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We consider three problems of selecting optimal gun barrel direction (or those of
selecting optimal semi-axis position) when �ring an unguided artillery projectile on the
assumption that the gun barrel semi-axis can move in a connected nonconvex cone having
a non-smooth lateral surface and modelling visibility zone restrictions. In the �rst problem,
the target is in the true horizon plane of the gun, the second and the third problems deal
with some region of 3D space. A distinctive feature of the models is that the objective
functions are ε-Lipschitz ones. We have constructed a uni�ed numerical method to solve
these problems based on the algorithm of projecting a point onto ε-Lipschitz level function
set. A computer programme has been based on it. À series of numerical experiments on
each problem has been carried out.
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Introduction

Let us consider a problem of �ring an unguided projectile. It is required to minimize
the distance from the projectile drop point to the target. This problem is a problem of the
external ballistic theory. It has been studied fairly well (see [1]) if the following conditions
hold: air resistance is not taken into account, movement of the gun barrel is restricted by
the true horizon plane of the gun, and the Earth surface is spherical.

However, in reality, a gun barrel direction can be arbitrarily selected, as a rule, only
within some connected nonconvex cone that has non-smooth lateral surface and arises in
conditions narrowing the selecting gun barrel direction due to some obstacles.

To restrictions on the selecting gun barrel direction, it is often necessary to add
conditions such that the target can lie outside of the true horizon plane of the gun or,
possibly, on the surface de�ning the relief of a landscape. In the latter case, the problem
of selecting optimal gun barrel direction becomes much more complicated. The foremost
reason for this di�culty is that the minimal Euclidean distance from the target to the
projectile drop point does not always correspond to the optimal shot or even close to the
optimal one. For example, this lack of correspondence can be observed in case the target
and the projectile drop point are separated from each other by some substantial obstacle.

A mathematical model can be described as follows. Suppose dist(, ) is the Euclidean
distance, O is the point in which located the gun, l is a ray with origin O, N is the
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projectile drop point, N = N(l), M is the target, K is a cone with vertex O, D′ is a set
in space R3, and M ∈ D′. It is required

min
l

dist (N(l),M) ,

subject to l ∈ K, N(l) ∈ D′.

Naturally, there may be other possible mathematical models with other objective
functions. In particular, below we consider a problem in which the objective function is
the distance between the projectile trajectory and the point M .

We stress that, in this paper, air resistance is not taken into account. At the same
time, �rst, our models that are described and investigated below can be applied for �ring
an unguided heavy projectile. Secondly, the solutions obtained in the models can be served
as the base for further �nding for a more precise solution and can be re�ned by appropriate
methods.

Below, we formulate and investigate three problems for which a uni�ed algorithm for
their solving is constructed. Also, we present numerical results for several test examples;
these results were obtained with a computer programme implementing the algorithm.

1. Formulation of the Problems

Throughout, the gun is modelled by a point T , the direction of the gun barrel is
modelled by a ray starting from this point, the oblateness of the Earth is not taken into
account.

Let us choose a Cartesian coordinate system Oxyz with the origin O coinciding with
T . Suppose the plane Oxy is the horizontal plane at O, the axis Oz is directed vertically
up, and the gravitational acceleration g, vertically down. The directions of the axes Ox
and Oy will be given below. Throughout, we use the following notation: ∥·∥p is the p-norm
on Rn, n > 1 (the subscript p will be omitted for p = 2); int and fr are the operators
of taking interior and boundary in Rn, respectively; PriA is the projection of a set A on
the i-th axis (here, the axes x, y, and z are denoted by 1, 2, and 3, respectively); given
X ⊂ Rn and Y ⊂ R, we denote by Lip(X;Y ) the set of all Lipschitz continuous on X
functions f : X → Y with Lipschitz constant lip(f).

We will assume that the direction (i.e. ray position) of the gun barrel can be freely
selected within a closed cone K with the apex O and the cone K contains no vertical rays
starting from O. Neglecting the length of the gun barrel, suppose the initial projectile
velocity vector v has the initial point at O and has a constant length v0. In other words,
v ∈ S ∩K, where S = {v | ∥v∥ = v0} ⊂ R3 is the sphere of radius v0 centered at O. By v
denote the fraction v0/

√
∥g∥.

Throughout, we assume that the selecting direction of the gun barrel is equivalent to
the selecting the vector v = (vx, vy, vz) with a given �xed v0. This vector will be described
by means of a spherical coordinate system in the form

vx = v0 cosψ cosφ, vy = v0 cosψ sinφ, vz = v0 sinψ,

(φ, ψ) ∈ E ⊂ Θ := {(φ, ψ) | φ ∈ [0, 2π), ψ ∈ (−π/2, π/2)},
(1)

where the closed set E corresponds to the set S ∩K, which is given by coordinates (φ, ψ).
We assume that the air resistance is negligible. It follows that the trajectory travelled

by a projectile is a parabolic trajectory on the gun plane.
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In this paper we will consider three problems of selecting optimal gun barrel direction
when �ring an unguided projectile to the given target. We will suppose that the target M
is the point with y-coordinate equal to zero and M belongs to the convex set bounded by
the paraboloid reached by the projectile (see [1]), and this paraboloid is obtained by the
union of all the projectile trajectories on the condition of the constraints absence on gun
barrel directions. (The case, where the target can lie outside of the paraboloid, and the
problem of the joint selecting optimal gun barrel direction (φ, ψ) and magnitude v0 of the
initial projectile velocity are not considered in this paper.)

Among the points lying on the projectile trajectories, we will consider only the points
with x-coordinate such that x > κ, where κ = const and κ > 0. In practical terms, the
constant κ, for example, may correspond to the blast radius of a projectile.

Other constraints on x, y, and z-coordinates are di�erent and depend on the problems
that will be considered below.

Problem I. Let the pointM be the target, lie on the plane xOy, and have coordinates
(a, 0), a > κ. Suppose the projectile drop point N also lies on the plane xOy and has
coordinates (x, y). For all the trajectories, there are no barriers determined by v ∈ S ∩K.
Out of all those trajectories, it is required to choose one for which the Euclidean distance
between the points M and N is minimal.

Following [1], the distance r from O to N(x, y) is calculated by

r =
√
x2 + y2 = v2 sin 2ψ. (2)

Using (1) and (2), we see that the coordinates x and y are determined from

x = r cosφ = v2 sin 2ψ cosφ, y = r sinφ = v2 sin 2ψ sinφ. (3)

Determined by (3) the map (φ, ψ) 7→ (x, y) from Θ to R2 is denoted by hI.
Since v is �xed, we obtain the upper bound ρI = v2 for the distance travelled by a

projectile. Let us introduce notation

WI =
{
(x, y) |

√
x2 + y2 6 ρI, x > κ

}
. (4)

Obviously, the feasible set of the projectile drop points is given by the set hI(E).
Thus, the gun barrel direction determined by pair (φ, ψ) and the corresponding optimal

projectile trajectory can be found by solving the problem

∥M −N∥2 → min,

s.t. N ∈ hI(E) ∩WI.
(5)

In this paper the set E will be described by means of functional inequalities.
Let [θ1, θ2] ⊂ [0, 2π) and the functions g1(φ) and g2(φ) satisfy the condition

−π/2 6 g1(φ) 6 g2(φ) 6 π/2, φ ∈ [θ1, θ2].

We put
E = {(φ, ψ) ∈ Θ | φ ∈ [θ1, θ2], g1(φ) 6 ψ 6 g2(φ)} ,

or, in other words,
E = {(φ, ψ) ∈ Θ | g(φ, ψ) 6 0} ,
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where

g(φ, ψ) := max {θ1 − φ, φ− θ2, g1(φ)− ψ, ψ − g2(φ)} . (6)

Note that Problem I admits a generalization to the case when the target is the set
M = {M1,M2, . . . ,Mn} of the points Mi = (ai, bi), i = 1, . . . , n, n > 1, on the plane
xOy. Indeed, the Chebyshev center of M can be choosen as the target at a single shot,
for example.

Problem II. Let the point M(a, 0, c) ∈ R3 be the target. Suppose the target and
all the possible projectile drop points lie not below the plane z = zmin (zmin < 0). As in
Problem I, assume that a > κ. We will distinguish two subproblems, which depend on
constraints imposed on the point M . These subproblems will be named Problem II.a and
Problem II.b, respectively.

II.a. Let the pointM be an arbitrary point (i.e.M can be in the air) and the projectile
trajectory selection is limited only the set E. Among all admissible trajectories, it is
required to choose the one for which the distance from it to the target M is minimal in
comparison with the distance from any remaining admissible trajectory to the target M .

II.b. Let the pointM belong to the boundary frD of a set D determined by inequality
H(x, y, z) 6 0, where H is a continuous function over R3 and H(0, 0, 0) > 0. This function
de�nes the relief of a landscape. (It means that the target can be located on a surface of
ground/water or some �xed ground object, and the gun, on a surface of ground/water or in
the air). We assume that the point N(x, y, z) belongs to frD, the section of the trajectory
from O to N has no common points with intD, and z 6 zmin implies H(x, y, z) 6 0.
Among all admissible trajectories, it is required to choose the one for which the segment
MN does not intersect intD and has minimal length or it is required to be certain that
there is no such one. This requirement means that the projectile drop point must be within
the line-of-sight of the target and be located maximally close to the target.

Note that the target can lie above (c > 0) or below (c < 0) relative to the plane xOy
and the optimal value of angle ψ can be less than zero when c < 0.

Before giving analytical formulations of Problem II.a and Problem II.b, let us make
some important remarks.

Unlike Problem I, for Problems II.a and II.b, it is either impossible or very di�cult to
specify à single-valued map from Θ to R3 that analogous to hI. A reason for this di�culty
is that the target and the coverage zone in Problems II.a and II.b are located in R3.
Speaking in more detail, in Problem II.a, to each point (φ, ψ) ∈ E there corresponds
not one point but a subset of the set of projectile trajectory points; in Problems II.b an
analytical determination of coordinates of the point N(x, y, z) for given (φ, ψ) ∈ E may
be realized in only special cases that is de�ned by the set D.

It is convenient to consider a single-valued map instead of a set-valued map from Θ to
R3. This map, denoted below by hII : Θ× R+ → R3, takes each (φ, ψ, r) ∈ Θ× R+ to the
point (x, y, z) ∈ R3 assuming that (x, y, z) lies on the projectile trajectory determined by
(φ, ψ) and the distance from O to the projection of the point (x, y, z) on the plane xOy is
equal to r.

According to the theory of external ballistic, the map hII is determined by

hII(φ, ψ, r) =
{
(x, y, z) | x = r cosφ, y = r sinφ, z = r tanψ − (1 + tan2 ψ)(2v2)−1r2

}
.
(7)
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Despite single-valuedness of the maps hI and hII, their inverse maps h
−1
I and h−1

II are
multivalued: the drop point can be reached by selecting one of the two appropriate values
of the angle ψ ∈ [−π/2, π/2] for the direction of the gun barrel. At the same time, the
value of the angle φ is uniquely determined. In constructing the functional constraints
for Problem I and II.a,b, the maps h−1

I and h−1
II play an important role. A reason, on

which this constructing is possible, is that the maps h−1
I and h−1

II can be parameterized
by single-valued maps. Indeed, it follows from (3), (7) that there exist the single-valued
maps h−1

Ij , h
−1
IIj , j ∈ {1, 2} for which

h−1
k = h−1

k1 ∪ h−1
k2 , dom (h−1

kj ) = dom (h−1
k ), k ∈ {I, II}, j ∈ {1, 2};

Pr2 Im(h−1
I1 ) = (0, π/4], Pr2 Im(h−1

I2 ) = [π/4, π/2),

Pr2 Im(h−1
II1 ) = (−π/2, π/2), Pr2 Im(h−1

II2 ) = (0, π/2).

(8)

The explicit expressions for h−1
kj will be given below.

Since all the projectile drop points lie not below the plane z = zmin and using (7), the
value r can be bounded from above by

ρII = v
√
v2 − 2zmin.

Taking into account this bound and the envelope of the family of the possible projectile
trajectories, we de�ne the set

W II =

{
(x, y, z) |

√
x2 + y2 6 ρII, x > κ, zmin 6 z 6 1

2

(
v2 − x2 + y2

v2

)}
, (9)

which is the set of all the points reached by a projectile.
In view of the above remarks, we can now give an analytical formulation of Problem II.a

in the form
∥M −N∥2 → min,

s.t. N ∈ hII(E) ∩WII.
(10)

For Problem II.b we have such an analytical formulation

∥M −N∥2 → min,

s.t. N ∈ hII(E) ∩WII ∩ frD, {λN + (1− λ)M | λ ∈ [0, 1]} ∩ intD = ∅,
∃j ∈ {1, 2} : hII

(
Pr1 h

−1
IIj (N),Pr2 h

−1
IIj (N), [0,Pr3 h

−1
IIj (N)]

)
∩ intD = ∅.

(11)

Obviously, the last two equations in (11) mean that the section of the trajectory from
O to N and the segment MN does not intersect intD, respectively.

By N∗ denote a point that belongs to the solution set of problem (11).
Unfortunately, problem (11) admits the existence of common points, in addition to

N∗, between the segment MN or the section of the trajectory from O to N∗ and frD.
Of course, adding conditions to the constrains of problem (11), we can eliminate this
situation. However, as it is easy to show, a formalization of these conditions does not allow
us correctly use any optimization method because the feasible set is not closed, moreover,
an attempt to take its closure again leads to problem (11). To solve this problem we
propose the following procedure. It is necessary to solve problem (11) and if its solution
N∗ does not satisfy the condition given at the beginning of the paragraph, we have to
�nd another solution of problem (11) in the union of su�ciently small closed �ring like�
neighborhoods of the points

(
Pr1 h

−1
II1 (N∗),Pr2 h

−1
II1 (N∗)

)
and

(
Pr1 h

−1
II2 (N∗),Pr2 h

−1
II2 (N∗)

)
,

respectively.
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2. Minimizing the Objective Functions

Problems (5), (10), and (11) are complex in general case. Despite the fact that the
objective functions for these problems are smooth at every point (x, y, z) in their domains,
the functions describing the feasible set can be non-di�erentiable. In particular, this applies
to the functions g1 and g2. Similarly, we can assert that these statements hold for problems
(5) and (10) with respect to the variables φ, ψ and the variables φ, ψ, r, respectively.
Moreover, problem (11) with respect to the variables φ, ψ, r may have both objective
function and feasible set functions that are non-di�erentiable.

Surely, in each problem (5), (10), and (11), we could try smoothing all its functions and
then solve the corresponding smoothed problem by invoking some optimization method,
for example, linearization method or sequential quadratic programming method. At the
same time, a complicated form of the feasible set functions, especially in Problems II.a,
II.b, (see below), indicates that using smoothing procedures is not useful, because the
ones do not give substantial simpli�cation of the original problem. Moreover, after this
smoothing, the solution of any smoothed problem may be outside the visibility zone E for
the gun barrel or may be far from the optimal solution.

It is obvious that we can minimize the objective function in problem (5) either with
respect to the variables (φ, ψ), or with respect to the variables (x, y). Similarly, this holds
for problem (10) with respect to the variables (φ, ψ, r) and (x, y, z), respectively. In any
case, the found optimal solution allows us to �nd right away the required optimal gun
barrel direction, which is determined by (φ, ψ), and, for problem (10), to �nd, in addition,
a point closest to the target and lying on the optimal trajectory.

As above, in Problem II.b, we should not rely on an analytical determination of
coordinates of the point N(x, y, z) by using the variables φ, ψ. Therefore, it is reasonable
to solve this problem with respect to the variables x, y, z. Moreover, we give an argument,
which con�rms that problems (5) and (10) should be also solved with respect to the
variables x, y, and z.

Thanks to smoothness of the objective functions for problems (5) and (10) with respect
to the variables φ, ψ, r, we can solve these problems using a �rst-order optimization
algorithm. However if the functions g1 or g2 are non-di�erentiable or the set E is non-
convex, then the use of this algorithm is di�cult, because the conditions for its convergence
may be not satis�ed or because solving the auxiliary problems, for example, as �nding a
projection onto E, is also di�cult.

In this paper we will suppose that the functions g1 and g2 are only Lipschitz continuous
on some solid rectangle contained in Θ. This condition is completely natural, since it can
be satis�ed, if the visibility zone E has been piecewise linearly approximated on the basis
of the photography results.

Following the conditions for the functions g1 and g2, and following the above remarks
about the variables in problems (5), (10), and (11), we will solve all problems with respect
to x, y, z.

In addition, since the maps h−1
I and h−1

II are multivalued, it follows that the feasible
sets in each problems should be presented as the union of two subsets that correspond to
h−1
k1 and h−1

k2 , k ∈ {I, II} (see (8)). This implies that instead of one problem either (5), or
(10), or (11), we have two corresponding subproblems, which may be solved independently
of each other.
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Clearly, each problem (5), (10), or (11) (and, therefore, its subproblems) is a problem
of �nding a projection the point M onto the feasible set. We claim that the feasible set
for each problem can be de�ned by the corresponding functional inequality in the form

Fij(x, y, z) 6 0, i ∈ {I, II.à, II.b}, j ∈ {1, 2},

where j is the subproblem number and the left-hand side of inequality satis�es so-called the
ε-Lipschitz condition. This condition will allow us to use the methods proposed in [2, 3].

For problems (5) and (10), the functions FIj and FII.a j can be de�ned by

FIj(N) := max
{
ωIj1 g

(
Pr1 h

−1
Ij (N),Pr2 h

−1
Ij (N)

)
, ωIj2 (κ− Pr1N)

}
, (12)

FII.a j(N) := max
{
ωII.a j1 g

(
Pr1 h

−1
IIj (N),Pr2 h

−1
IIj (N)

)
,

ωII.a j2 (κ− Pr1N) , ωII.a j3 (zmin − Pr3N)
}
.

(13)

Here and in what follows, by ωijl we denote the weighting coe�cients whose values depend
on the properties of the functions de�ning Fij. Later on, before presenting the algorithm
for solving Problems I, II.a, II.b, we will propose a technique for choosing ωijl.

Since the constraints for problem (11) can be formalized byg
(
Pr1 h

−1
IIj (N),Pr2 h

−1
IIj (N)

)
6 0, H(N) = 0,Pr1N > κ, min

λ∈[0,1]
{H(λN + (1− λ)M)} > 0,

min
µ∈[0,1]

{
H
(
hII

(
Pr1 h

−1
IIj (N),Pr2 h

−1
IIj (N), µPr3 h

−1
IIj (N)

))}
> 0, zmin − Pr3N 6 0,

(14)
we can de�ne the function FII.b j by the formula

FII.b j(N) := max

{
ωII.b j1 g

(
Pr1 h

−1
IIj (N),Pr2 h

−1
IIj (N)

)
, ωII.b j2 (κ− Pr1N) ,

ωII.b j3|H(N)|,−ωII.b j4 min
λ∈[0,1]

{H(λN + (1− λ)M)} ,

−ωII.b j5 min
µ∈[0,1]

{
H
(
hII

(
Pr1 h

−1
IIj (N),Pr2 h

−1
IIj (N), µPr3 h

−1
IIj (N)

))}}
.

(15)
The upper bounds for the variables x, y and z in the de�nition of the sets Wi (see

(4), (9)) are implicitly contained in (12) � (15), since they follow from projectile motion
equations and from the condition N ∈ h·(E). But the lower bounds for the variables x and
z are explicitly contained in (12) � (15), since they were introduced additionally, based on
practical considerations.

Thus, each Problem i, i ∈ {I, II.a, II.b}, for each j ∈ {1, 2} has the form

∥M −N∥2 → min,

s.t. Fij(N) 6 0.
(16)

Obviously, we should not rely on an analytical methods for solving any problem of the
form in (16). Among numerical methods, the choice is small due to complicated properties
of the functions Fij.

At the same time, the functions Fij, i ∈ {I, II.a, II.b}, j ∈ {1, 2} satisfy the so-called the
ε-Lipschitz condition (see [4]) in the corresponding set Wi. Now we give the corresponding
de�nition.
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Let f be a function from a subset A contained in a normed space X to a normed space
Y . The function f is called ε-Lipschitz continuous on A, if for any number 0 < ε < ε0
there exists some number L(ε) > 0 such that for all x, y ∈ A, the following inequality
holds

∥f(x)− f(y)∥ 6 L(ε)∥x− y∥+ ε. (17)

By ε-Lip(A;Y ) denote the set of ε-Lipschitz continuous on A functions; for a �xed
function f and �xed ε, by lip(f ; ε) denote the smallest function (i.e., the in�mum) of all
L(ε) satisfying (17). (The properties for lip(f ; ε) can be found in [2], where it is denoted
by l(ε))).

To present the assertions that each function Fij, i ∈ {I, II.a, II.b}, j ∈ {1, 2} is ε-
Lipschitz continuous on a certain set in Rn (n equal to 2 or 3), we shall give the explicit
formulas for Pr1 h

−1
kj (N), Pr2 h

−1
kj (N), Wk, k ∈ {I, II}, j ∈ {1, 2}.

Using (3) and (7), we get

φ(N) := Pr1 h
−1
kj (N) = arctan(y/x), k ∈ {I, II}, j ∈ {1, 2};

ψI j(N) := Pr2 h
−1
Ij (N) =

π

4
+ (−1)j

(
π

4
− 1

2
arcsin

√
x2 + y2

v2

)
, j ∈ {1, 2};

ψII j(N) : = Pr2 h
−1
IIj (N) =

= arctan
(
(x2 + y2)−1/2

(
v2 + (−1)j

√
v4 − (x2 + y2 + 2v2z)

))
, j ∈ {1, 2}.

(18)

Note there exist some values of the variables x, y, and z such that the expression under
the last square root in (18) can be negative. But this fact indicates that, for the given
magnitude v0 of the initial projectile velocity, the coordinates of the projectile drop point
can not be equal to those x, y, and z for any values of ψ.

The ε-Lipschitz continuity of the functions Fij, i ∈ {I, II.a, II.b}, j ∈ {1, 2}, is
formulated below by Propositions 1�3. We also give several lemmas in which some functions
that are used in the de�nitions of the functions Fij are ε-Lipschitz continuous or Lipschitz
continuous. For the subsequent estimates of lip(·) and lip(·; ε), we use the norm ∥ · ∥1; we
also assume that g1, g2 ∈ Lip([θ1, θ2];R), H ∈ Lip(R3;R), 2ε ∈ (0, π/2− 1).

Lemma 1. For the function g(φ, ψ) de�ned by (6), we have g ∈ Lip(Θ;R) and

lip(g) 6 max {lip(g1), lip(g2), 1} . (19)

The proofs of this lemma and the following ones can be found in [6].

Lemma 2. For each k ∈ {I, II}, it is true that φ(x, y) ∈ Lip(Wk; [0, 2π)) and

lip(φ) 6
√
2κ−1. (20)

Lemma 3. For each j ∈ {1, 2}, it is true that ψI j(x, y) ∈ ε-Lip(WI; (0, π/2)) and

lip(ψI j; ε) 6
(√

2v2
√

1− τ 2(2ε)
)−1

, (21)

where τ(2ε) is the unique root of the equation (π/2− 2ε− arcsin τ)
√
1− τ 2 = 1− τ in the

interval [0, 1).
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Proposition 1. For each j ∈ {1, 2}, it is true that FI j(N) ∈ ε-Lip(WI;R) and

lip(FI j; ε) 6 max
{
ωIj1lip(g)

(
lip(φ) + lip

(
ψI j; ε(ωIj1lip(g))

−1
))
, ωIj2

}
, (22)

where lip(g), lip(φ), and lip (ψI j; ε(ωIj1lip(g))
−1) determined by (19), (20), and (21),

respectively.

Lemma 4. For each j ∈ {1, 2}, it is true that ψII j(N) ∈ ε-Lip(WII; (−π/2, π/2)) and

lip (ψII j; ε) 6
(
ρII(2ε)

−1 + β
√
2
)
κ−2, (23)

where β = v2 +
√
v4 − κ2 − 2v2zmin.

Proposition 2. For each j ∈ {1, 2}, it is true that FII.a j(N) ∈ ε-Lip(WII;R) and

lip(FII.a j; ε) 6 max
{
ωII.a j1lip(g)

(
lip(φ) + lip

(
ψII j; ε(ωII.a j1lip(g))

−1
))
, ωII.a j2, ωII.a j3

}
,

(24)
where lip(g), lip(φ), and lip (ψII j; ε(ωII.a j1lip(g))

−1) determined by (19), (20), and (23),
respectively.

Proposition 3. For each j ∈ {1, 2}, it is true that FII.b j(N) ∈ ε-Lip(WII;R) and

lip(FII.b j; ε) 6 max
{
ωII.b j1lip(g)

(
lip(φ) + lip

(
ψII j; ε(ωII.b j1lip(g))

−1
))
, ωII.b j2,

ωII.b j3lip(H), ωII.b j4lip(H), ωII.b j5lip(H) (ρIIlip(H)/(8ε) + 1)} ,
(25)

where lip(g), lip(φ), and lip (ψII j; ε(ωII.b j1lip(g))
−1) determined by (19), (20), and (23),

respectively.

According to our assumptions, we have M ∈ Wi, i ∈ {I, II}, whence Fij(M) > 0,
j ∈ {1, 2}. These inequalities and Propositions 1�3 imply that problem (16) of �nding a
projection can be solved by using the algorithms proposed in [2, 3]. Each algorithm either
generates an in�nite or a �nite sequence Qm. In the �rst case, the sequence Qm converges
to a zero of function Fij. This zero is closest to M under the norm, and the sequence also
satis�es inequality Fij(Q

m) > 0 for each m = 1, 2, . . .. In the second case, the last element
of the sequence is the required point N∗, in which Fij(N∗) = 0. In this paper we use
one of these algorithms. Before describing it, as we said above, we turn to the weighting
coe�cients ωijl used in constructing the functions Fij, because choosing ωijl a�ects the
accuracy of the solution obtained by the algorithm.

Since the algorithm �nds the next approximation to the optimal solution by using
information about possible change in the value of the function Fij with respect to the
current approximation and since the function Fij is de�ned by maximum of some function-
components, we must take into account how these function-components are related to each
other. If these relations are ignored, then the approximations generated by the algorithm
may not reach the stopping criterion Fij(Q

m) < ε∗ within a reasonable time (see also
remarks 1�2 below). There is a reason for it: the accuracy for a function-component of Fij

may be too high, whence the number of algorithm iterations to reach accuracy is too large.
It is known (see [5]) that an upper bound of the number of iterations for the gradient-free
algorithms, including our algorithm, is determined by using a possible change in the value
of the objective function; therefore, if we know these changes for all function-components
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of Fij, then we can take ωijl to provide the number of iterations adequate to the overall
accuracy ε∗. In other words, having taken a value of the overall accuracy ε∗ for the values
of Fij, we can specify accuracies for every function-component of Fij by using the values
of the corresponding weighting coe�cients: accuracy for l-th function-component will be
equal to ε∗/ωijl.

In this article, we suppose ωij1 = 1, i ∈ {I, II.a, II.b}, j ∈ {1, 2}, that is, the
overall accuracy ε∗ corresponds to the accuracy of the �rst function-component of Fij.
The accuracies ωijl for other function-components are taken according to remark above.

Let us present the algorithm.
Step 0. Choose: an initial value ε0 > 0 of the ε-Lipschitz parameter, the initial

projectile velocity magnitude determined by v or v0, a lower bound κ of x, an initial
point N0 = M ∈ Wij, parameters γ, λ ∈ (0, 1). Assign the visibility zone constraints
determined by g(φ, ψ) satisfying (6). Set Q0 := N0, k := 0, and m := 0.

Step 1. Depending on Problem I, II.a, or II.b, calculate Fij(N
k), i ∈ {I, II.a, II.b},

j ∈ {1, 2} using (12), (13), or (15), respectively. If Fij(N
k) < εk(1 + γ), then sequentially

set Nk+1 := Nk, Qm+1 := Nk, and m := m + 1 and pass to Step 2. Otherwise, go to
Step 3.

Step 2. If Fij(N
k) 6 εk, then set εk+1 := λFij(N

k). Otherwise, set εk+1 := λεk. In
either case, go to Step 4.

Step 3. Find Nk+1 by the following scheme. Depending on Problem I, II.a, or II.b,
calculate lip(Fij, εk), i ∈ {I, II.a, II.b}, j ∈ {1, 2} by formulas (22), (24), or (25),
respectively, using (19)�(21), and (23). Solve the problem

Nk+1 = argmin {Fij(X) | X ∈ frKk ∩Wij} , i ∈ {I, II.a, II.b}, j ∈ {1, 2}, (26)

where

Kk =

{
X ∈ Rn | ∥X −M∥ 6

k∑
s=0

rs

}
, rk =

Fij(N
k)− εk√

n lip(Fij; εk)
,

n = 2 for Problem I and n = 3 for Problems II.a and II.b. Next, set εk+1 := εk and go to
Step 4.

Step 4. If Fij(N
k+1) = 0 or Fij(Q

m) = 0, then Nk+1 or Qm is regarded as a solution
of problem (16), respectively. Otherwise, set k := k + 1 and pass to Step 1.

Remark 1. According to the main statement about the algorithm convergence (see
[2]), if the number of points Nk is in�nity, then the algorithm ensures the convergence
Fij(Q

m) −−−→
m→∞

0. Therefore, the condition of the form Fij(Q
m) < ε∗, ε∗ ∈ (0, 1), should be

included in the stopping criterion. We can also include the conditions setting accuracies
for some function-components of Fij or the condition of the form ∥Qm − Qm+1∥ < ε∗Q,
ε∗Q ∈ (0, 1) in the stopping criterion.

Remark 2. It is clear that the main computational costs are produced by Step 3, where
the optimization subproblem for �nding the point Nk+1 is solved. We will give two pieces
of advice about solving this subproblem. First, since each function Fij, j ∈ {1, 2}, is
minimized either on a circle (Problem i = I) or on a 2-sphere (Problems i = II.a, II.b),
it follows that the dimension of the subproblem can be reduced by one by applying
transformation to polar coordinates or spherical ones, respectively. Secondly, it is not
necessary to solve this subproblem precisely. Indeed, since the value Fij(N

k) is compared
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with εk and εk(1 + γ), instead of the point Nk+1 determined by (26), one can �nd a point
Ñk+1 such that Fij(N

k+1) 6 Fij(Ñ
k+1) < Fij(N

k+1) + δk, where δk < εkγ.

Remark 3. For computing values of the 4-th function-component of FII.b in problem II.b,
we must solve the one-dimensional optimization problem of minimization of the function
f(λ) = H(λN +(1−λ)M). This problem can be solved by some corresponding numerical
method. A similar remark also concerns the 5-th function-component of FII.b.

3. Numerical Examples

The algorithm was tested on several examples in which the target M , the set Wi,
i ∈ {I, II}, and the overall accuracy ε∗ that taken equal to an initial value ε0 of the ε-
Lipschitz parameter were varied. The optimization subproblem for �nding the point Nk+1

(see Step 3) was solved by the uniform search method.
For all examples, the following parameter values were set: v0 = 180m/s; κ = 100m;

γ = λ = 0, 5. The values of the variable parameters are presented in Tables 1�3. Hereinafter
and in Tables 1�3, we use the following notation: M1 = (110, 0, 20), M2 = (2700, 0,−10)
are the target M (the third coordinate of M for Problem I was equal to 0); E1 = {(φ, ψ) |
φ ∈ [0, 2π], ψ ∈ [7π/36, 8π/36]}, E2 = {(φ, ψ) | φ ∈ [0, 2π], |4 + sinφ|π/36 6 ψ 6
|1 + sinφ|π/9}; (xN , yN , zN) is the solution of Problem I, II.a, or II.b; (φ, ψ) is the angles
for the direction of the gun barrel, which ones corresponding to (xN , yN , zN); ktot is the
total number of algorithm iterations; t is the total computational time in seconds. The
value zmin in Problems II.a and II.b was equal to −10, and the set D in Problems II.b was
determined by function

H(x, y, z) = min
{
max{90− x, x− 130,−10− y, y − 30, z − 20}, z + 10

}
.

Table 1

Results of test examples for Problem I

M E ε xN ,m yN ,m φ, ◦ ψ, ◦ ktot t, s
M1 E1 0,1 2818,6 0,0 0,0 29,3 300 0,146

0,05 2976,8 0,0 0,0 32,1 353 0,170
0,01 3081,4 0,0 0,0 34,4 575 0,306

E2 0,1 1523,4 −152,1 −5,7 13,8 301 0,419
0,05 1834,6 −91,4 −2,9 16,9 442 0,822
0,01 2068,1 −20,6 −0,6 19,4 891 3,514

M2 E1 0,1 2820,3 0,0 0,0 29,3 40 0,034
0,05 2977,1 0,0 0,0 32,2 144 0,094
0,01 3081,4 0,0 0,0 34,4 331 0,213

E2 0,1 2606,4 48,4 1,1 26,0 36 0,031
0,05 2447,8 138,6 3,2 24,0 158 0,086
0,01 2316,7 217,0 5,4 22,4 456 0,244

The weighting coe�cients in the functions FI, FII.a j, and FII.b j (see (12), (13), and (15))
were chosen as follows: I) ωIj1 = 1, ωIj2 = 0, 01; II.a) ωII.a j1 = 1, ωII.a j2 = ωII.a j3 = 0, 01;
II.b) ωII.b j1 = 1, ωII.b j2 = 0, 01, ωII.b j3 = ωII.b j4 = ωII.b j5 = 0, 001.
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Table 2

Results of test examples for Problem II.a

M E ε xN ,m yN ,m zN ,m φ, ◦ ψ, ◦ ktot t, s
M1 E1 0,1 100,0 0,1 58,0 0,1 31,0 1889 1,249

0,05 100,0 1,8 65,4 1,0 34,1 4182 2,244
0,01 102,0 2,1 72,1 1,2 36,1 26297 5,227

E2 0,1 108,7 −0,5 25,9 −0,3 14,3 614 1,073
0,05 106,8 −1,0 31,4 −0,6 17,3 2444 1,495
0,01 104,8 −0,3 35,9 −0,2 19,8 17619 8,854

M2 E1 0,1 2730,7 0,0 48,3 0,0 29,3 8478 4,064
0,05 2771,2 0,0 121,4 0,0 32,2 33069 12,750
0,01 2803,2 −0,1 173,5 0,0 34,4 213343 103,261

E2 0,1 2502,2 107,1 −8,6 2,5 24,4 27281 5,952
0,05 2336,3 826,1 −4,3 19,5 24,2 244288 131,227
0,01 2324,5 663,2 −2,8 15,9 23,4 313626 163,866

Table 3

Results of test examples for Problem II.b

M E ε xN ,m yN ,m zN ,m φ, ◦ ψ, ◦ ktot t, s
M1 E1 0,1 100,0 0,0 58,0 0,0 31,0 2748 9,753

0,05 100,2 16 62,6 9,1 32,6 7308 14,240
E2 0,1 108,7 −0,5 25,9 −0,3 14,3 1072 11,303

0,05 106,8 −1,0 31,4 −0,6 17,3 4258 11,179
M2 E1 0,1 2730,7 0,0 48,3 0,0 29,3 12746 19,626

0,05 − − − − − − −
E2 0,1 2502,2 107,1 -8,6 2,5 24,4 47995 88,068

0,05 2437,0 145,7 -10,0 3,4 23,6 69230 121,723

The tests were performed on an Intel Core i3-4020 1,50 GHz personal computer. The
numerical results are presented in Tables 1�3. It follows that the algorithm �nds the ε-
solution in Problem I faster than in other two Problems. Moreover, in Problem II.a and
especially in Problem II.b, there is a large increase in the number of iterations with ε0
greater than 0, 05. (The dash in Table 3 means that the algorithm did not give a solution
for 200s.) A reasonable explanation for this increase may be that, for the functions FII.a ,b

a decrease in ε implies an increase in L(ε). However, for a �nite number, number of
iterations (when L(ε) is not very high), it is still possible to cut o� a set that does not
contain zero of Fij; this yields that the set Wi is narrowed down to its subset. It is readily
seen that computational time can be reduced by parallelizing some parts of the algorithm.
For example, one can be applied in subproblems, in which the uniform search method are
used.
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ÌÎÄÅËÈ È ÌÅÒÎÄÛ ÄËß ÒÐÅÕ ÎÁÐÀÒÍÛÕ ÇÀÄÀ× ÂÍÅØÍÅÉ
ÁÀËËÈÑÒÈÊÈ

Í.Ê. Àðóòþíîâà, À.Ì. Äóëëèåâ, Â.È. Çàáîòèí

Êàçàíñêèé íàöèîíàëüíûé èññëåäîâàòåëüñêèé òåõíè÷åñêèé óíèâåðñèòåò
èì. À.Í. Òóïîëåâà � ÊÀÈ, ã. Êàçàíü, Ðîññèéñêàÿ Ôåäåðàöèÿ

Ðàññìàòðèâàþòñÿ òðè ìàòåìàòè÷åñêèå ìîäåëè çàäà÷è âûáîðà îïòèìàëüíîãî íà-
ïðàâëåíèÿ ñòâîëà îðóäèÿ ïðè ñòðåëüáå íåóïðàâëÿåìûì ñíàðÿäîì â ïðåäïîëîæåíèè, ÷òî
ïîëóîñü ñòâîëà ìîæåò ïåðåìåùàòüñÿ â ñâÿçíîì íåâûïóêëîì êîíóñå, èìåþùåì íåãëàä-
êóþ áîêîâóþ ïîâåðõíîñòü è ìîäåëèðóþùåì îãðàíè÷åíèÿ íà çîíó âèäèìîñòè. Â ïåð-
âîé çàäà÷å öåëü ðàñïîëîæåíà â ïëîñêîñòè èñòèííîãî ãîðèçîíòà îðóäèÿ, âî âòîðîé è
òðåòüåé � â íåêîòîðîé îáëàñòè ïðîñòðàíñòâà. Îòëè÷èòåëüíîé îñîáåííîñòüþ ìîäåëåé
ÿâëÿåòñÿ ε-ëèïøèöåâîñòü öåëåâûõ ôóíêöèé. Ïîñòðîåí åäèíûé ÷èñëåííûé ìåòîä ðåøå-
íèÿ ïîñòàâëåííûõ çàäà÷, áàçèðóþùèéñÿ íà îäíîì àëãîðèòìå ïðîåêòèðîâàíèÿ òî÷êè íà
ìíîæåñòâî óðîâíÿ ε-ëèïøèöåâîé ôóíêöèè. Íà åãî îñíîâå ñîñòàâëåíà ïðîãðàììà äëÿ
ÝÂÌ. Ïî êàæäîé èç çàäà÷ ïðîâåäåíà ñåðèÿ âû÷èñëèòåëüíûõ ýêñïåðèìåíòîâ.

Êëþ÷åâûå ñëîâà: ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå; îáðàòíàÿ çàäà÷à âíåøíåé áàë-

ëèñòèêè; îïòèìèçàöèÿ; ïðîåêöèÿ íà íåâûïóêëîå ìíîæåñòâî; ε-ëèïøèöåâîñòü; ïðè-

áëèæåííîå ðåøåíèå.
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