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Numerical methods for solving hypersingular equations based on Chebyshev

polynomials of the second kind with a weight taking into account the Meixner physical

conditions on the edge are developed. We obtained estimates of the rate of convergence

using the analytical form of the matrix of an integral operator with a logarithmic singularity.

Authors considered a delta function model, and its inapplicability in di�raction problems

and vibrator antennas are shown. Previously, a numerical-analytical method for solving

the excitation problems of vibrator antennas was proposed, but in the present work,

the rationale for the numerical-analytical method is given for the �rst time. Unlike the

reduction method, the numerical-analytical method demonstrates reliable convergence,

not only in di�raction problems but also in antenna excitation problems. The speci�c

feature of the excitation problems is that the right-hand side of the hypersingular equation

is localized in a small region, in comparison with the characteristic dimensions of the

antenna. Mathematically, this means that the right-hand side of the hypersingular equation

decomposes into a slowly-convergent series. A similar property is also possessed by the

solution of the equation. That is why the method of reduction is not e�ective enough.

An example of a numerical solution is considered. Estimates of the rate of convergence

are obtained. The applicability of developed methods for investigating a wide range of

di�raction problems is shown

Keywords: hypersingular integral; Chebyshev polynomial; rate of convergence; operator

matrix; reduction method; Fredholm system of the second kind.

Introduction

A number of di�raction problems on an unclosed cylindrical surface, on a rotary
surface, are described by a hypersingular equation of the form is de�ned as:

(Au) (τ) + α (Lu) (τ) + β (Ku) (τ) ≡

≡ 1

π

∂

∂τ

1∫
−1

u (t)
∂

∂t
ln

1

|τ − t|
dt+

+ α

1∫
−1

u (t) ln
1

|τ − t|
dt+ β

1∫
−1

K (τ, t)u (t) dt = f (τ) , −1 ≤ τ ≤ 1, (1)

where both α and β are constant values, and the core of K (τ, t) is a continuous function.
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The theory of the (1) equation is described in [1] and it is based on the properties of
a hypersingular integro-di�erential operator is de�ned as:

(Au) (τ) =
1

π

∂

∂τ

1∫
−1

u (t)
∂

∂t
ln

1

|τ − t|
dt. (2)

The theory, has described paper [1], also proved that the A operator is a symmetric
positive-de�nite operator in a L2 [−1, 1] Hilbert space and has a dense domain of de�nition.
The inverse operator has de�ned by the following equations:

(
A−1f

)
(τ) =

1

π

1∫
−1

f (t) ln

∣∣∣∣ τ − t

1− τt+
√
1− τ 2

√
1− t2

∣∣∣∣ dt (3)

and it is not only terminated, but it is also completely continuous operator in the L2[−1, 1]
area. For any B operator that is terminated by the L2[−1, 1] area, there is T = A−1B
operator, that completely continuous in the HA energy space of a symmetric positive-
de�nite A operator. Multiplying both sides of equation (1) by an A−1 operator, we obtain

u (τ) + α
(
A−1Lu

)
(τ) + β

(
A−1Ku

)
(τ) = A−1f. (4)

Equation (4) is the Fredholm equation of the second kind in the HA energy space.

1. Estimation of the Rate of the Convergence

of the Reduction Method

To understand the important ideas we introduce the function system

φn (τ) =

√
2

πn
sin [n arccos (τ)] =

√
2

πn

√
1− τ 2Un (τ) , n = 1, 2, 3, . . . , (5)

where ( · , · ) means the scalar multiplication in L2[−1, 1], and U (τ) are Chebyshev
polynomials of the second kind: U1 (τ) = 1, U2 (τ) = 2τ, U3 (τ) = 4τ 2 − 1, etc. This
functions system forms the basis of space HA [1]. It is complete and orthonormal and it's
de�ned as

[φn, φm] = (Aφn, φm) =

{
1, m = n,
0, m ̸= n,

(6)

where [ · , · ] is a scalar multiplication in HA space. Now we reduce equation (1) to an
in�nite system. For this, we represent the solution of equation (1) in the following form:

u (τ) =
+∞∑
n=1

cnφn (τ) . (7)

We substitute the (7) equation into (1) and multiply scalarly in L2[−1, 1] space by the φ1,
φ2, . . ., φn, . . . basis functions. As a result, we obtain a following system of linear algebraic
equations:

cn + α
+∞∑
m=1

cmLmn + β
+∞∑
m=1

cmKmn = fn, n = 1, 2, . . . , n, . . . (8)
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where
Lmn = (Lφm, φn) , Kmn = (Kφm, φn) , fn = (f, φn) .

Because equation (4) is a Fredholm equation of the second kind, system (8) is a Fredholm
system of the second kind in the l2 space of quadratically summable sequences too. To
solve the system, we apply the reduction method [2, p. 534], i.e. we replace the in�nite
system by the corresponding truncated system as follows:

c̃n + α
N∑

m=1

c̃mLmn + β
N∑

m=1

c̃mKmn = fn, n = 1, 2, . . . , N. (9)

Let set the problem to estimate the di�erence between the c = (c1, c2, . . . , cn, . . .) exact
solution of system (8) and the c̃ = (c̃1, c̃2, . . . , c̃N , 0, 0, . . .) approximate solution, i.e.
solution of the system (9), considering the fact that both c and c̃ belong to the same
space l2. As described in [2, p. 536], we have the following estimate:

∥c− c̃∥ ≤ C1

[
+∞∑

i=N+1

+∞∑
k=1

|aik|2
] 1

2

+ C2

[
+∞∑

i=N+1

|fi|2
] 1

2

. (10)

The �rst term of sum (10) is determined by the system matrix, and the second by the
right-hand side.

In the di�raction problem on a strip, for example, the right-hand side is given in the
follows form:

f (τ) = exp (iaτ cosφ) , (11)

where a is an electric half-width of the strip, φ is an angle of incidence. Now we �nd the
right-hand sides, con�ning ourselves to even functions, like the standard integral [3]

f2i−1 =

1∫
−1

φ2i−1 (τ) exp (iaτ cos (φ)) dτ =

= (−1)i−1
√

2π (2i− 1)
J2i−1 (a cos (φ))

a cos (φ)
. (12)

The right-hand sides are expressed in terms of Bessel functions; decrease rapidly,
exponentially [3]. Therefore, in this case the rate of convergence in the method of reduction
is determined only by the system matrix. Consider the system matrix, con�ning ourselves
to the case β = 0. Matrix elements of the integral operator L we can be found analytically.
Using the follows identity [3]

ln
1

|τ − t|
= C +

1∫
0

cos [x (τ − t)]− 1

x
dx+

+∞∫
1

cos [x (τ − t)]

x
dx, C = 0,5772, (13)

integrals of the form (12) and the follows standard integral [3]

+∞∫
0

xα−1Jm (cx) Jn (cx) dx =

= 2α−1c−α Γ(1− α)Γ((m+ n+ α)/2)

Γ(1 + (n−m− α)/2)Γ(1 + (m− n− α)/2)Γ (1 + (m+ n− α) /2)
, (14)
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we �nd the matrix elements of an integral operator L with a logarithmic singularity in the
core

(Lφ2i−1, φ2j−1) =
1

2
ln 2 +

1

8
, if i = j = 1, (15)

(Lφ2i−1, φ2j−1) =
1

8i (i− 1)
, if i = j > 1, (16)

(Lφ2i−1, φ2j−1) = −
√
(2i− 1) (2j − 1)

4 (i+ j) (i+ j − 1) (i+ j − 2)
, if j = i− 1 (17)

(Lφ2i−1, φ2j−1) = (φ2i−1, Lφ2j−1) , (18)

(Lφ2i−1, φ2j−1) = 0, if |i− j| > 1. (19)

Thus, the matrix of an integral operator L has a remarkable property � it is three-
diagonal. According to the analysis of the rate of convergence, this matrix is close to the
diagonal matrix, in which all elements except the main diagonal are equal to zero.

From inequality (10), taking (16) � (19) into account, after simple calculations, we
obtain the following theorem.

Theorem 1. There is an estimate of the rate of convergence of the approximate solution

to the exact follows solution

∥c− c̃∥ = O

(
1

N
√
N

)
. (20)

Table 1 demonstrates the e�ciency � fast convergence of the reduction method at
the normal incidence of an electromagnetic wave. The results obtained with N = 5 and
N = 10 completely coincided.

Table 1

The values of the solution at zero depending
on the number N of basic functions α = 1/π, β = 0, φ = π/2

N uN (0) N uN (0) N uN (0) N uN (0)
1 0,6679544 2 0,6550782 5 0,6553978 10 0,6553978

2. Model of the Delta Function in the Theory of Vibrator Antennas

and Its Approximation

In this subsection we construct a function f (τ) for which the reduction method
products poor convergence; does not work. In problems of excitation of vibrator antennas,
the primary �eld is localized in a small area. To simplify the calculations, the primary
�eld was represented in the form of the Dirac delta function discussed in the monograph
[4]

f (τ) = δ (τ) . (21)
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We note that the function (21) does not belong to the space L2[−1, 1], but a completely
continuous operator A−1 is de�ned on a wider space [5]. Therefore we can �nd follows
solution (

A−1δ
)
(τ) =

1

π
ln

∣∣∣∣ τ

1 +
√
1− τ 2

∣∣∣∣ . (22)

This function is unlimited and, therefore, the delta function model is not applicable for
the strict solution of the equation, because in the process of solving it is necessary to �nd
a quantity that, in physical sense, is �nite. Consider a function that belongs to the space
L2(−1, 1) and approximates the Dirac delta function in the sense of generalized functions

f ε (τ) =

{
1
2ε
, |τ | ≤ ε,

0, |τ | > ε.
(23)

Consider right-hand sides of system (8) for the function δ (τ)

f2i−1 =

1∫
−1

φ2i−1 (τ) δ (τ) dτ =

1∫
−1

√
2

π (2i− 1)
sin [(2i− 1) arccos (τ)] δ (τ) dτ =

=

√
2

π (2i− 1)
(−1)i−1 . (24)

And now let us turn to the series[
+∞∑

i=N+1

|fi|2
] 1

2

, (25)

of convergence rate (10) entering the estimate. When we substitute (24) this, we obtain,
as we would expect, a divergent series. After replacing, the delta-function by f ε (τ), the
corresponding series will converge. However, the value of the series will depend on ε, as ε
decreases, it will grow and, apparently, one can not obtain a uniform estimate, which does
not depend on ε. As a consequence, we should expect a slow convergence of the reduction
method. Table 2 summarizes the values of the solution of the equation uN (0), obtained
by the reduction method.

Table 2

The values of the solution at zero depending
on the number N of basic functions α = 1/π, β = 0

N ε = 0, 1 ε = 0, 01 N ε = 0, 1 ε = 0, 01
1 0,4319895 0,4326044 10 1,003179 1,096826
2 0,5969654 0,6003707 20 1,028233 1,313883
3 0,7122543 0,7206242 40 1,026874 1,521940
4 0,7937296 0,8091264 80 1,014211 1,695528
5 0,8543462 0,8787146

As follows from this table, there is no internal convergence, stabilization for ε = 0, 01.
We gave an example for which the method of reduction "does not converge".
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3. Analytical Modi�cation of the Reduction Method

Consider another method for solving system (8). We represent the solution of the
system in the form of a sum of two terms

cn = c∗n + fn (26)

and substitute it into system (8). As a result, we obtain a new system of the form

c∗n + α
+∞∑
m=1

c∗mLmn + β
+∞∑
m=1

c∗mKmn = f ∗
n, (27)

where

f ∗
n = −α

+∞∑
m=1

fnLmn − β

+∞∑
m=1

fnKmn, n = 1, 2, . . . , n, . . . (28)

Let's show that the right-hand sides of (28) fast enough decrease independently of the
right-hand side of the original equation. By the Cauchy � Bunyakovskii inequality we have

|fn| =
[
A−1f, φn

]
≤

[
A−1f

]
[φn] =

[
A−1f

]
≡ C,

where [ · ] is the norm in the energy space. Further, setting β = 0 from (28), we have

|f ∗
n| ≤ |α|C

+∞∑
m=1

|Lmn| .

Hence, taking (16) � (19) into account, we obtain the following theorem.

Theorem 2. There is an estimate

|fN | = O

(
1

N2

)
. (29)

The system (27) will also be solved by the reduction method. After solving this system,
taking (26) into account, we �nd an approximate solution of system (8) in the form

uN (τ) =
+∞∑
n=1

fnφn (τ) +
N∑

n=1

c∗nφn (τ) =
+∞∑
n=1

(f, φn)φn (τ) +
N∑

n=1

c∗nφn (τ) .

The �rst term in (30) can be turn into the integral [1], it exactly corresponds to the
analytic inversion of the hypersingular operatorA. As a result, we obtain the �nal formula
for the approximate solution

uN (τ) =
1

π

1∫
−1

f (t) ln

∣∣∣∣ τ − t

1− τt+
√
1− τ 2

√
1− t2

∣∣∣∣ dt+ N∑
n=1

c∗nφn (τ) . (30)

In concluding of this section, we present the results of the solution of system (8) also for
the right-hand side f (τ), given by formula (23). The results obtained for uN (0) by formula
(30) are summarized in Table 3. The result in Table 3 demonstrate us reliable internal
convergence for di�erent values ε.
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Table 3

The values of the solution at zero depending
on the number N of basic functions α = 1/π, β = 0

N ε = 0, 1 ε = 0, 01 N ε = 0, 1 ε = 0, 01
1 1,067948 0,4154451 10 1,013074 1,744628
2 1,023392 1,800810 20 1,013007 1,744315
3 1,017207 1,756401 40 1,013016 1,744242
4 1,014998 1,749384 80 1,013016 1,744227
5 1,014066 1,747963

4. Applications of the Modi�ed Method of Reduction

1. We have considered the case when β = 0. However, this does not detract from the
generality, for example, in the theory of di�raction the nucleus K (τ, t) is continuously
di�erentiable. The elements of the matrix Kmn decrease rapidly with increasing m or n.

2. An operator M of a more general form can be added to the initial equation. It
is important that an operator of the form A−1M remains completely continuous in the
energy space HA of a symmetric positive-de�nite operator A. In fact, equation (4) can
be written laconically in the form u + Ku = g. This is the Fredholm equation of the
second kind in HAspace. Above we have analyzed the case of poor convergence of the
reduction method, when the right-hand side is localized in a small area. The reason for
the poor convergence is that the function g decomposes into a slowly convergent series.
After replacing u = g + v, we obtain an equation of the form v + Kv = −Kg relative
to v. The operator K, as completely continuous, smoothes out the function g, accelerates
the convergence of the series for a function g over an orthonormal basis. Therefore, the
modi�ed method of reduction developed in this paper is universal.
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ÑÊÎÐÎÑÒÜ ÑÕÎÄÈÌÎÑÒÈ ×ÈÑËÅÍÍÛÕ ÌÅÒÎÄÎÂ ÐÅØÅÍÈß
ÃÈÏÅÐÑÈÍÃÓËßÐÍÛÕ ÓÐÀÂÍÅÍÈÉ
Ñ.È. Ýìèíîâ1, Ñ.Þ. Ïåòðîâà1

1Íîâãîðîäñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. ßðîñëàâà Ìóäðîãî,
ã. Âåëèêèé Íîâãîðîä, Ðîññèéñêàÿ Ôåäåðàöèÿ

Ðàçâèòû ÷èñëåííûå ìåòîäû ðåøåíèÿ ãèïåðñèíãóëÿðíûõ óðàâíåíèé íà îñíîâå ïîëè-

íîìîâ ×åáûøåâà âòîðîãî ðîäà ñ âåñîì, ó÷èòûâàþùèì ôèçè÷åñêèå óñëîâèÿ Ìåéêñíåðà

íà ðåáðå. Èñïîëüçóÿ àíàëèòè÷åñêèé âèä ìàòðèöû èíòåãðàëüíîãî îïåðàòîðà ñ ëîãàðèô-

ìè÷åñêîé îñîáåííîñòüþ, ïîëó÷åíû îöåíêè ñêîðîñòè ñõîäèìîñòè. Ðàññìîòðåíà ìîäåëü

äåëüòà ôóíêöèè, ïîêàçàíà åå íåïðèìåíèìîñòü â çàäà÷àõ äèôðàêöèè è âèáðàòîðíûõ

àíòåíí. Ðàíåå áûë ïðåäëîæåí ÷èñëåííî-àíàëèòè÷åñêèé ìåòîä ðåøåíèÿ çàäà÷ âîçáóæ-

äåíèÿ âèáðàòîðíûõ àíòåíí. Â íàñòîÿùåé ðàáîòå âïåðâûå äàíî îáîñíîâàíèå ÷èñëåííî-

àíàëèòè÷åñêîãî ìåòîäà. Â îòëè÷èå îò ìåòîäà ðåäóêöèè, ÷èñëåííî-àíàëèòè÷åñêèé ìå-

òîä äåìîíñòðèðóåò íàäåæíóþ ñõîäèìîñòü, êàê â çàäà÷àõ äèôðàêöèè, òàê è â çàäà÷àõ

âîçáóæäåíèÿ àíòåíí. Îñîáåííîñòü çàäà÷ âîçáóæäåíèÿ çàêëþ÷àåòñÿ â òîì, ÷òî ïðà-

âàÿ ÷àñòü ãèïåðñèíãóëÿðíîãî óðàâíåíèÿ ëîêàëèçîâàíà â íåáîëüøîé, ïî ñðàâíåíèþ ñ

õàðàêòåðíûìè ðàçìåðàìè àíòåííû îáëàñòè. Ìàòåìàòè÷åñêè ýòî îçíà÷àåò, ÷òî ïðàâàÿ

÷àñòü ãèïåðñèíãóëÿðíîãî óðàâíåíèÿ ðàçëàãàåòñÿ â ìåäëåííî-ñõîäÿùèéñÿ ðÿä. Ïîäîá-

íûì ñâîéñòâîì òàêæå îáëàäàåò è ðåøåíèå óðàâíåíèÿ. Èìåííî ïîýòîìó ìåòîä ðåäóêöèè

íåäîñòàòî÷íî ýôôåêòèâåí. Ðàññìîòðåí ïðèìåð ÷èñëåííîãî ðåøåíèÿ. Ïîêàçàíà ïðèìå-

íèìîñòü ðàçâèòûõ ìåòîäîâ äëÿ èññëåäîâàíèÿ øèðîêîãî êðóãà çàäà÷ äèôðàêöèè.

Êëþ÷åâûå ñëîâà: ãèïåðñèíãóëÿðíûé èíòåãðàë; ïîëèíîì ×åáûøåâà; ñêîðîñòü ñõî-

äèìîñòè; ìàòðèöà îïåðàòîðà; ìåòîä ðåäóêöèè; àíàëèòè÷åñêèé; âòîðîãî ðîäà.
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