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Numerical methods for solving hypersingular equations based on Chebyshev
polynomials of the second kind with a weight taking into account the Meixner physical
conditions on the edge are developed. We obtained estimates of the rate of convergence
using the analytical form of the matrix of an integral operator with a logarithmic singularity.
Authors considered a delta function model, and its inapplicability in diffraction problems
and vibrator antennas are shown. Previously, a numerical-analytical method for solving
the excitation problems of vibrator antennas was proposed, but in the present work,
the rationale for the numerical-analytical method is given for the first time. Unlike the
reduction method, the numerical-analytical method demonstrates reliable convergence,
not only in diffraction problems but also in antenna excitation problems. The specific
feature of the excitation problems is that the right-hand side of the hypersingular equation
is localized in a small region, in comparison with the characteristic dimensions of the
antenna. Mathematically, this means that the right-hand side of the hypersingular equation
decomposes into a slowly-convergent series. A similar property is also possessed by the
solution of the equation. That is why the method of reduction is not effective enough.
An example of a numerical solution is considered. Estimates of the rate of convergence
are obtained. The applicability of developed methods for investigating a wide range of
diffraction problems is shown

Keywords: hypersingular integral; Chebyshev polynomial; rate of convergence; operator

matriz; reduction method; Fredholm system of the second kind.

Introduction

A number of diffraction problems on an unclosed cylindrical surface, on a rotary
surface, are described by a hypersingular equation of the form is defined as:

(Au) (1) + a (Lu) (1) + B (Ku) (1) =
E%%/u(t)%ln |Tit|dt+

1

. 1
+a/u(t)lnmdt—l—ﬁ_[K(T,t)u(t)dt:f(T), -1<7<1, (1)

where both « and [ are constant values, and the core of K (7,t) is a continuous function.
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The theory of the (1) equation is described in [1| and it is based on the properties of
a hypersingular integro-differential operator is defined as:

1

(Au) (1) = %%/u (1) %ln " 1_ 75|dt. (2)

The theory, has described paper [1], also proved that the A operator is a symmetric
positive-definite operator in a Lo [—1, 1] Hilbert space and has a dense domain of definition.
The inverse operator has defined by the following equations:

T—1

dt
1—7t++V1—72y/1—1¢2

()0 =7 [som 3)

and it is not only terminated, but it is also completely continuous operator in the Lo[—1, 1]
area. For any B operator that is terminated by the Ly[—1,1] area, there is T = A™'B
operator, that completely continuous in the H4 energy space of a symmetric positive-
definite A operator. Multiplying both sides of equation (1) by an A~! operator, we obtain

u(r)+a (A Lu) (1) + B (A7 Ku) (1) = A7'f. (4)

Equation (4) is the Fredholm equation of the second kind in the H4 energy space.

1. Estimation of the Rate of the Convergence
of the Reduction Method

To understand the important ideas we introduce the function system

2 2
©n (T) =14/ — sin [n arccos (7)] = %\/1 — 72U, (1), n=1,2,3,..., (5)

where (-, ) means the scalar multiplication in Ls[—1,1], and U (7) are Chebyshev
polynomials of the second kind: U; (1) = 1, Uy (1) = 27, U3 (1) = 47 — 1, etc. This
functions system forms the basis of space H, [1]. Tt is complete and orthonormal and it’s
defined as

1, m =n,
(onsom] = (Apnsiom) = { 02 " ©)
where |-, -] is a scalar multiplication in H4 space. Now we reduce equation (1) to an

infinite system. For this, we represent the solution of equation (1) in the following form:

u(r) = capn (7). (7)

We substitute the (7) equation into (1) and multiply scalarly in Ly[—1, 1] space by the ¢,

09, ..., ©n, ... basis functions. As a result, we obtain a following system of linear algebraic
equations:
“+oo “+00
cn—i—ozg cmLmn+B§ K = fn,m=1,2,....n,... (8)
m=1 m=1
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where
Lmn = (Lgpmu Qﬁn)7 Kmn - (K(,Om, Qpn)a fn - (f7 Son) .

Because equation (4) is a Fredholm equation of the second kind, system (8) is a Fredholm
system of the second kind in the /s space of quadratically summable sequences too. To
solve the system, we apply the reduction method [2, p. 534|, i.e. we replace the infinite
system by the corresponding truncated system as follows:

N N
Gt @Y CmLin + B EnKy = fayn=12,... N. (9)

m=1 m=1
Let set the problem to estimate the difference between the ¢ = (c1,¢9,...,¢y,...) exact
solution of system (8) and the ¢ = (&,¢,...,¢y,0,0,...) approximate solution, i.e.

solution of the system (9), considering the fact that both ¢ and ¢ belong to the same
space ls. As described in |2, p. 536|, we have the following estimate:

+oo  +o0o
ez 3 Swk] el S ] | (10)
i=N+1 k=1 i=N-+1

The first term of sum (10) is determined by the system matrix, and the second by the
right-hand side.
In the diffraction problem on a strip, for example, the right-hand side is given in the
follows form:
f (1) =exp (iat cos ), (11)
where a is an electric half-width of the strip, ¢ is an angle of incidence. Now we find the
right-hand sides, confining ourselves to even functions, like the standard integral [3]

1

foi1 = /gogil (1) exp (iat cos (¢)) dT =
“1
i , Joi_1 (acos
() a1y e ecos ()
acos ()
The right-hand sides are expressed in terms of Bessel functions; decrease rapidly,
exponentially [3]. Therefore, in this case the rate of convergence in the method of reduction
is determined only by the system matrix. Consider the system matrix, confining ourselves

to the case f = 0. Matrix elements of the integral operator L we can be found analytically.
Using the follows identity [3]

(12)

“+00

1
In / r=0l=1,, / cosle =0l o —opr2,  (13)
0

|T—t] x
1

integrals of the form (12) and the follows standard integral [3]
+oo

/ 2 N, (ex) J, (cx) do =

_ ga-la I'l—a)l'(m+n+a)/2) (14)
Fl+nm—m—-—a)/2)T1+(m—n—a)/2)T(1+(Mm+n—a)/2)
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we find the matrix elements of an integral operator L with a logarithmic singularity in the
core

1 1 ... )
(Lpai—1, p2j-1) = 51112 + 3 ifi=75=1, (15)

1

I SV .
s Ti=i>t (16)

(LSO21'—17 9023'—1) =

V(2i—1)(2j 1)

Lgi1,p2j-1) = —————— — Lifj=1—1 17
o) =4y 062 .
(Lpai-1, 02j-1) = (p2i-1, Lepaj—1) , (18)
(Lpai—1,p2j-1) = 0, if [i — j[ > 1. (19)

Thus, the matrix of an integral operator L has a remarkable property — it is three-
diagonal. According to the analysis of the rate of convergence, this matrix is close to the
diagonal matrix, in which all elements except the main diagonal are equal to zero.

From inequality (10), taking (16) — (19) into account, after simple calculations, we
obtain the following theorem.

Theorem 1. There is an estimate of the rate of convergence of the approximate solution

to the exact follows solution
1
c—¢|=0(——|. 20
=2l =0 (575 ) 20)

Table 1 demonstrates the efficiency — fast convergence of the reduction method at
the normal incidence of an electromagnetic wave. The results obtained with N = 5 and
N = 10 completely coincided.

Table 1

The values of the solution at zero depending
on the number N of basic functions o = 1/m, =0, ¢ = 7/2

N | " (0) N | ™V (0) N | ™ (0) N | «"(0)
1 10,6679544 || 2 | 0,6550782 | 5 | 0,6553978 | 10 | 0,6553978

2. Model of the Delta Function in the Theory of Vibrator Antennas
and Its Approximation

In this subsection we construct a function f(7) for which the reduction method
products poor convergence; does not work. In problems of excitation of vibrator antennas,
the primary field is localized in a small area. To simplify the calculations, the primary
field was represented in the form of the Dirac delta function discussed in the monograph
4]

f(r)=0d(r). (21)
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We note that the function (21) does not belong to the space Lo[—1,1], but a completely
continuous operator A~! is defined on a wider space [5|. Therefore we can find follows
solution

(A1) (1) = L1

- (22)

-
Vi
This function is unlimited and, therefore, the delta function model is not applicable for
the strict solution of the equation, because in the process of solving it is necessary to find
a quantity that, in physical sense, is finite. Consider a function that belongs to the space
Ls(—1,1) and approximates the Dirac delta function in the sense of generalized functions

ro={Eh=s (25)

0,|7] > e.

Consider right-hand sides of system (8) for the function ¢ (7

1
fgl'l:/(‘DQZl dT—/H i) sin [(2i — 1) arccos (7)] 0 (1) dT =
21

= m (-1, (24)

And now let us turn to the series

[ >, rff] , (25)

i=N+1

of convergence rate (10) entering the estimate. When we substitute (24) this, we obtain,
as we would expect, a divergent series. After replacing, the delta-function by f¢(7), the
corresponding series will converge. However, the value of the series will depend on ¢, as ¢
decreases, it will grow and, apparently, one can not obtain a uniform estimate, which does
not depend on €. As a consequence, we should expect a slow convergence of the reduction
method. Table 2 summarizes the values of the solution of the equation u¥ (0), obtained
by the reduction method.
Table 2

The values of the solution at zero depending
on the number N of basic functions o = 1/m, =10

N| =0,1 e=0,01 | N| e=0,1 |e=0,01
1 |0,4319895 | 0,4326044 || 10 | 1,003179 | 1,096826
2 | 0,5969654 | 0,6003707 || 20 | 1,028233 | 1,313883
3 | 0,7122543 | 0,7206242 || 40 | 1,026874 | 1,521940
4 10,7937296 | 0,8091264 || 80 | 1,014211 | 1,695528
5 | 0,8543462 | 0,8787146

As follows from this table, there is no internal convergence, stabilization for € = 0, 01.

We gave an example for which the method of reduction "does not converge".
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3. Analytical Modification of the Reduction Method

Consider another method for solving system (8). We represent the solution of the
system in the form of a sum of two terms

Cn=Cn+ fn (26)

and substitute it into system (8). As a result, we obtain a new system of the form

400 —+00
GAaY Lom+BY K = [, (27)
m=1 m=1
where
+o00 +oo
fi==0> falmn =B falmn, n=12..n,... (28)
m=1 m=1

Let’s show that the right-hand sides of (28) fast enough decrease independently of the
right-hand side of the original equation. By the Cauchy — Bunyakovskii inequality we have

fal = [A7 Frn] < [A7f] o] = [A7'f] = C,

where [-] is the norm in the energy space. Further, setting 5 = 0 from (28), we have

“+o0o
1 < 1alC 7 [ Ll -
m=1

Hence, taking (16) — (19) into account, we obtain the following theorem.

Theorem 2. There is an estimate

n=0(5)- (20)

The system (27) will also be solved by the reduction method. After solving this system,
taking (26) into account, we find an approximate solution of system (8) in the form

u® (1) = Z fnton (T) + Z Cripn (T) = Z (f,n) on (1) + Z Cripn (T) -

The first term in (30) can be turn into the integral [1], it exactly corresponds to the
analytic inversion of the hypersingular operatorA. As a result, we obtain the final formula
for the approximate solution

T—1

1—7t4+ V1 —721— 2

u (1) = %/f (t) In dt + Z cron (T). (30)

In concluding of this section, we present the results of the solution of system (8) also for
the right-hand side f (7), given by formula (23). The results obtained for v¥ (0) by formula
(30) are summarized in Table 3. The result in Table 3 demonstrate us reliable internal
convergence for different values .
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Table 3

The values of the solution at zero depending
on the number N of basic functions a = 1/7, 5 =0

e=0,1 =001 || N| e=0,1|e=0,01
1,067948 | 0,4154451 || 10 | 1,013074 | 1,744628
1,023392 | 1,800810 | 20 | 1,013007 | 1,744315
1,017207 | 1,756401 | 40 | 1,013016 | 1,744242
1,014998 | 1,749384 | 80 | 1,013016 | 1,744227
1,014066 | 1,747963

G|l —| =2

4. Applications of the Modified Method of Reduction

1. We have considered the case when 5 = 0. However, this does not detract from the
generality, for example, in the theory of diffraction the nucleus K (7,t) is continuously
differentiable. The elements of the matrix K, decrease rapidly with increasing m or n.

2. An operator M of a more general form can be added to the initial equation. It
is important that an operator of the form A~'M remains completely continuous in the
energy space Hy of a symmetric positive-definite operator A. In fact, equation (4) can
be written laconically in the form v + Ku = g¢. This is the Fredholm equation of the
second kind in Haspace. Above we have analyzed the case of poor convergence of the
reduction method, when the right-hand side is localized in a small area. The reason for
the poor convergence is that the function g decomposes into a slowly convergent series.
After replacing u = g + v, we obtain an equation of the form v + Kv = —Kg relative
to v. The operator K, as completely continuous, smoothes out the function g, accelerates
the convergence of the series for a function g over an orthonormal basis. Therefore, the
modified method of reduction developed in this paper is universal.
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CKOPOCTDb CXOAMMOCTU YNCJIEHHBIX METOA0B PEIIITEHIN A
TNIIEPCUHIYJISIPHBIX YPABHEHUI

C.U. dmunos', C.IO. Ilemposa’

'Hosropomckuit rocymapcTBenHbIi yEUBepcuTeT nM. Spocaasa Mymporo,

r. Bestukuit Hosropog, Poccuiickas @ejeparus

Pa3BuThr uncieHHbIE METO/IBI PEIIEHN S TUIIEPCUHTYJIAPHBIX YPABHEHU I Ha OCHOBE MOJIH-
HOMOB YeObIIIeBa BTOPOrO POIa ¢ BECOM, YINTHIBAIOMINM (busndeckue ycaopus MeikcHepa
Ha pebpe. Ncnomb3yst aHATUTUIECKUI BUI MATPHUIHI HHTEIPAJIBHOTO OIIEPATOPa C Jorapud-
MUYECKONH OCOOEHHOCTBIO, MOJIYUeHbl OMEHKH CKOPOCTH CXoauMmocTu. PaccMorpeHna Mozesb
IebTa, (DYyHKIMN, TOKa3aHa ee HEeMPUMEHWMOCTh B 33Ja9ax AUMPaKIuu ¥ BUOPATOPHBIX
anTeHH. Panee ObLI MPeNJIOKEH YNCIEHHO-QHAJIUTUIECKUH METO/] PeIeHust 3a1a1 BO30y K-
JeHus BUOPATOPHBIX aHTeHH. B Hacrosimeit pabore BIepBble JaHO 0OOCHOBAHME THCICHHO-
AHAJIUTHIECKOTO METOJa. B oTimdne or Merona pefyKIuu, THCIeHHO-aHATUTAYECKUN Me-
TOJ, JIEMOHCTPUPYET HAJEXKHYIO CXOIUMOCTh, KaK B 3ama4dax Audpakiiy, TaK U B 3a139aX
BO30Oy K aeHust aHTeHH. OCOOEHHOCTb 3a7a4 BO30YKIAEHUS 3aKJIYAETCS B TOM, YTO Mpa-
Basl 9aCTb TUIEPCUHTYISPHOTO YPaBHEHHUs JOKAIU30BAHA B HEDOJBIION, TT0 CPABHEHUIO C
XapaKTEePHBIMU Pa3MepaMU aHTeHHbI 00gacTu. MaremMarndecku 3TO 03HAYAET, UTO PaBas
YACTh TUITEPCUHTYIISPHOrO YPABHEHUS PA3IAraeTcs B MejeHHo-cxoasnmiica psaa. [Tomo6-
HBIM CBOMCTBOM TakzKe 00JIa1aeT U pelrneHne ypaBpueHusa. VIMEHHO TOITOMY METO/T Pery KK
HeocTaTodHo Y dexTuser. Paccmorpen npumep uucieHHoro pemrenns. [lokaszana mpume-
HUMOCTB PA3BUTHIX METOOB TSl MCCJIEIOBAHNUS IITUPOKOTO KPYyTa 33139 AuPAKITAA.

Karouesnie crosa: eunepcumneysapmvili unmezpan; nosunom debvuiesa; ckopocms cxo-
QUMOCTIU, MATMPULG OTEPATNOPA; MEMO0 PEJYKUUU; GHAAUWMUNECKUT; 81MOP020 POJa.
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