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The linear system of partial differential equations is considered. It is assumed that there
is an irreversible linear operator in the main part of the system. The operator is assumed
to enjoy the skeletal decomposition. The differential operators of such system are assumed
to have sufficiently smooth coefficients. In the concrete situations the domains of such
differential operators are linear manifolds of smooth enough functions with values in Banach
space. Such functions are assumed to satisfy additional boundary conditions. The concept of
a skeleton chain of linear operator is introduced. It is assumed that the operator generates
a skeleton chain of the finite length. In this case, the problem of solution of a given system
is reduced to a regular split system of equations. The system is resolved with respect to the
highest differential expressions taking into account certain initial and boundary conditions.
The proposed approach can be generalized and applied to the boundary value problems in
the nonlinear case. Presented results develop the theory of degenerate differential equations
summarized in the monographs MR 87a:58036, Zbl 1027.47001.
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Introduction

Consider linear equation

BL (a%) 0 =Ly (a%) wt fz), (1)

where linear bounded operator B acting from linear space E to E has no inverse operator.
Differential operators

P on Gko+-+km
L —_ —
(81}) otr i Z (Who--Fm (m)ﬁt’%@xlfl .k’

ko+k1+-+km<n—1

0
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Here coefficients ag, 1, : @ C R™™ — RY by 5 0 Q C R™T — R! are sufficiently
smooth and defined in Q,0 € Q. The domains of definition of operators L, L; consist of
linear manifolds Ejy of sufficiently smooth functions in €2 with their values in E, which
satisfy certain system of homogeneous boundary conditions. An abstract function f : Q2 C
R™! — E of argument x = (t,x1,...,2,,) is assumed to be given and the problem is to
find the solution v : Q C R™*! — Ej.
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The operator B is assumed to be independent of x. If the operator B has an inverse
bounded operator then equation (1) is called regular and otherwise it is called irregular
equation. If £ = RN and det B # 0, then (1) is the system of linear partial differential
equations (PDE) of Kovalevskaya type, and we have a well known regular problem of the
PDE theory. The foundation of many branches of modern general theory of PDE systems
was constructed by I.G. Petrovskii [1]. In regular case the initial conditions for (1) can be
defined as follows

O'u
. =i(x1,...,Tm), t=0,1,...,n—1. 2
| = i) )
Here functions ¢; are analytical functions in ). If f is an analytic function of ¢, x1,..., %,

in , then the Cauchy problem (1), (2) is not only solvable but also well-posed in class of
analytic functions.

The well-posedness of the Cauchy problem is a challenging issue even for linear PDE
systems in spaces of non-analytic functions. They are usually solved in a class of functions
satisfying certain estimates [1].

Irregular models enable study of systems behavior in critical situations [2|. At present,
the basis of relevant theory is constructed for certain classes of equations. For example, the
theory and numerical methods for differential-algebraic equations has been constructed.

The intensive studies of more complex theory of irregular PDE and abstract irregular
differential operator equations are conducted but there are still a lot of unexplored
problems.

If B is a normally solvable operator, z € R! then the approach in the theory of
equations of the form (1) can be based on the splitting of the Banach space into a direct
sum in accordance to Jordan structure of the operator B [3-5] and G.A. Sviridyuk’s results
from the theory of semigroups with kernels [6]. These approaches are applied to various
problems [7,8].

In this field analytical methods were proposed for constructing classical and generalized
solutions of the Cauchy problem for ordinary operator-differential equations with x € R!
in Banach spaces with irreversible operator in the main part.

The theory of irregular operator-differential PDEs in Banach spaces in the multi-
dimensional case with z € R™, n > 2, is to be constructed. There are only initial results
in this field published in preprints. Therefore, the construction of the general theory of
equations of the form (1) with irreversible operator B is of theoretical interest. It is also
important for the state of the art mathematical models of compex systems [2,9,10].

It is to be outlined that classical initial Cauchy conditions (2) for equation (1) play
very limited role. Indeed, because of the irreversibility the operator B time direction
is characteristic and functions ¢; can not be arbitrary selected in the initial conditions
(2)! Then there appears a question of reasonable formulation and methods of solution of
non-classic boundary problems, taking into account the structure of the operator B. The
objective of the present work is to solve this problem. In Sec. 2 and Sec. 3 this problem is
solved for irreversible operator B which enjoy skeleton decomposition B = A; A, where
A, € L(E— Ey), Ay € L(E; — E), and E; is a normed space.

The remainder of the paper is organized as follows. Sec. 1 presents an introduction
concerning the skeleton chains of linear operators using results [4]. The concept of regular
and singular skeleton chains is introduced. It is proved that the operator B must be
nilpotent in case of singular skeleton chain. In Sec. 2 it is assumed that the noninvertible

64 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 2, pp. 63-73



MATEMATNYECKOE MOJIE/INPOBAHUE

operator B generates a skeleton chain of linear operators of finite length p and it is
demonstrated that irregular equation (1) can be reduced to the recurrent sequence of
p + 1 equations. It is to be noted that each equation of this sequence is regular under the
natural restrictions on differential operators L, L; and certain initial-boundary conditions.
Therefore if the operator B has a skeleton chain of length p then the solution of irregular
equation (1) can be reduced to a regular system from the (p + 1)-th equation.

The proposed approach can be employed for wide range of concrete problems (1) due
to finite length of the skeleton chain of the finite-dimensional operator B.

The formulas connecting the solution of (1) with the solution of reduced regular system
are derived. This result allows us in Sec. 1 to set new well-posed non-classic boundary
conditions for (1) for which the equation enjoys a unique solution what is demonstrated
in Sec. 2. For applications, it is important that this solution can be found by solving the
sequence of regular problems proposed in this paper. Corresponding results and examples
are given in Sec. 3 and Sec. 4.

1. Skeleton Chains of Linear Operator

Let Be L(E — FE), and B = A1 Ay, where Ay € L(E — Ey),A; € L(E, — FE), and
E4, E are linear normed spaces. The following definitions can be introduced.

A decomposition B = AjA, is called a skeleton decomposition of the operator B.
Introduce a linear operator By = AyA;. Obviously B; € L(E, — Ej). If the operator
B; has a bounded inverse or it is null operator acting from E; to E;, then B generates a
skeleton chain {B1} of length 1. Then the operator By can be called a skeleton-attached
operator to the operator B. This chain is called singular if B; = 0 and regular if By # 0. If
B, is an irreversible non-null operator then it is assumed to have a skeleton decomosition
B, = A3A,, where Ay € L(E, — E5), Az € L(Ey — Ey), and Es is new linear normed
space. Obviously in this case AsA; = A3A, and an operator By = AyjA3 € L(Ey — E)
can be introduced. If it turns out that B, has a bounded inverse or B, = 0, then B has a
skeleton chain {B;, By} of length 2. The chain {B;, By} is singular if By = 0 and regular
otherwise. Also, the third case is possible: operator B, is irreversible non null operator.
Then chain length is greater than 2 and one should continue chain’s construction.

Indeed, this process can be continued for a number of linear operators by introduction
of the normed linear spaces F;, © = 1,...,p and by bounded operators construction Agy; €
L(E;_1 — E;), Agi_1 € L(E; — FE;_1), which satisfy the following equalities

AgiAgi 1 = Agiy1Agin,1=12,...,p—1. (3)
Equation (3) defines a sequence of linear operators {By,...,B,} as follows
B =AyAgi1,i=12,....p. (4)

Obviously B; € L(E; — E;). Here the operator B, either has a bounded inverse or B,
is a null operator acting from E, to E,. This process can be formalized as the following
definition.

Definition 1. Let B = A;A, and operators {A;}:2, satisfy (3). Let operators
{B1,...,B,} be defined by (4), operators {By,...,B,_1} be noninvertible, and operator
B, have a bounded inverse or be a null operator acting from E, to E,. Then the operator
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B generates a skeleton chain of linear operators {By,...,B,} of length p. If B, # 0 then
the chain is regular, if B, = 0 then the chain is called singular. Operators {By,...,B,}
are called skeleton-attached to operator B.

The most important linear operators generating skeleton chains of the finite lenghts
are given below:

1. Let £ = R™, then a square matrix B : R™ — R™ with det B = 0 obviously has
skeleton chain {By,...,B,} of decreasing dimentions. The final matrix B, will be
regular or null matrix, detB; =0,:=1,...,p— 1.

2. Let E be an infinite dimentional normed space, then a finite operator B = > (-, ;) z;,

1=1
where {z;} € E, v; € E* has a skeleton chain consisting of finite number of matrices
{B1,...,B,} of decreasing dimentions. Here By = [[(2;,7;)[|}};=; is the first element

of this chain, detB; =0,7=1,...,p — 1. B, is a null matrix or det B, # 0.

Here according to Definition 1 the length of the chain p = 1 if det[(z;,7;)]7,=, # 0 or
(zi,7j) = 0,4,5 = 1,2,...,n. In general case the chain always consists of finite number of
matrices.

Using (3), (4) and Definition 1 the following result can be formulated.

Lemma 1. If the operator B has a skeleton chain of length p then
B" = A1A3 R AananflA2n72A2nf4 Ce AQ, n = 1, BN ¥ + 1, (5)

where By, B, ... B, are elements of the skeleton chain of the operator B.
From Lemma 1 it follows

Corollary 1. If the operator B has a singular skeleton chain of length p, then B is a
nilpotent operator of index p + 1.

To proof the Corollary it is sufficient to put n = p + 1 and demonstrate that B! is
a null operator because B, is a null operator due to the above introduced definition of a
singular skeleton chain.

2. Reduction of Abstract Irregular Equation to the Sequence
of Regular Equations

The operator B and linear operators {Ai}?ﬁl from a skeleton chain of the operator
B are assumed to be independent of x and commutative with linear operators L and
L;. In this paragraph for sake of clarity it is assumed that operators L and L; can be
different from the introduced above differential operators L(), Li(22) and equation can
be considered in abstract form

BLu = Lyu + f. (6)

Equation (1) can be considered as a special case of equation (6). Obviously, the introduced
commutativity condition is fulfilled for (1) with linear operator B independent of = and
introduced differential operators L(Z), Li(2).
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Let us reduce equation (6) to a system of p+ 1 equations which are regular in certain
conditions imposed on operators L, L;. Let us start with the simple case when p = 1.
Introduce a system of two equations

BiLu; = Liu; + Ayf, (7)

Llu = —f + AlLul. (8)

where u € E and u; € E;. The decomposed system (7) — (8) can be obtained by formal
multiplication of (6) by the operator A, from the skeleton decomposition of the operator
B and making notation u; = Asu.

It is to be noted that system (7), (8) is splitted and B; is an invertible operator.
Therefore if the operators ByL — Ly, and L; have bounded inverse operators then a
unique solution can be constructed. Of course without additional conditions there remains
a question: Does a constructed solution u(x) satisfy (6)7

Let us introduce two lemmas establishing the link between (6) and system (7), (8) to
answer that question.

Lemma 2. Let u* satisfy (6) and operator Ly have left inverse. Then a pair uf = Asu*, u*
satisfies (7), (8).

Proof. Based on conditions of the Lemma the following equality is satisfied

A ALu” = Lyu™ + f. 9)
From (9) because of commutativity condition the following equality is valid

A LAyu" =Lyu* + f (10)

and
AQAlLAQ’lL* = L]_AQU* + A2f (11)

The latter equality demonstrates that uj = Ayu* is a solution of (7). Substitution u} into
the right hand side of (8) yields the following equation with respect to u with the known
right hand side

Liu=—f+ A A Lu’.

Here the operators commutativity property is employed. The solution exists for such
equation. Indeed, due to (9) right hand side of the equation is equal to Lju*. Hence
for given u* and uj = Asu* the right hand side belongs to the range of the operator L.
Therefore, Lyu = Lyu*. Since the operator L; has left inverse, then u* is a unique solution
to (8) for u; = Asu*. Lemma 2 is proved.

O
Lemma 3. Suppose that a pair (u},u*) is a solution to (7), (8). Let the operator Ly have
right inverse Ly*. Then element u* satisfies (6).

Proof. The element — f + A;Luj belongs to the range of operator L;, because a pair uj, u*
satisfies (7), (8). Hence u* = L' (—f 4+ A;Lu}) because —f + A;Lui € R(Ly), where
R(L;) is the range of the operator L;. It is to be demonstrated that the constructed
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element u* satisfies (6) because by hypothesis u] satisfies (7). Indeed, substitution of the
constructed u* into (6), where B = AjA,, yields

AlAQLLl_l(—f + AlLUT) = AILUT
Taking into account operators commutativity, the following equality is valid

Since A; and L are linear operators then it remains to verify that in (12) the element in
brackets is zero. Since uj € F; satisfies (7), where By = Ay A, then the following equality
is valid

As(ALuj — f) = Lyuj. (13)
Hence Ay(A Lut — f) € R(Ly) and ui = Li'Ay(ALu} — f), where L' is the right
inverse to the operator L;. Since AsL; = L;A; then Ay, = Ll’lAng. This yields
AL = Li'ALLiL Y From equality LiL;* = T it follows that the right inverse Lj*
is also commutative with the operator Ay. Then (13) can be represented as

Thus we have shown that expression in brackets in (12) is zero. Lemma 3 is proved.

O
Let us concentrate on general case of skeleton chain of arbitrary finite length p. We
assume operator B to have a skeleton chain {B;,...,B,}, p > 1, and linear operators
{A;}??, represent decomposition of B; which skeleton is attached to B. Introduce
Ui:HAqu,izl,...,p, (14)
j=1
where u; € Ei, U; = Agiui_l, Uy -— U.
If g satisfies (6) then for p € N by Definition 1 we get equalities
p
BpLU,p = Llup + H Agjf, (15)
j=1
Liu; = — H Aoif + Agipi Ly, (16)
j=1
Llu = —f -+ AlLul. (]_7)

For p > 2 there is a connection between the solution of (6) and system (15) — (17). In
particular the following two lemmas can be formulated.

Lemma 4. Let u* satisfy (6) and operator Ly have left inverse. Then elements uj =
[T=) Agju*, i =p,p—1,...,1 satisfy (15), (16), and u* satisfies (17).

Lemma 5. Let elements uy,uy_ i, ..., uj,u” satisfy (15) — (17) and operator Ly have right
inverse. Then element u* determined from (17) of spitted system (15) — (17) is a solution
to (6).
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Proof of Lemma 4 and Lemma 5 for any natural number p can be reduced to
employment of the skeleton chain via operators {Aj}?il and repeats of stages of the
proofs of Lemmas 2 and 3 for the case of p = 1. Based on Lemmas 1-5 the following main
result can be formulated.

Main Theorem. Let irreversible bounded operator B have a skeleton chain
{Bu,...,B,}. Let operator B,)L — L; have a bounded inverse with a domain in E,. Let
operator Ly be defined on domains E;, 1 = 1,...,p and E. Let operator Ly have an inverse
bounded operator on E;, i = 1,...,p or E. Then system (15) — (17) enjoys a unique
solution {w), ws_y, ..., uj,u*}, where

p
up = (B,L — L) ] Axif,
j=1

uf = L' {— [[ A f + Ay Luj, Ji=p—1,....1,

j=1
u* =LY ~f+ A Luj}.
Moreover, element u* satisfies (6) and u; = Hj’:1 Aju*i=1,...,p

By setting the initial-boundary conditions to ensure the reversibility of the operators
L; and B,L —L; with specific differential operators L and L; and using the Main Theorem
the existence and uniqueness theorems can be derived. Moreover, the formula obtained in
Theorem can effectively build the desired classical solution of (1) with sufficient smoothness
of f:Q c R™! — E and the coefficients of the differential operators L and L;. Such
applications of the theory are discussed further in section 3.

3. The Existence and Methods of Constructing Solutions
of Nonclassic BVP with Partial Derivatives

Consider the system

OFthey(z t OFthey(z t
B Z ey ks 8tk18:<[k2 ) = Z Cklk2Wi‘k;) + f(z, ). (18)
k1+ka<n k1+ka<m
Here m < n, B is a constant N x N matrix, det B = 0, ay, ,, Ck,k, are numbers, a,o£0, Gon =
0, com # 0, ¢mo = 0. The vector-functions u(z,t) = (ui(x,t),...,un(z,t)T, f(z,t) =
(filz,t), ..., fn(z,t))T are supposed to be defined and analytical for —co < z,t < oo.
Let rank B = r < N. Then based on [11| B = AjA,, where A; is an N X r matrix,
A, is an r X N matrix. Let us introduce an r x r matrix B; = A,A; and assume that
det By # 0. Then taking into account Lemma 3, the solution to (18) can be reduced to
the successive solution of (7), (8), which are in this case as follows:

Otk (z,t OFtkq (.t
LY g O ot _ >, Cklkzz#JrAzf(%t)a (19)

OtF10zk2 Otk10xk:
k1+ka<n k1+ko<m
Otk (2, 1) A A OF kg (2,1) 50
E Chy ko otk1ork2 —f([E, ) + A E Ay kg Otkigpke ( )
k14+ko<m k1+k2<n
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where det By # 0, uy(z,t) = (uyi(z,t), ..., ui(z,t))T,r < N, uy = Asu. By hypothesis
ano 7 0, com # 0, therefore for system (18) one may introduce the initial conditions

o' t
Fu@ | 01, m—1, (21)
oxt |,
g t
AU o (22)
ot |,

The vector-function u; (z, t) based on Kovalevskaya theorem can be defined as a unique
solution to system (19) with initial conditions
Oy (z,t)
ot
By substitution of vector u;(z,t) into the right hand side of (20), the desired vector u(x,t)

can be found as a unique solution to the Cauchy problem (20), (21).
Consider system

BM = <2 — a26—2>u(a:,t) + f(z,t), n > 3. (23)

=0,i=0,1,...,n— 1.
t=0

ox™ ot 0x?

As in system (18), B is a singular N x N matrix with rankB=r < N, B = A;A,y, B; =
AyAy, det By # 0. Let f(z,t) = (fi(z,t),..., fx(z,t))T be a vector-function defined for
0<z<1,0<t< oo, continuous with respect to x and analytical by ¢, u = (uy,...,uyx)’.

The objective is to construct a solution of (23) in @ = {0 <z < 1,0 <t < co}. Based
on Lemma 4 and the Main Theorem introduce system of two equations (u; = Asu)

O"ur(z,t) (0 5 O0°
Bl O - (815 —a o2 Ul(l', t) + A2f(£7 t)a (24)
0 , 07 B 0™y (z,t)
(E —a @>u(x,t) = —f(z,t) + AlT (25)
with initial-boundary conditions
Jnl@ )l o 01, -1, (26)
oxt |, ,
u(x,t)|4=o = 0, (27)
w(x,t)|e=0 = 0, u(x,t)],=1 = 0. (28)

Since det By # 0 then the vector-function wuy(z,t) based on Kovalevskaya theorem can be
defined as a unique solution of Cauchy problem (24) —(26). Substitute u(x,t) into the
right hand side of (25). A unique solution of the first boundary value problem (25), (27),
(28) is constructed for the heat equation using known formula (here readers may refer to
p. 215 in [12]), using the source function. The constructed solution u(x,t) will be a classic
unique solution of (23) in domain Q@ = {0 <z < 1,0 < ¢t < oco}. This solution satisfies
the initial conditions

O'u(x,t
AQ% :O,z:l,...,n—l
L =0
and (27), (28).
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4. Skeleton Decomposition in the Theory of Irregular ODE
in a Banach Space

Consider the simplest irregular ODE

du(t)
Oy + 100, (29

f(t): [0,00) > E, B € L(E — E). Let {By,...,B,} be a skeleton chain of the operator
B. Then from the Main Theorem the following results can be formulated.

B

Theorem 1. Let {By,...,B,} be a reqular skeleton chain, the function f(t) be (p —1)-
times differentiable. Then equation (29) with initial condition

p
HAqu(t>’t:0 = Cg, Cg € Ep (30)
j=1

enjoys a unique classic solution uy(t, cy). Here

Uo(t, Co) = —f(t) + Al%, (31)

where uy is defined uniquely (see the Main Theorem).

Let us outline the scheme for construction of the function u; (¢, ¢o) in solution (31) to
problem (29), (30):

1. If p = 1 then uy(t, ¢o) satisfies the regular Cauchy problem

{ Bl% =wu + Asf(t),
U,l(O) = Cp.

2. If p > 2 then the function (¢, co) can be constructed by the following recursion

—[JAxsf@),i=p—1p—2...,1

J=1

u;(t, co) = Asita

Theorem 2. Let {By,...,B,_1,0} be a singular chain of length p > 1, 0 is a null operator
acting from E, to E,. Then B is a nilpotent operator and the homogeneous equation
Bi—;‘ = u has only trivial solution. In this case, if the function f(t) is p-times differentiable
then the unique classic solution of (29) can be constructed as follows

un(t) = —f(t) + B%unl(t), up(t) =—f(t),n=1,2,...,p.

Here the function u,(t) is a unique classic solution of (29).
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Conclusion

This paper reports on the novel method of skeleton chains initiated in [4] for the linear

operators in order to produce new non-classical boundary value problems for systems of
differential and integral-differential equations with partial derivatives arising in modern
mathematical modelling.
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O IIOCTPOEHUU PEIIIEHUI HEPEI'VJIIPHBIX CIICTEM
C YACTHBIMMU ITPON3BO/JIHBIMII HA OCHOBE TEOPUN
CKEJIETHBIX PA3JIOKEHUNM JIMHENHLBIX OIIEPATOPOB

I.H. Cudopos'?, H.A. Cudopos®

"YucruryT cucrem sueprernkn nmenn JI.A. Menentsesa CO PAH, 1. VpkyTck
2I/IpKyTCKHfI HAIMOHAJIbHBINA HCCJIe0BATEIbCKII TeXHn4YecKuil yaupepcurer, 1. VIpKyTck
SpxyTckmii rocyaapcTBeHHbIH YHUBEpCHTET, I. VIpKyTCK

PaccmarpuBatoTcss JWHEHHBIE CHCTEMBI YPABHEHUN € YACTHBIMHU MPOU3BOIHBIMHU. B
TJIABHON YaCTH CUCTEM CTOWT JIMHEHHBINH HEOOPATHMBIA OMepaTop, JOMYCKAIUA CKeIeT-
HOe pasyioxkenue. Bxomsmue B cucremy muddepennuaabHbEe OMepaTopbl KMET I0CTATOY-
vo rmnankue Kodbdunuentsr. Obnactu onpenenenns AuddEPEHITNATBHBIX OMEPATOPOB B
KOHKPETHBIX CHTYaIudX, PACCMOTPEHHBIX B pabOTe, COCTOAT M3 JIMHEIHBIX MHOrO0Opa3mit
JOCTATOYHO TJIAAKUX (DYHKIHUI cO 3HAUEHUSIMU B OAHAXOBOM TTPOCTPAHCTBE MOTIMHEHHBIX
JIOTIOJTHUTETHHBIM IPDAHUYHBIM YCIOBUSM. BBOMUTCS MOHATHE CKEJIETHOM MEMOYKHU JINHENHO-
TO OTepaTopa, CTOAIIEro B IVIABHOM YacTu cucrteMbl. [Ipeamonaraercs, ITO 3TOT ONMepaTop
MMOPOXKIAET CKEJETHYIO IENOYKY KOHEYHOH IJIMHBI. B 3TOM cirydae perieHne MCXOIHON Cu-
CTEMBI CBOJIUTCA K PEryJIapHONA PACHICIJICHHON CUCTeMe YPABHEHUI, PA3PEIIeHHBIX OTHOCH-
TENBHO crapiiux AudPepeHnaibHbIX BEIPAXKEHHUH C OlIPE/IEIEHHBIMI HAYAJIbHO-KPAEBBIMU
YCAOBUSIMU. Y KA3aHbBI BO3MOYKHBIE 0D0ODIEHNS TPEIIOKEHHOTO TOIX0a U PACCMOTPEHO ero
MPUJIOXKEHNE K TTOCTAHOBKE I'DAHUYHBIX 337189 B HEJMHEHHOM ciaydae. Pe3yabrarsl momos-
HSAIOT 3JEMEHTHI Teopuu AudHepeHnnaIbHbIX YPABHEHNH C BHIPOXKICHUAMU, 3AJI0KEHHBIE
B monorpadmusax MR 87a:58036, Zbl 1027.47001.

Karoueenie caoea: nekoppexmuan 3adava; 3adara Kowu; neobpamumnid onepamop; cke-

AEMHOE PA3AOHCEHUE, CKEAETNIHDIE UENOYKU, 2PAHUTHDLE 3adamu.
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