
MSC 68W10 DOI: 10.14529/mmp170310

CIRCULAR SHIFT OF LOOP BODY � PROGRAMME
TRANSFORMATION, PROMOTING PARALLELISM

O.B. Steinberg,

South Federal University, Rostov-on-Don, Russian Federation, olegsteinb@gmail.com

The article deals with the programme transformation executing the circular shift of
loop body statements. It can be used for vectorizing or parallelizing. This becomes possible
due to the fact that when the order of loop body statements is changed, some of the
bottom-up arcs become top-down arcs. Besides, sometimes loop carried dependence arcs
are substituted by loop independent ones. It should be pointed out that in executing
the circular shift the number of loop iterations is reduced by one. The transformation
can be used both independently and in conjunction with other transformations promoting
parallelism. These could be "forward substitution", "scalar expansion", "privatization",
"array expansion", etc. The transformation under consideration in this article can be used
both in hand parallelization and added to a paralleling (optimizing) compiler. Moreover,
the application of the transformation results in the equivalent code only for the loops where
loop unrolling is the equivalent transformation. Thus, they can contain nested loops, if
statements and other programming language statements.

Keywords: parallel computations; programme transformations; dependence graph; scalar

expansion; loop distribution.

Introduction

In parallelizing, attention is primarily focused on loops, they being subdivided into
di�erent types according to the extent that they lend themselves to parallel execution.
Serial loops, i.e. the ones not suited for parallel execution, are attributed to one type.
The loops with all loop iterations suited for parallel computation are attributed to
the second type [1, 2]. The loops with only some loop iterations lending themselves to
parallel computation belong to the third type [1, 2]. Moreover, some of the serial loops
become suitable for parallel execution after they undergo auxiliary transformations [1�
3, 5]. The transformations can result both in loops where all the loop iterations admit
parallel execution [1, 2], and in loops where only some of the loop iterations are suitable
for it [6, 7]. "Statement interchange", "scalar expansion", "forward substitution", "node
splitting", "array expansion", "privatization" etc. may be attributed to the �rst type of
parallelizing transformations. The present article introduces a new transformation called
"circular shift". It is worth noting that a similar transformation was described in [4, 6]. It is
based on the dependent migration but the works describing this transformation consider
applying it only to loops free of variables which are independent of the loop count. It
is exclusively regarded for maximizing the number of iterations run parallel in case of
DOACROSS loops (i.e. the loops where only a part of iterations are suitable for parallel
execution) [6].

The transformation dealt with in the article can be used both independently and in
conjunction with other parallelizing transformations. It can promote making the loops
suitable both for parallel execution and vector execution. This transformation can be both
used in hand parallelization and added to a parallelizing (optimizing) compiler [1, 2, 8, 9].

120 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 3, pp. 120�132



ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

1. De�nitions and Concepts of Programme Transformation Theory

Let us de�ne the fundamental concepts used in analyzing dependencies in programmes
[1, 2, 10].

De�nition 1. The occurrence of a variable is the name of the variable in conjunction
with the place where this variable �rst occurred. To any occurrence (and for arrays � at a
certain value of the index expression) corresponds an access to a memory location. If in
case of an access to a memory location the data are read, then such an occurrence is called
usage (in), but if they are written, it is called a generator (out).

De�nition 2. Two occurrences are said to generate information dependence [1�3, 10] if
they have access to the same memory location.

De�nition 3. Depending on what type of occurrences have access to the same memory
location, four types of dependencies are distinguished: out-out � an output dependence, out-
in � a true (�ow) dependence, in-out � an antidependence, in-in � an input dependence.

De�nition 4. Information dependence is called a loop independent dependence if these
occurrences have access to the same memory location in the same loop iteration. Otherwise,
the dependence is called a loop carried dependence [3, 10].

De�nition 5. When making decisions in programme transformation, a dependence graph
is crucial [1�3, 11]. The occurrences of variables are the vertices of this graph. The arc is
directed from vertex i to vertex j if occurrences, corresponding to these vertices, generate
true dependence, output dependence or antidependence. Moreover, �rst an occurrence
corresponding to vertex i has access to the same memory location, then an occurrence
corresponding to vertex j does.

Let us also consider several basic programme transformations you should know to
complete understanding of the contents of the following.

De�nition 6. Statement interchange is the name of the programme transformation which
changes the order of two neighbouring statements.

De�nition 7. Full loop unrolling is the name of the programme transformation which
substitutes a programme loop:

for(i = 0; i < N; i=i+1)

{

LoopBody(i);

}

by a programme fragment:

LoopBody(0);

LoopBody(1);

...

LoopBody(N-1);

Remark 1. Note that in this transformation the upper bound (N) should be known as
the transformation being executed and it must be greater than 0.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 3. Ñ. 120�132

121



O.B. Steinberg

The present paper deals solely with the loops for which loop unrolling is the correct
equivalent transformation. In particular, the body of the loop unrolled does not contain
"break" and "continue" statements in C++ which are permitted only inside the loop body,
and there are no labelled statements, lest several statements with the same label appear
in the copies of the loop body. Besides, inside the loop body the upper bound and the
loop stride are unchanged and there is no loop count generator.

De�nition 8. The transformation called "loop distribution" is of no small importance
in parallelizing programmes. The purpose of the loop distribution is to substitute the loop
whose body contains a great deal of statements:
for(i = 0; i < N; i++)

{

Statement1

...

Statementk

Statementk+1

...

StatementM

}

for the equivalent programme fragment consisting of several loops whose bodies contain
fewer statements:
for(i = 0; i < N; i++)

{

Statement1

...

Statementk

}

for(i2 = 0; i2 < N; i2++)

{

Statementk+1

...

StatementM

}

In parallelizing, a big loop often cannot be e�ectively mapped on the architecture of
a parallel computer (for instance, due to the lack of resources). In this case, after the
loop distribution all or at least several of the resulting loops can probably be computed in
parallel. This transformation was analyzed in [1�3]. The conditions of the loop distribution
being executable are similar to the conditions of vectorization or partial vectorization [10]
of a one-dimensional loop. From the point of view of the parallel execution, loops can
belong to di�erent groups. In this paper the loops where all iterations are suitable for
parallel execution will be considered parallel. An example of such a loop can be the one
that follows:
for(i = 0; i < N; i++)

{

A[i] = B[i]*C[i];

}

122 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 3, pp. 120�132



ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

Besides, the loops suiting for vectorizing are also distinguished.

Example 1. Consider a loop where no iteration (except the �rst) can be executed prior
to the previous one:

for(i = 0; i < N; i++)

{

A[i+1] = B[i]*C[i];

D[i] = A[i]*E[i];

}

However, all the iterations for the �rst assignment statement can be executed concurrently
�rst, and then the same can be done for the second one. To designate that vector execution
of the loop body statements is possible, we write it in the way similar to Fortran:

A[1:N] = B[0:N-1]*C[0:N-1];

D[0:N-1] = A[0:N-1]*E[0:N-1];

There are also loops suiting for vector execution using vectors of a certain length.
Consider an example of a loop like this.

Example 2. Consider a recurrent loop [7]

for(i = 0; i < 4*N; i++)

{

A[i+4] = A[i]*C[i];

}

This loop can be executed using vector registers of length 4.

for(i = 0; i < N; i=i+4)

{

A[i+4:i+7] = A[i:i+3]*C[i:i+3];

}

Note that in the initial loop in this example, every four iterations could run in parallel.
Thus, it can be both vector executable and run in parallel.

Remark 2. Note that if all the iterations in any loop can run in parallel, it can also be
executed using vector architecture. For instance, the research of the simultaneous usage
of vectorizing and parallelizing in recurrent loops was examined in [12].

2. The Loop Body Circular Shift

The present work is devoted to the transformation which will be called "circular shift".
This transformation consists of a substituting code fragments

Statement1(0);

...

Statementk-1(0);

for (i = 0; i < N-1; i++)

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 3. Ñ. 120�132

123



O.B. Steinberg

{

Statementk(i);

...

StatementM(i);

Statement1(i+1);

...

Statementk-1(i+1);

}

Statementk(N-1);

...

StatementM(N-1);

where N > 0, for the loop

for (i = 0; i < N; i++)

{

Statement1(i);

...

StatementM(i);

}

In this case a circular shift of length k is said to have been applied.

Theorem 1. The "circular shift of length k" programme transformation is equivalent.

Proof. Apply the "loop unrolling" transformation to the cycles of initial and resulting
code fragments of the circular shift de�nition. This will result in two identical fragments.
Loop unrolling being an equivalent transformation, initial fragments are equivalent as well.
Circular shift is a transformation promoting parallelizing.

2
Example 3. Consider loop:

for(i = 0; i < N; i++)

{

A[i] = B[i]+C[i];

C[i+1] = D[i]*E[i];

}

This loop contains a loop carried �ow dependence generated by array C occurrences. Its
existence prevents di�erent loop iterations from run in parallel. Now apply circular shift
to the initial loop.

A[0] = B[0]+C[0];

for(i = 0; i < N-1; i++)

{

C[i+1] = D[i]*E[i];

A[i+1] = B[i+1]+C[i+1];

}

C[N] = D[N]*E[N];

This results in a loop where all the iterations can be computed independently, consequently,
it is suitable both for the vector and parallel execution.

124 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 3, pp. 120�132



ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

3. Using the "Circular Shift" Transformation in Conjunction

with Other Programme Transformations

In parallelizing both single transformations and whole sequences can be used. For
instance, sometimes a statement interchange promotes distribution [13], and a loop
distribution can result in removing the dead code.

3.1. Simultaneous Use of Circular Shift and Forward Substitution

In some cases "forward substitution" programme transformation can be used to eliminate
loop carried antidependencies. Forward expression substitution [2, 3] is a transformation
substituting the right part of an assignment statement for the succeeding occurrence of
the left part of the same statement.

Example 4. Consider the loop which contains a loop carried �ow dependence formed by
variable C occurrences:

for(i = 0; i < N; i++)

{

A[i] = B[i]+C;

C = D[i]+E[i];

}

Apply the circular shift to it:

A[0] = B[0]+C;

for(i = 0; i < N-1; i++)

{

C = D[i]+E[i];

A[i+1] = B[i+1]+C;

}

C = D[N-1]+E[N-1];

This loop is not yet suited either for the vector or parallel execution. But if forward
substitution is applied to this loop, a new loop can be obtained:

A[0] = B[0]+C;

for(i = 0; i < N-1; i++)

{

C = D[i]+E[i];

A[i+1] = B[i+1]+D[i]+E[i];

}

C = D[N-1]+E[N-1];

Now, applying the loop distribution, we obtain as follows:

A[0] = B[0]+C;

for(i = 0; i < N-1; i++)

{

C = D[i]+E[i];

}

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 3. Ñ. 120�132

125



O.B. Steinberg

for(i = 0; i < N-1; i++)

{

A[i+1] = B[i+1]+D[i]+E[i];

}

C = D[N-1]+E[N-1];

It can readily be noticed that only the last iteration is left of the �rst loop, the one which
computes the �nal value of variable C. It is a "dead code" as well, because the value of
variable C is not used within the loop, but is calculated anew immediately after it:

A[0] = B[0]+C;

C = D[N-2]+E[N-2];

for(i = 0; i < N-1; i++)

{

A[i+1] = B[i+1]+D[i]+E[i];

}

C = D[N-1]+E[N-1];

The result is a loop where all the iterations can be computed independently, and,
consequently, it is suitable both for the vector and parallel execution. The applicability of
this approach to eliminating the loop carried dependence is limited by the applicability
conditions of the "forward substitution" transformation.

3.2. Simultaneous Use of Circular Shift and Scalar Expansion

Scalar expansion [1�3, 10] in substituting consists of a certain scalar variable
occurrences in the loop body for the occurrences of a temporary array. For instance, it can
be used to eliminate the bottom-up arc of the loop carried dependence. Due to this, the
scalar expansion is used to make the loop suitable for parallelizing or for its distribution.
It should be noted that this approach presupposes extra memory consumption.

Example 5. Let us consider another way of making the loop in example 4 suited for
parallel execution. Apply scalar expansion to it:

C_temp[0] = C;

for(i = 0; i < N; ++)

{

A[i] = B[i]+C_temp[i];

C_temp[i+1] = D[i]+E[i];

}

C = C_temp[N];

Now "statement interchange" programme transformation can be applied to assignment
statements in the resulting loop, which makes the vector execution of the loop possible:

C_temp[0] = C;

C_temp[1:N] = D[0:N-1]+E[0:N-1];

A[0:N-1] = B[0:N-1]+C_temp[0:N-1];

C = C_temp[N];

Besides, "loop distribution" transformation can now be applied:

126 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 3, pp. 120�132



ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

C_temp[0] = C;

for(i = 0; i < N; i++)

{

C_temp[i+1] = D[i]+E[i];

}

for(i = 0; i < N; i++)

{

A[i] = B[i]+C_temp[i];

}

C = C_temp[N];

This results in two loops being obtained, all the iterations of each suitable for independent
execution. Thus, a programme fragment suitable for parallel execution is obtained.

Remark 3. Note that vectorizing and parallelizing in this example became possible
only due to the feasibility of "statement interchange" transformation. Let us proceed
to considering the simultaneous use of the "scalar expansion" and "circular shift"
transformations.

Example 6. Apply circular shift to the loop in example 4:

A[0] = B[0]+C;

for(i = 0; i < N-1; i++)

{

C = D[i]+E[i];

A[i+1] = B[i+1]+C;

}

C = D[N-1]+E[N-1];

Now apply scalar expansion to the resulting loop:

A[0] = B[0]+C;

C_temp[0] = C;

for(i = 0; i < N-1; i++)

{

Ñ_temp[i] = D[i]+E[i];

A[i+1] = B[i+1]+C_temp[i];

}

C = D[N-1] + E[N-1];

The result is a loop in which all iterations can be both the vector executed and run in
parallel. Besides, if the vector execution is required, the number of the elements in the
temporary array created by the scalar expansion can be equal to the vector register length:

A[0] = B[0]+C;

C_temp[0] = C;

for(i = 0; i < (N-1)/4; i=i+4)

{

Ñ_temp[i:i+3] = D[i:i+3]+E[i:i+3];

A[i+1:i+4] = B[i+1:i+4]+C_temp[i:i+3];

}

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 3. Ñ. 120�132

127



O.B. Steinberg

for(i = (N-1) - (N-1)%4; i < (N-1); i++)

{

Ñ = D[i]+E[i];

A[i+1] = B[i+1]+C;

}

C = D[N-1] + E[N-1];

In the fragment above, loop L1 is suitable for the vector execution on the architecture
with vector registers containing 4 elements. Vectors of such length occur, for instance,
while using SSE2 and type int arrays.

3.3. Simultaneous Use of Circular Shift and Array Expansion

Let an array occurrence, independent of the given loop count, be present inside the
loop. Then within the limits of this loop the given occurrence can be regarded as a scalar
variable.

Example 7. Consider loop:

for(i = 0; i < N; i++)

{

A[i] = B[i]+C[j][k];

C[j][k] = A[i+2]+E[i];

}

Having the applied circular shift and the transformation identical to the scalar expansion
we obtain the following fragment suitable for the vector execution:

A[0] = B[0]+C[j][k];

C_temp[0] = C[j][k];

for(i = 0; i < N-1; i++)

{

Ñ_temp[i] = A[i+2]+E[i];

A[i+1] = B[i+1]+C_temp[i];

}

C[j][k] = A[N+1]+E[N-1];

Now, having the applied loop distribution, we can obtain a programme fragment containing
two loops suitable for parallelizing:

A[0] = B[0]+C[j][k];

C_temp[0] = C[j][k];

for(i = 0; i < N-1; i++)

{

Ñ_temp[i] = A[i+2]+E[i];

}

for(i2 = 0; i2 < N-1; i2++)

128 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 3, pp. 120�132



ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

{

A[i+1] = B[i+1]+C_temp[i];

}

C[j][k] = A[N+1]+E[N-1];

Remark 4. It should be noted that when applied to index variables, the transformation
identical to the scalar expansion is known as the array expansion [11, 14].

3.4. Simultaneous Use of Circular Shift and Privatization

Sometimes, if a scalar variable is present in a loop body, its separate copy is created for
each parallel �ow. Such transformation is known as privatization [1, 2].

Example 8. Consider the loop containing a loop generated �ow dependence formed by
scalar variable C occurrences:

for(i = 0; i < N; i++)

{

for(j = 0; j < M; j++)

{

A[j] = B[j]+C;

}

C = D[i]*E[i];

}

Apply the circular shift to the body of this loop:

for(j = 0; j < M; j++)

{

A[j] = B[j]+C;

}

for(i = 0; i < N-1; i++)

{

C = D[i]*E[i];

for(j = 0; j < M; j++)

{

A[j] = B[j]+C;

}

}

C = D[N-1]*E[N-1];

This results in loop L2 where if a separate ("private") copy of variable C is created for
each iteration, all its iterations can be computed independently. All the iterations of loop
L1 can also be computed in parallel. Besides, all the loops of the fragment obtained can
be the vector executed using vectors of length 4. To do this, "private" vector CC of length
4 should be created with each coordinate equal to C.

Acknowledgements. The reported study was funded by RFBR, according to the
research project No 16-31-60055 mol_à_dk.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 3. Ñ. 120�132

129



O.B. Steinberg

References

1. Allen R., Kennedy K. Optimizing Compilers for Modern Architectures. San Francisco, San
Diego, N.Y., Boston, London, Sidney, Tokyo, Morgan Kaufmann Publishers, 2002. 790 p.

2. Wolfe M. High Performance Compilers for Parallel Computing. Redwood City, Addison-
Wesley Publishing Company, 1996. 570 p.

3. Steinberg B.J. Matematicheskie metody rasparallelivaniya rekurrentnykh programnykh tsiklov

na superkompyutery s parallel'noy pamyatyu [Parallelizing Recurrent Program Cycles with
Irregular Superposition Computation]. Rostov-on-Don, Rostov University Publishing House,
2004. 192 p.

4. Duo Liu, Zili Shao, Meng Wang, Minyi Guo, Jingling Xue. Optimal Loop Parallelization
for Maximizing Iteration-Level Parallelism. Proceedings of International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES 09). N.Y., ACM, 2009,
pp. 67�76. DOI: 10.1145/1629395.1629407

5. Steinberg O.B. [Parallelizing Recurrent Program Cycles with Irregular Superposition
Computation]. Izvestiya vuzov. Severo-Kavkazskii region. Natural Science, 2009, no. 2, pp. 18�
21. (in Russian)

6. Duo Liu, Yi Wang, Zili Shao, Minyi Guo, Jingling Xue. Optimally Maximizing Iteration-Level
Loop Parallelism. IEEE Transactions on Parallel and Distributed Systems, 2012, vol. 23, no. 3,
pp. 564�572. DOI: 10.1109/TPDS.2011.171

7. Steinberg O.B., Sukhoverkhov S.E. [Recurrent Program Loops with Stability Check].
Information Technologies, 2010, no. 1, pp. 40�45. (in Russian)

8. Muchnick S.S. Advanced Compiler Design and Implementation. San Francisco, Morgan
Kau�man, 1997. 856 p.

9. Aho A.V., Lam M.S., Sethi R., Ullman J.D. Compilers: Principles, Techniques, and Tools.
London, Pearson Education, 2007. 1014 p.

10. Evstigneev V.A., Sprogis S.V. [Vectorizing Programmes]. Vektorizatsiya programm: teoriya,

metody, realizatsiya [Vectorizing Programmes: Theory, Methods, Implementation]. Moscow,
Mir, 1991, pp. 246�267. (in Russian)

11. Shulzhenko A.M. Issledovanie informatsionnykh zavisimostey programm dlya analiza
rasparallelivayushchikh preobrazovaniy [Researching Information Dependences of Programs
for Analyzing Transformations Used for Parallelizing. The Dissertation for Scienti�c Degree
of the Candidate of Technology]. Rostov-on-Don, 2006, 200 p.

12. Steinberg O.B. Rasparallelivanie tsiklov, dopuskayushchikh rekurrentnye zavisimosti
[Parallelizing Loops Allowing Recurrent Dependences. The Dissertation for Scienti�c Degree
of the Candidate of Physics and Mathematical Science]. Institute for System Programming
of the Russian Academy of Sciences, Moscow, 2014.

13. Steinberg O.B. [Minimizing the Number of Temporary Arrays in Loop Distribution Problem].
Izvestiya vuzov. Severo-Kavkazskii region. Natural Science, 2011, no. 5, pp. 31�35. (in
Russian)

14. Feautrier P. Array Expansion. Proceedings of the 2nd International Conference on

Supercomputing, N.Y., ACM, 1988, pp. 429�441. DOI: 10.1145/55364.55406

Received June 16, 2016

130 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 3, pp. 120�132



ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

ÓÄÊ 519.685.3 DOI: 10.14529/mmp170310

ÊÐÓÃÎÂÎÉ ÑÄÂÈÃ ÒÅËÀ ÖÈÊËÀ � ÏÐÅÎÁÐÀÇÎÂÀÍÈÅ
ÏÐÎÃÐÀÌÌ, ÑÏÎÑÎÁÑÒÂÓÞÙÅÅ ÐÀÑÏÀÐÀËËÅËÈÂÀÍÈÞ

Î.Á. Øòåéíáåðã, Þæíûé ôåäåðàëüíûé óíèâåðñèòåò, ã. Ðîñòîâ-íà-Äîíó

Â ñòàòüå ðàññìàòðèâàåòñÿ ïðåîáðàçîâàíèå ïðîãðàìì, âûïîëíÿþùåå êðóãîâîé
ñäâèã îïåðàòîðîâ òåëà öèêëà. Åãî ìîæíî èñïîëüçîâàòü äëÿ âåêòîðèçàöèè èëè ðàñ-
ïàðàëëåëèâàíèÿ. Ýòî ñòàíîâèòñÿ âîçìîæíûì áëàãîäàðÿ òîìó, ÷òî ïðè èçìåíåíèè ïî-
ðÿäêà ñëåäîâàíèÿ îïåðàòîðîâ òåëà öèêëà íåêîòîðûå äóãè, èäóùèå ñíèçó ââåðõ, ïðå-
âðàùàþòñÿ â äóãè, èäóùèå ñâåðõó âíèç. Òàêæå èíîãäà öèêëè÷åñêè ïîðîæäåííûå äóãè
çàâèñèìîñòè çàìåíÿþòñÿ íà öèêëè÷åñêè íåçàâèñèìûå. Ñëåäóåò îòìåòèòü, ÷òî ïðè âû-
ïîëíåíèè êðóãîâîãî ñäâèãà ÷èñëî èòåðàöèé öèêëà óìåíüøàåòñÿ íà åäèíèöó. Ïðåîáðàçî-
âàíèå ìîæåò ïðèìåíÿòüñÿ êàê íåçàâèñèìî, òàê è ñîâìåñòíî ñ äðóãèìè ïðåîáðàçîâàíèÿ-
ìè, ñïîñîáñòâóþùèìè ðàñïàðàëëåëèâàíèþ. Òàêèìè ïðåîáðàçîâàíèÿìè ìîãóò ÿâëÿòüñÿ:
≪ïîäñòàíîâêà âïåðåä≫, ≪ðàñòÿãèâàíèå ñêàëÿðîâ≫, ≪ïðèâàòèçàöèÿ≫, ≪ýêñïàíñèÿ ìàñ-
ñèâîâ≫ è äðóãèå. Âîçìîæíîñòè ïðèìåíåíèÿ ðàññìàòðèâàåìîãî â ñòàòüå ïðåîáðàçîâàíèÿ
ðàñïðîñòðàíÿþòñÿ êàê íà ðó÷íîå ðàñïàðàëëåëèâàíèå, òàê è íà äîáàâëåíèå åãî â ðàñ-
ïàðàëëåëèâàþùèé (îïòèìèçèðóþùèé) êîìïèëÿòîð. Ïðè ýòîì îãðàíè÷åíèå íà öèêëû,
ïðèìåíåíèå ïðåîáðàçîâàíèÿ ê êîòîðûì áóäåò ïðèâîäèòü ê ýêâèâàëåíòíîìó êîäó, ñâî-
äèòñÿ ê öèêëàì, äëÿ êîòîðûõ ýêâèâàëåíòíîé ÿâëÿåòñÿ ðàñêðóòêà. Òàêèì îáðàçîì, îíè
ìîãóò ñîäåðæàòü âëîæåííûå öèêëû, óñëîâíûå îïåðàòîðû è äðóãèå îïåðàòîðû ÿçûêà
ïðîãðàììèðîâàíèÿ.

Êëþ÷åâûå ñëîâà: ïàðàëëåëüíûå âû÷èñëåíèÿ; ïðåîáðàçîâàíèÿ ïðîãðàìì; ãðàô èí-

ôîðìàöèîííûõ ñâÿçåé; ðàñòÿãèâàíèå ñêàëÿðîâ; ðàçáèåíèå öèêëà.

Ëèòåðàòóðà

1. Allen, R. Optimizing Compilers for Modern Architectures / R. Allen, K. Kennedy. � San
Francisco; San Diego; N.Y.; Boston; London; Sidney; Tokyo: Morgan Kaufmann Publishers,
2002. � 790 p.

2. Wolfe, M. High Performance Compilers for Parallel Computing / M. Wolfe. � Redwood City:
Addison-Wesley Publishing Company, 1996. � 570 p.

3. Øòåéíáåðã, Á.ß. Ìàòåìàòè÷åñêèå ìåòîäû ðàñïàðàëëåëèâàíèÿ ðåêóððåíòíûõ ïðîãðàìì-
íûõ öèêëîâ íà ñóïåðêîìïüþòåðû ñ ïàðàëëåëüíîé ïàìÿòüþ / Á.ß. Øòåéíáåðã. � Ðîñòîâ-
íà-Äîíó: Èçä-âî Ðîñòîâñêîãî óí-òà, 2004. � 192 ñ.

4. Duo Liu. Optimal Loop Parallelization for Maximizing Iteration-Level Parallelism / Duo Liu,
Zili Shao, Meng Wang, Minyi Guo, Jingling Xue // Proceedings of International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES 09). � N.Y.: ACM,
2009. � P. 67�76.

5. Øòåéíáåðã, Î.Á. Ðàñïàðàëëåëèâàíèå ðåêóððåíòíûõ öèêëîâ ñ íåðåãóëÿðíûì âû÷èñëå-
íèåì ñóïåðïîçèöèé / Î.Á. Øòåéíáåðã // Èçâåñòèÿ âóçîâ. Ñåâåðî-Êàâêàçñêèé ðåãèîí.
Åñòåñòâåííûå íàóêè. � 2009. � � 2. � Ñ. 18�21.

6. Duo Liu. Optimally Maximizing Iteration-Level Loop Parallelism / Duo Liu, Yi Wang, Zili
Shao, Minyi Guo, Jingling Xue // IEEE Transactions on Parallel and Distributed Systems.
� 2012. � V. 23, � 3. � P. 564�572.

7. Øòåéíáåðã, Î.Á. Àâòîìàòè÷åñêîå ðàñïàðàëëåëèâàíèå ðåêóððåíòíûõ öèêëîâ ñ ïðîâåðêîé
óñòîé÷èâîñòè / Î.Á. Øòåéíáåðã, Ñ.Å. Ñóõîâåðõîâ // Èíôîðìàöèîííûå òåõíîëîãèè. �
2010. � � 1. � C. 40�45.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 3. Ñ. 120�132

131



O.B. Steinberg

8. Muchnick, S.S. Advanced Compiler Design and Implementation / S.S. Muchnick. � San
Francisco: Morgan Kau�man, 1997. � 856 p.

9. Aho, A.V. Compilers: Principles, Techniques, and Tools / A.V. Aho, M.S. Lam, R. Sethi,
J.D. Ullman. � London: Pearson Education, 2007. � 1014 p.

10. Åâñòèãíååâ, Â.À. Âåêòîðèçàöèÿ ïðîãðàìì / Â.À. Åâñòèãíååâ, Ñ.Â. Ñïðîãèñ // Âåêòîðè-
çàöèÿ ïðîãðàìì: òåîðèÿ, ìåòîäû, ðåàëèçàöèÿ. � Ì.: Ìèð, 1991. � Ñ. 246�267.

11. Øóëüæåíêî, À.Ì. Èññëåäîâàíèå èíôîðìàöèîííûõ çàâèñèìîñòåé ïðîãðàìì äëÿ àíàëèçà
ðàñïàðàëëåëèâàþùèõ ïðåîáðàçîâàíèé: äèñ. ... êàíä. òåõí. íàóê / À.Ì. Øóëüæåíêî. �
Ðîñòîâ-íà-Äîíó, 2006.

12. Øòåéíáåðã, Î.Á. Ðàñïàðàëëåëèâàíèå öèêëîâ, äîïóñêàþùèõ ðåêóððåíòíûå çàâèñèìîñòè:
äèñ. ... êàíä. ôèç.-ìàò. íàóê / Î.Á. Øòåéíáåðã. � Ìîñêâà, 2014.

13. Øòåéíáåðã, Î.Á. Ìèíèìèçàöèÿ êîëè÷åñòâà âðåìåííûõ ìàññèâîâ â çàäà÷å ðàçáèåíèÿ öèê-
ëîâ / Î.Á. Øòåéíáåðã // Èçâåñòèÿ âûñøèõ ó÷åáíûõ çàâåäåíèé. Ñåâåðî-Êàâêàçñêèé ðå-
ãèîí. Åñòåñòâåííûå íàóêè. � 2011. � � 5. � Ñ. 31�35.

14. Feautrier, P. Array Expansion / P. Feautrier // Proceedings of the 2nd International
Conference on Supercomputing. � N.Y.: ACM, 1988. � P. 429�441.

Îëåã Áîðèñîâè÷ Øòåéíáåðã, êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, êàôåäðà
≪Àëãåáðà è äèñêðåòíàÿ ìàòåìàòèêà≫, Þæíûé ôåäåðàëüíûé óíèâåðñèòåò (ã. Ðîñòîâ-
íà-Äîíó, Ðîññèéñêàÿ Ôåäåðàöèÿ), olegsteinb@gmail.com.

Ïîñòóïèëà â ðåäàêöèþ 16 èþíÿ 2016 ã.

132 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 3, pp. 120�132




