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We consider three problems of selecting optimal gun barrel direction (or those of
selecting optimal semi-axis position) when firing an unguided artillery projectile on the
assumption that the gun barrel semi-axis can move in a connected nonconvex cone having
a non-smooth lateral surface and modelling visibility zone restrictions. In the first problem,
the target is in the true horizon plane of the gun, the second and the third problems deal
with some region of 3D space. A distinctive feature of the models is that the objective
functions are e-Lipschitz ones. We have constructed a unified numerical method to solve
these problems based on the algorithm of projecting a point onto e-Lipschitz level function
set. A computer programme has been based on it. A series of numerical experiments on
each problem has been carried out.
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Introduction

Let us consider a problem of firing an unguided projectile. It is required to minimize
the distance from the projectile drop point to the target. This problem is a problem of the
external ballistic theory. It has been studied fairly well (see [1]) if the following conditions
hold: air resistance is not taken into account, movement of the gun barrel is restricted by
the true horizon plane of the gun, and the Earth surface is spherical.

However, in reality, a gun barrel direction can be arbitrarily selected, as a rule, only
within some connected nonconvex cone that has non-smooth lateral surface and arises in
conditions narrowing the selecting gun barrel direction due to some obstacles.

To restrictions on the selecting gun barrel direction, it is often necessary to add
conditions such that the target can lie outside of the true horizon plane of the gun or,
possibly, on the surface defining the relief of a landscape. In the latter case, the problem
of selecting optimal gun barrel direction becomes much more complicated. The foremost
reason for this difficulty is that the minimal Euclidean distance from the target to the
projectile drop point does not always correspond to the optimal shot or even close to the
optimal one. For example, this lack of correspondence can be observed in case the target
and the projectile drop point are separated from each other by some substantial obstacle.

A mathematical model can be described as follows. Suppose dist(, ) is the Euclidean
distance, O is the point in which located the gun, [ is a ray with origin O, N is the
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projectile drop point, N = N(l), M is the target, K is a cone with vertex O, D’ is a set
in space R3, and M € D'. Tt is required

mlin dist (N (1), M),
subject to € K, N(I) e D".

Naturally, there may be other possible mathematical models with other objective
functions. In particular, below we consider a problem in which the objective function is
the distance between the projectile trajectory and the point M.

We stress that, in this paper, air resistance is not taken into account. At the same
time, first, our models that are described and investigated below can be applied for firing
an unguided heavy projectile. Secondly, the solutions obtained in the models can be served
as the base for further finding for a more precise solution and can be refined by appropriate
methods.

Below, we formulate and investigate three problems for which a unified algorithm for
their solving is constructed. Also, we present numerical results for several test examples;
these results were obtained with a computer programme implementing the algorithm.

1. Formulation of the Problems

Throughout, the gun is modelled by a point 7', the direction of the gun barrel is
modelled by a ray starting from this point, the oblateness of the Earth is not taken into
account.

Let us choose a Cartesian coordinate system Oxyz with the origin O coinciding with
T. Suppose the plane Oxy is the horizontal plane at O, the axis Oz is directed vertically
up, and the gravitational acceleration g, vertically down. The directions of the axes Ox
and Oy will be given below. Throughout, we use the following notation: |- ||, is the p-norm
on R" n > 1 (the subscript p will be omitted for p = 2); int and fr are the operators
of taking interior and boundary in R", respectively; Pr; A is the projection of a set A on
the i-th axis (here, the axes z, y, and z are denoted by 1, 2, and 3, respectively); given
X C R"and Y C R, we denote by Lip(X;Y') the set of all Lipschitz continuous on X
functions f: X — Y with Lipschitz constant lip(f).

We will assume that the direction (i.e. ray position) of the gun barrel can be freely
selected within a closed cone K with the apex O and the cone K contains no vertical rays
starting from O. Neglecting the length of the gun barrel, suppose the initial projectile
velocity vector v has the initial point at O and has a constant length vg. In other words,
v e SNK, where S = {v | ||v| = vo} C R3is the sphere of radius vy centered at O. By v
denote the fraction vy/+/|g]|-

Throughout, we assume that the selecting direction of the gun barrel is equivalent to
the selecting the vector v = (v, vy, v,) with a given fixed vg. This vector will be described
by means of a spherical coordinate system in the form

Uy = Vg COSYP COSp, Uy = vpcosysing, v, = vysiny,
(p,¥) € ECO:={(p,¥) [p€0,2m),¢ € (—7/2,7/2)},

where the closed set E corresponds to the set SN K, which is given by coordinates (¢, ).
We assume that the air resistance is negligible. It follows that the trajectory travelled
by a projectile is a parabolic trajectory on the gun plane.

(1)
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In this paper we will consider three problems of selecting optimal gun barrel direction
when firing an unguided projectile to the given target. We will suppose that the target M
is the point with y-coordinate equal to zero and M belongs to the convex set bounded by
the paraboloid reached by the projectile (see [1]), and this paraboloid is obtained by the
union of all the projectile trajectories on the condition of the constraints absence on gun
barrel directions. (The case, where the target can lie outside of the paraboloid, and the
problem of the joint selecting optimal gun barrel direction (¢, ) and magnitude v of the
initial projectile velocity are not considered in this paper.)

Among the points lying on the projectile trajectories, we will consider only the points
with z-coordinate such that z > k, where k = const and x > 0. In practical terms, the
constant x, for example, may correspond to the blast radius of a projectile.

Other constraints on x, y, and z-coordinates are different and depend on the problems
that will be considered below.

Problem 1. Let the point M be the target, lie on the plane 2Oy, and have coordinates
(a,0), a > K. Suppose the projectile drop point N also lies on the plane xOy and has
coordinates (x,y). For all the trajectories, there are no barriers determined by v € SN K.
Out of all those trajectories, it is required to choose one for which the Euclidean distance
between the points M and N is minimal.

Following [1], the distance r from O to N(z,y) is calculated by

r =22+ y2 = v’ sin 2. (2)

Using (1) and (2), we see that the coordinates z and y are determined from

r=rcosp =1v>sin2ycosp, y=rsing=v?sin2¢sinp. (3)

Determined by (3) the map (p, %) — (x,y) from © to R? is denoted by h;.
Since v is fixed, we obtain the upper bound p, = v? for the distance travelled by a
projectile. Let us introduce notation

W ={(@.y) | V2 <poo > n). (4)

Obviously, the feasible set of the projectile drop points is given by the set h;(E).
Thus, the gun barrel direction determined by pair (¢, %) and the corresponding optimal
projectile trajectory can be found by solving the problem

|M — N||* = min, 5)
s.t. N € h(E) N W,

In this paper the set E will be described by means of functional inequalities.
Let [01,02] C [0,27) and the functions g1(p) and g2(p) satisfy the condition

—7/2 < g1(p) < g2(p) < /2, @ € [61,65)].

We put
E={(p,¥) €0 |pelb,b],g(e) <¥<gp},

or, in other words,

E={(p.¢) €O g(p,¥) <0},
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where

g(e, ) ==max {6 — o, — 02, 51(¢) =V, ¥ — g2()} . (6)

Note that Problem I admits a generalization to the case when the target is the set
M = {My, M, ... M,} of the points M; = (a;,b;), i = 1,...,n, n > 1, on the plane
xQy. Indeed, the Chebyshev center of M can be choosen as the target at a single shot,
for example.

Problem II. Let the point M(a,0,c) € R? be the target. Suppose the target and
all the possible projectile drop points lie not below the plane z = 2y (2min < 0). As in
Problem I, assume that a > . We will distinguish two subproblems, which depend on
constraints imposed on the point M. These subproblems will be named Problem Il.a and
Problem II.b, respectively.

IT.a. Let the point M be an arbitrary point (i.e. M can be in the air) and the projectile
trajectory selection is limited only the set E. Among all admissible trajectories, it is
required to choose the one for which the distance from it to the target M is minimal in
comparison with the distance from any remaining admissible trajectory to the target M.

IL.b. Let the point M belong to the boundary fr D of a set D determined by inequality
H(x,y,z) <0, where H is a continuous function over R* and H(0,0,0) > 0. This function
defines the relief of a landscape. (It means that the target can be located on a surface of
ground /water or some fixed ground object, and the gun, on a surface of ground /water or in
the air). We assume that the point N(z,y, z) belongs to fr D, the section of the trajectory
from O to N has no common points with int D, and z < 2, implies H(x,y,2) < 0.
Among all admissible trajectories, it is required to choose the one for which the segment
MN does not intersect int D and has minimal length or it is required to be certain that
there is no such one. This requirement means that the projectile drop point must be within
the line-of-sight of the target and be located maximally close to the target.

Note that the target can lie above (¢ > 0) or below (¢ < 0) relative to the plane xOy
and the optimal value of angle ¥ can be less than zero when ¢ < 0.

Before giving analytical formulations of Problem II.a and Problem II.b, let us make
some important remarks.

Unlike Problem I, for Problems II.a and IL.b, it is either impossible or very difficult to
specify a single-valued map from © to R? that analogous to h;. A reason for this difficulty
is that the target and the coverage zone in Problems Il.a and IL.b are located in R3.
Speaking in more detail, in Problem Il.a, to each point (¢,?%) € E there corresponds
not one point but a subset of the set of projectile trajectory points; in Problems II.b an
analytical determination of coordinates of the point N(z,y, z) for given (¢,%) € E may
be realized in only special cases that is defined by the set D.

It is convenient to consider a single-valued map instead of a set-valued map from © to
R3. This map, denoted below by h;: © x RT — R3, takes each (¢,1,7) € © x R to the
point (z,y,2) € R? assuming that (x,y, 2) lies on the projectile trajectory determined by
(p, 1) and the distance from O to the projection of the point (x,y, z) on the plane zOy is
equal to r.

According to the theory of external ballistic, the map hy; is determined by

hu(p, 0, 7) = {(z,y,2) | z =rcosp,y =rsinp,z =rtany — (1 + tan®¢)(20%) "'r?}.
(7

)
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Despite single-valuedness of the maps h; and hy, their inverse maps b ! and h; !
multivalued: the drop point can be reached by selecting one of the two appropriate values
of the angle ¢ € [—7/2,7/2] for the direction of the gun barrel. At the same time, the
value of the angle ¢ is uniquely determined. In constructing the functional constraints
for Problem I and IL.a,b, the maps h; ! and h;! play an important role. A reason, on
which this constructing is possible, is that the maps h;! and h;' can be parameterized
by single-valued maps. Indeed, it follows from (3), (7) that there exist the single-valued
maps hul, hH]l, j € {1,2} for which

hi' = h; ' Uh;,, dom (hk]) dom (ki "), k€ {I,11}, j € {1,2};
ProIm(hy;') = (0,7/4], ProIm(hy') = [7/4,7/2), (8)
ProIm(h ;) = (—7/2,7/2), ProIm(h,) = (0,7/2).
The explicit expressions for h,;j will be given below.

Since all the projectile drop points lie not below the plane z = z,;, and using (7), the

value r can be bounded from above by

Pu = VvV v? — 2Zmin-

Taking into account this bound and the envelope of the family of the possible projectile
trajectories, we define the set

1/, a?2+y?
Wu = xy, |v332+y Pu, T Hme<Z<§ v = ) (9)

V2

which is the set of all the points reached by a projectile.
In view of the above remarks, we can now give an analytical formulation of Problem II.a
in the form
|M — N||* = min,

For Problem II.b we have such an analytical formulation
|M — N||* = min,
st. Nehy(E)ynWynfrD, { AN+ (1-=XNM | A€ [0,1]} Nint D = &, (11)
Jj € {1,2}: hy (Pr1 h}(N),Pry hi1 (N), [0, Prs hH] (N)]) Nint D = @.

Obviously, the last two equations in (11) mean that the section of the trajectory from
O to N and the segment M N does not intersect int D, respectively.

By N, denote a point that belongs to the solution set of problem (11).

Unfortunately, problem (11) admits the existence of common points, in addition to
N, between the segment M N or the section of the trajectory from O to N, and fr D.
Of course, adding conditions to the constrains of problem (11), we can eliminate this
situation. However, as it is easy to show, a formalization of these conditions does not allow
us correctly use any optimization method because the feasible set is not closed, moreover,
an attempt to take its closure again leads to problem (11). To solve this problem we
propose the following procedure. It is necessary to solve problem (11) and if its solution
N, does not satisfy the condition given at the beginning of the paragraph, we have to
find another solution of problem (11) in the union of sufficiently small closed ring like”
neighborhoods of the points (Pry Ay (N,), Prahyf(N,)) and (Pry hyy (N.), Pra by (VL))
respectively.

(10)

15 115
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2. Minimizing the Objective Functions

Problems (5), (10), and (11) are complex in general case. Despite the fact that the
objective functions for these problems are smooth at every point (x,y, 2) in their domains,
the functions describing the feasible set can be non-differentiable. In particular, this applies
to the functions g; and go. Similarly, we can assert that these statements hold for problems
(5) and (10) with respect to the variables ¢, 1 and the variables ¢, 1, 7, respectively.
Moreover, problem (11) with respect to the variables ¢, ¥, r may have both objective
function and feasible set functions that are non-differentiable.

Surely, in each problem (5), (10), and (11), we could try smoothing all its functions and
then solve the corresponding smoothed problem by invoking some optimization method,
for example, linearization method or sequential quadratic programming method. At the
same time, a complicated form of the feasible set functions, especially in Problems Il.a,
IT.b, (see below), indicates that using smoothing procedures is not useful, because the
ones do not give substantial simplification of the original problem. Moreover, after this
smoothing, the solution of any smoothed problem may be outside the visibility zone E for
the gun barrel or may be far from the optimal solution.

It is obvious that we can minimize the objective function in problem (5) either with
respect to the variables (¢, ), or with respect to the variables (z,y). Similarly, this holds
for problem (10) with respect to the variables (¢, 1, 7) and (z,y, 2), respectively. In any
case, the found optimal solution allows us to find right away the required optimal gun
barrel direction, which is determined by (¢, ), and, for problem (10), to find, in addition,
a point closest to the target and lying on the optimal trajectory.

As above, in Problem II.b, we should not rely on an analytical determination of
coordinates of the point N(z,y, z) by using the variables ¢, 1. Therefore, it is reasonable
to solve this problem with respect to the variables z, y, z. Moreover, we give an argument,
which confirms that problems (5) and (10) should be also solved with respect to the
variables x, y, and z.

Thanks to smoothness of the objective functions for problems (5) and (10) with respect
to the variables ¢, ¥, r, we can solve these problems using a first-order optimization
algorithm. However if the functions g; or g» are non-differentiable or the set E is non-
convex, then the use of this algorithm is difficult, because the conditions for its convergence
may be not satisfied or because solving the auxiliary problems, for example, as finding a
projection onto F, is also difficult.

In this paper we will suppose that the functions g, and gs are only Lipschitz continuous
on some solid rectangle contained in ©. This condition is completely natural, since it can
be satisfied, if the visibility zone E has been piecewise linearly approximated on the basis
of the photography results.

Following the conditions for the functions g; and go, and following the above remarks
about the variables in problems (5), (10), and (11), we will solve all problems with respect
to xz, vy, 2.

In addition, since the maps h; ! and h;! are multivalued, it follows that the feasible
sets in each problems should be presented as the union of two subsets that correspond to
h;! and hi,, k € {I, 1T} (see (8)). This implies that instead of one problem either (5), or
(10), or (11), we have two corresponding subproblems, which may be solved independently
of each other.
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Clearly, each problem (5), (10), or (11) (and, therefore, its subproblems) is a problem
of finding a projection the point M onto the feasible set. We claim that the feasible set
for each problem can be defined by the corresponding functional inequality in the form

Fyj(z,y,2) <0, i € {I,1La,ILb}, j € {1,2},

where j is the subproblem number and the left-hand side of inequality satisfies so-called the
e-Lipschitz condition. This condition will allow us to use the methods proposed in [2, 3|.
For problems (5) and (10), the functions Fy; and F;;,; can be defined by

F;(N) := max {lel g (Pr1 hfjl(N), Pr, h;jl(N)) ,wij2 (K — Pry N)} , (12)

El-aj(N) - maX{wH ajlyg (Prl hH_] (N) Pr? h’II] (N)) )
Wiraj2 (H — Py N) » WiLa j3 (Zmin — Pr3 N) }
Here and in what follows, by w;j;; we denote the weighting coefficients whose values depend
on the properties of the functions defining Fj;. Later on, before presenting the algorithm

for solving Problems I, II.a, II.b, we will propose a technique for choosing w;j;.
Since the constraints for problem (11) can be formalized by

(13)

g (Pry hH] (N), Pry hH] (N)) <0,H(N)=0,Pr; N > &, mln {H()\N +(1=MNM)} >0,

A€[0
N), PrzhHJ(N) pPrs h H(N) ))} >O,zmm Prs N <0,

H]

amiy U (b (e »
14

we can define the function Fj,; by the formula

EI.bj(N> = maX{wajl g (PI‘l hHg (N) Pl”g hIIJ (N)) ,wH.ij (Ii — PI‘l N) s

Wirb 3| H (N)|, —wip ja /\Iél[g]nl] {HAAN + (1 =A)M)},

—Wib s “rél[%nu{H( u (Prihy, (N), Pry hy }(N), pPrs by (N)))}}

(15)
The upper bounds for the variables z, y and z in the definition of the sets W; (see
(4), (9)) are implicitly contained in (12) — (15), since they follow from projectile motion
equations and from the condition N € h.(E). But the lower bounds for the variables = and
z are explicitly contained in (12) — (15), since they were introduced additionally, based on
practical considerations.
Thus, each Problem i, i € {I,I1.a,IL.b}, for each j € {1,2} has the form

115

|M — N||* = min,

16

Obviously, we should not rely on an analytical methods for solving any problem of the
form in (16). Among numerical methods, the choice is small due to complicated properties
of the functions Fj;.

At the same time, the functions Fj;, ¢ € {I,IL.a,IL.b}, j € {1, 2} satisfy the so-called the
e-Lipschitz condition (see [4]) in the corresponding set W;. Now we give the corresponding
definition.
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Let f be a function from a subset A contained in a normed space X to a normed space
Y. The function f is called e-Lipschitz continuous on A, if for any number 0 < € < &g
there exists some number L(g) > 0 such that for all z,y € A, the following inequality
holds

1 () = F@WIl < L)z = yll + e (17)

By e-Lip(A;Y) denote the set of e-Lipschitz continuous on A functions; for a fixed
function f and fixed ¢, by lip(f;e) denote the smallest function (i.e., the infimum) of all
L(e) satisfying (17). (The properties for lip(f;e) can be found in [2], where it is denoted
by I()))-

To present the assertions that each function Fj;, ¢ € {I,IL.a,ILb}, j € {1,2} is e-
Lipschitz continuous on a certain set in R™ (n equal to 2 or 3), we shall give the explicit
formulas for Pry h,;jl(N), Pry h,;jl(N), Wi, k€ {111}, 5 € {1, 2}.

Using (3) and (7), we get

@(N) := Pry b} (N) = arctan(y/x), k € {111}, j € {1,2};

T 1

_ T ; RRRVZ e T W
Ui (N) = Pra b (N) = 5+ (=1)] (z —  arcsin —y> ez

1/}11j(N) : = Pro h_l(N) =

= arctan ((x2 + y?)"1/2 <v2 + (=1)7 /vt — (22 + y2 + 21)22)>> .7 €{1,2}.
(18)

Note there exist some values of the variables x, y, and 2z such that the expression under
the last square root in (18) can be negative. But this fact indicates that, for the given
magnitude vy of the initial projectile velocity, the coordinates of the projectile drop point
can not be equal to those z, y, and z for any values of 1.

The e-Lipschitz continuity of the functions Fj;, i € {I,IL.a,ILb}, j € {1,2}, is
formulated below by Propositions 1-3. We also give several lemmas in which some functions
that are used in the definitions of the functions Fj; are e-Lipschitz continuous or Lipschitz
continuous. For the subsequent estimates of lip(-) and lip(-;€), we use the norm || - [|1; we
also assume that gy, go € Lip([0,6]; R), H € Lip(R*;R), 2¢ € (0,7/2 — 1).

Lemma 1. For the function g(p, ) defined by (6), we have g € Lip(©;R) and

lip(g) < max {lip(g1), lip(ga), 1} . (19)

The proofs of this lemma and the following ones can be found in [6].

Lemma 2. For each k € {I,11}, it is true that ¢(z,y) € Lip(Wy;[0,27)) and
lip(p) < V2r. (20)
Lemma 3. For each j € {1,2}, it is true that ¢, j(x,y) € e-Lip(W}; (0,7/2)) and

lip(s ) < (VE*VI—72(22) 1)

where 7(2¢) is the unique root of the equation (1/2 — 2e — arcsinT)V1 — 72 =1 —7 in the
interval [0, 1).
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Proposition 1. For each j € {1,2}, it is true that F,;(N) € e-Lip(W;R) and
lip(Fyjie) < max {wiplip(g) (lip(w) + lip (Ve e(winlip(9)) ")) swya},  (22)

where lip(g), lip(p), and lip (¢ j;e(wiglip(g))™t) determined by (19), (20), and (21),
respectively.

Lemma 4. For each j € {1,2}, it is true that ¢y, j(N) € e-Lip(Wy; (—7/2,7/2)) and

lip (Yuji2) < (pu(22) 7+ BV2) 572, (23)

where B = v + Vvt — kK2 — 202 20n.

Proposition 2. For each j € {1,2}, it is true that Fy; 4;(N) € e-Lip(Wy;; R) and
Mp(ELaj; 5) < max {wn.ajllip(g) (lzp(@) +lip (wnj; E(wll.ajllip(g))_l)) » Wi.a 52, Wll.ajfi} )
(24)

where lip(g), lip(p), and lip (¥nj;e(wiajilip(g))™") determined by (19), (20), and (25),
respectively.

Proposition 3. For each j € {1,2}, it is true that Fy4;(N) € e-Lip(Wi;;R) and

lip<FH.bj; 5) < max {wII.bjllip(g) (lzp(go) + lip (djnj; 5<W11.bjllip<g))71)> y WILb 525
wir.pj3lip(H ), wir.p jalip(H ), wip jslip(H) (pulip(H)/(8) + 1)},

where lip(g), lip(p), and lip (Yuj; e(wnpnlip(g)) ™) determined by (19), (20), and (25),
respectively.

(25)

According to our assumptions, we have M € W;, i € {I,1I}, whence F;;(M) > 0,
J € {1,2}. These inequalities and Propositions 1-3 imply that problem (16) of finding a
projection can be solved by using the algorithms proposed in [2, 3]. Each algorithm either
generates an infinite or a finite sequence Q™. In the first case, the sequence Q™ converges
to a zero of function Fj;. This zero is closest to M under the norm, and the sequence also
satisfies inequality Fj;(Q™) > 0 for each m = 1,2,.... In the second case, the last element
of the sequence is the required point N,, in which F;;(N,) = 0. In this paper we use
one of these algorithms. Before describing it, as we said above, we turn to the weighting
coefficients w;j; used in constructing the functions Fj;, because choosing w;; affects the
accuracy of the solution obtained by the algorithm.

Since the algorithm finds the next approximation to the optimal solution by using
information about possible change in the value of the function Fj; with respect to the
current approximation and since the function Fj; is defined by maximum of some function-
components, we must take into account how these function-components are related to each
other. If these relations are ignored, then the approximations generated by the algorithm
may not reach the stopping criterion Fj;(Q™) < * within a reasonable time (see also
remarks 1-2 below). There is a reason for it: the accuracy for a function-component of F;
may be too high, whence the number of algorithm iterations to reach accuracy is too large.
It is known (see [5]) that an upper bound of the number of iterations for the gradient-free
algorithms, including our algorithm, is determined by using a possible change in the value
of the objective function; therefore, if we know these changes for all function-components
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of Fj;, then we can take w;j to provide the number of iterations adequate to the overall
accuracy €*. In other words, having taken a value of the overall accuracy ¢* for the values
of Fj;, we can specify accuracies for every function-component of Fj; by using the values
of the corresponding weighting coefficients: accuracy for [-th function-component will be
equal to */w;ji.

In this article, we suppose w;7 = 1, ¢ € {I,ILa,IL.b}, j € {1,2}, that is, the
overall accuracy € corresponds to the accuracy of the first function-component of Fj;.
The accuracies w;j; for other function-components are taken according to remark above.

Let us present the algorithm.

Step 0. Choose: an initial value g > 0 of the e-Lipschitz parameter, the initial
projectile velocity magnitude determined by v or vy, a lower bound x of x, an initial
point N = M € W,;, parameters v, A € (0,1). Assign the visibility zone constraints
determined by g(p, ) satisfying (6). Set Q° := N°, k :=0, and m := 0.

Step 1. Depending on Problem I, ILa, or ILb, calculate Fj;(N*), i € {I,1La,IL.b},
j € {1,2} using (12), (13), or (15), respectively. If F;;(N*) < ex(1 + ), then sequentially
set NFH1 .= Nk Qm*! .= N* and m := m + 1 and pass to Step 2. Otherwise, go to
Step 3.

Step 2. If F;;(N*) < ey, then set exy1 := AFj;(N*). Otherwise, set €x1 := Aeg. In
either case, go to Step 4.

Step 3. Find N**! by the following scheme. Depending on Problem I, IL.a, or ILb,
calculate lip(Fjj,e;), ¢ € {I,ILa,IL.b}, 7 € {1,2} by formulas (22), (24), or (25),
respectively, using (19)—(21), and (23). Solve the problem

N* = argmin {F;(X) | X € fr K, N W,;}, i € {I,1La,ILb},j € {1,2},  (26)

where

k
Fij(N*) — ey,
K,=¢XeR" X-M < s (> = . 5
k { ul | ;7’} Tk \/ﬁlzp(Fij;ak)
n = 2 for Problem I and n = 3 for Problems Il.a and II.b. Next, set €511 := € and go to
Step 4.
Step 4. If Fyj(N*1) =0 or F;;(Q™) = 0, then N**! or Q™ is regarded as a solution
of problem (16), respectively. Otherwise, set k := k + 1 and pass to Step 1.

Remark 1. According to the main statement about the algorithm convergence (see

[2]), if the number of points N* is infinity, then the algorithm ensures the convergence

F;;(Q™) —— 0. Therefore, the condition of the form F;;(Q™) < ¢*, ¢* € (0,1), should be
m—r0o0

included in the stopping criterion. We can also include the conditions setting accuracies
for some function-components of Fj; or the condition of the form [|[Q™ — Q™| < &,
£5 € (0,1) in the stopping criterion.

Remark 2. It is clear that the main computational costs are produced by Step 3, where
the optimization subproblem for finding the point N**! is solved. We will give two pieces
of advice about solving this subproblem. First, since each function Fj;, j € {1,2}, is
minimized either on a circle (Problem ¢ = I) or on a 2-sphere (Problems i = Il.a,ILb),
it follows that the dimension of the subproblem can be reduced by one by applying
transformation to polar coordinates or spherical ones, respectively. Secondly, it is not
necessary to solve this subproblem precisely. Indeed, since the value Fj;(N*) is compared
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with &5, and (1 + 1), instead of the point N**+1 determined by (26), one can find a point
NFk+1 such that Ej(NkJrl) < Ej(Nk+1) < Fij(NkJrl) + 5k7 where 6k < ERY.

Remark 3. For computing values of the 4-th function-component of F};, in problem IL.b,
we must solve the one-dimensional optimization problem of minimization of the function
f(A) = H(AN + (1 — A\)M). This problem can be solved by some corresponding numerical
method. A similar remark also concerns the 5-th function-component of Fijy,.

3. Numerical Examples

The algorithm was tested on several examples in which the target M, the set W,
i € {I,11}, and the overall accuracy * that taken equal to an initial value gy of the e-
Lipschitz parameter were varied. The optimization subproblem for finding the point N*+!
(see Step 3) was solved by the uniform search method.

For all examples, the following parameter values were set: vy = 180m/s; x = 100m;
v = A = 0,5. The values of the variable parameters are presented in Tables 1-3. Hereinafter
and in Tables 1-3, we use the following notation: M; = (110,0,20), M, = (2700, 0, —10)
are the target M (the third coordinate of M for Problem I was equal to 0); By = {(¢, ¢) |
o € [0,27],¢ € [7w/36,87/36]}, By = {(p,7) | ¢ € [0,27],]4 + sinp|7/36 < ¢ <
|1 +sing|n/9}; (N, yn, 2n) is the solution of Problem I, IT.a, or IL.b; (¢, ) is the angles
for the direction of the gun barrel, which ones corresponding to (zn,yn, 2n); kot i the
total number of algorithm iterations; ¢ is the total computational time in seconds. The
value z,;, in Problems II.a and II.b was equal to —10, and the set D in Problems II.b was
determined by function

H(x,y,z2) = min{maX{QO —x,x —130,—10 —y,y — 30,2 — 20}, z + 10}.

Table 1

Results of test examples for Problem I

M |E |¢ ry,m | yn,m | ©,° |, ° | ki t,s
M, | E; | 0,1 2818,6 | 0,0 0,0 ]29,3 | 300 0,146
0,05 || 2976,8 | 0,0 0,0 |32,1 | 353 0,170
0,01 || 3081,4 | 0,0 0,0 | 34,4 | 575 0,306

E, | 0,1 15234 | —152,1 | —=5,7| 13,8 | 301 0,419
0,05 || 1834,6 | —91,4 | —2,9| 16,9 | 442 0,822
0,01 || 2068,1 | —20,6 | —0,6] 19,4 | 891 3,514

M, | Ey | 0,1 | 2820,3 | 0,0 0,0 |29,3 |40 0,034
0,05 | 2977,.1 | 0,0 0,0 |322 144 |0,094
0,01 | 3081,4 | 0,0 0,0 |344 331 |0213

By | 0,1 | 26064 | 484 | 1,1 | 26,0 |36 0,031
0,05 || 2447,8 | 138,6 | 3,2 | 24,0 | 1568 | 0,086
0,01 | 2316,7 | 217,0 |54 | 224|456 | 0,244

The weighting coefficients in the functions F}, Fy;,;, and Fy;p,; (see (12), (13), and (15))
were chosen as follows: I) w1 = 1, wyjo = 0,015 ILa) wyajn = 1, Wiajo = Wiajz = 0,01;
Hb) Wibj1 = 1, Wibj2 = 0,01, Wibj3 = Wirbja = Winbj5 = 0,001.

88 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2017, vol. 10, no. 4, pp. 78-91



[MTPOTPAMMUWPOBAHUE

Table 2
Results of test examples for Problem II.a
M | E |¢ ry,m | yy,m | zy,m | ©,° | ,° | Kot t,s
M, | E; | 0,1 100,0 0,1 58,0 0,1 | 31,0 | 1889 1,249
0,05 | 100,0 | 1,8 654 | 1,0 | 34,1 | 4182 | 2,244
0,01 | 102,0 | 2.1 72,1 | 1,2 | 36,1 | 26297 | 5,227
Ey | 0,1 108,7 —0,5 25,9 —0,3] 14,3 | 614 1,073
0,05 || 106,8 —1,0 31,4 —0,6| 17,3 | 2444 1,495
0,01 || 104,8 -0,3 35,9 —0,2] 19,8 | 17619 | 8,854
M, | By | 0,1 2730,7 | 0,0 48,3 0,0 |29,3 | 8478 4,064
0,05 || 2771,2 | 0,0 121,4 0,0 |32,2 33069 | 12,750
0,01 || 2803,2 | —0,1 173,5 0,0 | 34,4 | 213343 | 103,261
By |01 | 25022 | 107,01 | —8,6 |25 | 244 | 27281 | 5,952
0,05 || 2336,3 | 826,1 —4,3 19,5 | 24,2 | 244288 | 131,227
0,01 | 2324,5 | 663,2 -2,8 15,9 | 23,4 | 313626 | 163,866

Table 3
Results of test examples for Problem II.b
M | E |¢ rn,m | yy,m | zy,m | ©,° | ,° | Ko t,s
M, | By | 0,1 100,0 0,0 58,0 0,0 | 31,0 | 2748 9,753
0,05 | 100,2 16 62,6 9,1 | 32,6 | 7308 14,240
Ey, | 0,1 108,7 —0,5 25,9 —0,3] 14,3 | 1072 11,303
0,05 || 106,8 -1,0 31,4 —0,6| 17,3 | 4258 11,179
M, | E; | 0,1 2730,7 | 0,0 48,3 0,0 |29,3 | 12746 | 19,626
0,05 | — — — — — — —
Ey | 0,1 2502,2 | 107,1 -8,6 2,5 | 24,4 | 47995 | 88,068
0,05 || 2437,0 | 145,7 | -10,0 3,4 | 23,6 | 69230 | 121,723

The tests were performed on an Intel Core i3-4020 1,50 GHz personal computer. The
numerical results are presented in Tables 1-3. It follows that the algorithm finds the e-
solution in Problem I faster than in other two Problems. Moreover, in Problem II.a and
especially in Problem Il.b, there is a large increase in the number of iterations with gq
greater than 0,05. (The dash in Table 3 means that the algorithm did not give a solution
for 200s.) A reasonable explanation for this increase may be that, for the functions F,
a decrease in ¢ implies an increase in L(g). However, for a finite number, number of
iterations (when L(e) is not very high), it is still possible to cut off a set that does not
contain zero of Fj;; this yields that the set IW; is narrowed down to its subset. It is readily
seen that computational time can be reduced by parallelizing some parts of the algorithm.
For example, one can be applied in subproblems, in which the uniform search method are
used.
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MOJIEJIA I METOAbBI JJIs TPEX OBPATHBIX 3AJAY BHEIIIHEI
BAJIJINCTUKUN

H.K. Apymionosa, A.M. /Tyaaues, B.U. 3abomun
Kazanckuiit HannonabHbIH UCC/IEI0BATEILCKUNH TEXHUYCCKUN YHUBEPCUTET
uMm. A.H. Tynonesa — KA, r. Kazanp, Poccuiickas Penepanus

PaccmarpuBatorcss Tpu MaremMarwdeckue MOJEIN 3334 BbIOOPA ONTUMAJIBHOIO Ha-
MPABJIEHUS CTBOJIA OPYA¥S IPHU CTPENhOE HEYITPABJISEMbIM CHAPSITIOM B TTPEIIIOIOXKEHUH, ITO
MOJIYOCh CTBOJIA MOYKET MEPEMEIATHCSA B CBA3HOM HEBBIMYK/IOM KOHYCE, NMEIOIIEM HEeTJIal-
KyI0 OOKOBYIO MOBEPXHOCTb U MOIEIUPYIOIIEM OTPDAHUYEHWS HA 30HY BHIUMOCTH. B mep-
BOI 33a7a4e 1esib PACIOJIOKEHA B IJIOCKOCTH HCTUHHOTO TOPU30HTA OPYIUsd, BO BTODPOH U
TpeTbeil — B HEKOTOPOil obiactu mpocTpancTBa. OTIMYATENbHON 0CODEHHOCTHIO MOIEeei
SIBJISIETCST E-JIUMIITUIEBOCT 1eJIeBbIX (GyHKIHH. [TocTpOeH enUHbBIN YMCTEHHBIN METO, perie-
HUsT TIOCTABJIEHHBIX 337134, DA3UPYIOMUNCS HA OJHOM AJTOPUTME MIPOEKTUPOBAHNS TOYKU HA
MHOXKECTBO YPOBHs e-jumimuiiesoii (yukimu. Ha ero ocHoBe cocramieHa mporpaMma s
9BM. Tlo kaxk10it 13 33739 TPOBEICHA CEPUSA BBIYUCIUTENbHBIX SKCIEPUMEHTOB.

Karoueente caosa: mamemamuneckoe modeauposanue; obpamnan 360a4a enewnets ba.n-
AUCTIUKY; ONMUMU3GUUA; NPOEKULA HA HESHINYKAOE MHONCECTNBO; E-AUNUULUESOCTND; NPU-
baudicenmnoe peutenue.
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