèíåéíîì ñëó÷àå. Ðåçóëüòàòû äîïîë-

íÿþò ýëåìåíòû òåîðèè äèôôåðåíöèàëüíûõ óðàâíåíèé ñ âûðîæäåíèÿìè, çàëîæåííûå

â ìîíîãðàôèÿõ MR 87a:58036, Zbl 1027.47001.
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