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Under consideration is the stochastic model of optimal dynamic measurements. To

solve this problem, the theory of optimal dynamic measurements which has actively been

developing for the deterministic problems is extended to the stochastic case. The main

purpose of the model is to restore a dynamically distorted input signal from a given

observation using methods of the theory of dynamic measurements and the optimal control

theory for Leontief type systems. Based on the results obtained by the authors earlier it is

shown that optimal dynamic measurement as a minimum point of the cost functional doesn't

depend on stochastic interference such as resonances in chains and random interference at

the output of measuring transducer.
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Introduction

The stochastic problem of dynamic measurements can be considered within the
framework of the general control theory, based, on one hand, on the deterministic
description in the class of di�erential equations of the system itself, on the other hand �
on the stochastic description of the control and perturbing e�ects applied to it. One of the
main characteristics of the control system is the dynamic accuracy of signal transmission
or conversion, which is determined either by the di�erence or functional of the di�erence
between the required and the actual values of the signal in time. There is a resonant
problem, to get rid of noise in the observed signal, and to receive the measured signal
in the required form. Since it is not possible to get rid of noise in full (in practice) even
with the use of modern measuring instruments, �lters and technical methods, there arises
a question about mathematical solution of the problem, in particular with the use of
methods of optimal control theory.

Mathematical model of measuring transducer (MT) is represented by the Leontief type
system of equations (descriptor system [1]){

Lẋ = Ax+Bu,
y = Cx,

(1)

where L and A are matrices that characterize the structure of the MT, in some cases it
is possible that detL = 0 [2], x(t) and ẋ(t) are vector functions of the state of the MT
and the velocity of the state change, respectively; y(t) is a vector-function of observations;
C is a rectangular matrix characterizing the interrelation between the system state and
observation; u(t) is a vector-function of measurements; B is the matrix characterizing
interrelation between the system state and measurement. If L is not degenerate then
system (1) can be reduced to {

ẋ = Mx+ Fu,
y = Cx,

(2)

where M = L−1A, F = L−1B.
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This system appeared in the dynamic measurements theory [3] from the remote control
theory, where (2) was obtained in the study of the transfer function of the MT. Finally, in
accordance to new approaches in the �eld of measurements [4], it is possible to replace the
terms "input signal" to "measurement" and "output signal" to "observation", respectively.
We emphasize that all observations and measurements in systems (1) and (2) are simulated
or "virtual".

The initial Showalter � Sidorov condition[
(αL− A)−1 L

]p+1
(x(0)− x0) = 0 (3)

for some x0 ∈ Rn, α ∈ ρL(M), re�ects initial state of the MT. The initial Showalter �
Sidorov condition is equivalent to the initial Cauchy condition x (0) = x0 in case detL ̸= 0.

The main goal of the theory of optimal dynamic measurements [5] is the restoration of
a dynamically distorted input signal (measurement) u(t) according to a given observation
y0(t). When using this approach the key concept is the optimal dynamic measurement
v(t), which is constructed as a minimum of the functional

J(v) = min
u∈U∂

J(x(u), u)

on a set of admissible measurements U∂, where the pair (x(u), u) satis�es system (1), and
U∂ contains a priori information about measurements. The functional J(x(u), u) re�ects
the evaluation of the proximity of actual observation y0(t) and virtual observation y(t),
obtained from (1). At present, within the framework of the theory of optimal dynamic
measurements, the deterministic case is well studied [5, 6] algorithms for solving such
problems are constructed [7]. However, the deterministic problem does not take into
account the e�ects of random interferences, which are always present in real processes,
so it was suggested to use the stochastic model of MT{

L
o

ξ = Aξ +B(u+ φ),
η = Cξ + ν,

(4)

[
(αL− A)−1 L

]p+1
(ξ(0)− ξ0) = 0. (5)

Here matrices L,A,B,C have the same sense as in (1). Random processes φ and ν
determine noises in the circuits and at the output of the the MT respectively.

1. Stochastic Leontief Type System in Spaces of "Noises"

Let Ω ≡ (Ω,A, P ) be a complete probability space, R be a set of real numbers, endowed
with the Boreal σ-algebra. The measurable mapping ξ : Ω → R is called a random variable.
The set of random variables with Eξ = 0 and �nite variance forms a Hilbert space L2

with an inner product < ξ1, ξ2 >= E(ξ1ξ2). Let I ⊂ R be some interval. The mapping
η : I × Ω → R of the form η = η(t, ω) is called a (one-dimensional) stochastic process,
thus for every �xed t ∈ I the value of the mapping η = η(t, · ) is a random variable,
i.e. η = η(t, · ) ∈ L2 and for every �xed ω ∈ Ω the value of a stochastic process η =
η( · , ω) is called the (sample) trajectory. The random process η is called continuous, if
almost surely all its trajectories are continuous. Denote by CL2 the space of continuous
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random processes. Continuous random process, which independent random variables are

Gaussian, is called Gaussian. By
o
η (ℓ) denote the ℓ-th Nelson � Gliklikh derivative of of

the stochastic process η [8]. The set of continuous stochastic processes having continuous
Nelson � Gliklikh derivatives up to order k ∈ N at each point of the set I forms a space,
which is denoted by CkL2.

Consider the stochastic Leontief type system

L
o

ξ = Aξ +B(u+ φ). (6)

Where u : I → Rn is a vector-function, φ is a stochastic process. Let the matrix A be
(L, p)-regular, p ∈ {0} ∪ N, and initial states of (6) are described by the Showalter �
Sidorov condition [

(αL− A)−1L
]p+1

(ξ(0)− ξ0) = 0, (7)

where ξ0 =
∑n

k=0 ξ0,kek, ξ0,k are the pairwise independent Gaussian random variables and
{ek}nk=1 is an orthonormal basis in Rn.

Theorem 1. For any vector-function u ∈ Cp+1(I,Rn), initial values ξ0 and stochastic
process φ ∈ Cp+1L2(I,Rn) independent for every t ∈ I, there exists a unique solution ξ of
(6), (7) given by

ξ(t) = ξu(t) + ξφ(t), ξu ∈ C1(I,Rn), ξφ ∈ C1L2(I,Rn), (8)

where

ξu(t) =

t∫
0

U t−sL−1
1 Qu(s)ds+

p∑
q=0

(
M−1 (In −Q)L

)q
M−1 (Q− In)u

(q)(t) (9)

is the deterministic part and

ξφ(t) = U tξ0 +

t∫
0

U t−sL−1
1 Qφ(s)ds+

p∑
q=0

(
M−1 (In −Q)L

)q
M−1 (Q− In)

o
φ (q)(t) (10)

is the stochastic part of the solution.

Here U t = lim
r→∞

((
L− t

r
M

)−1
L
)r

, Q = lim
r→∞

(
rLL

r (M)
)p
, LL

r (M) = L
(
L− 1

r
M

)−1
,

and In is an identity matrix of order n.

Proof. Problem (6), (7) can be split into a deterministic

Lξ̇u = Aξu +Bu, (11)[
(αL− A)−1L

]p+1
(ξu(0)) = 0 (12)

and stochastic problems

L
o

ξφ = Aξφ +Bφ, (13)[
(αL− A)−1L

]p+1
(ξφ(0)− ξ0) = 0. (14)

Due to (L, p)-regularity of matrix A there exists a unique solution [9] given by (9) of
(11), (12). Using results on solvability of stochastic Sobolev type equations in spaces of
"noises" [10�12] we can conclude existence of unique solution of stochastic Leontief type
system (13), (14) as a particular case.

2
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2. Stochastic Model of Optimal Dynamic Measurements

The key concept is the optimal dynamic measurement simulated by solving the
optimal control problem for (4), (5). For �nding it introduce the space of measurements
U = {u ∈ L2(I,Rn) : u(p+1) ∈ L2((0, τ),Rn)} and allocate in it a closed convex set of
admissible measurements U∂ ⊂ U which contains a priori information about measurements
Analogously to the deterministic case when investigating the problem of restoration a
dynamically distorted signal by random interference in the circuits and at the output of
MT, we consider the control problem

J(v) = min
u∈U∂

J(u), (15)

where the cost functional

J(u) = J(η(u)) =
1∑

k=0

τ∫
0

E
∥∥∥o
η (k)(t)− η

(k)
0 (t)

∥∥∥2

dt (16)

re�ects the closeness of the real observation η0(t) and the virtual observation η(t), obtained
on the basis of mathematical model of the MT.

The minimum point v(t) of the functional (16) on the set U∂, being a solution of optimal
control problem (15) is called an optimal dynamic measurement. In practice, there is only
indirect information about v(t).

Theorem 2. Optimal dynamic measurement doesn't depend on random initial condition,
noises in the circuits and at the output of the MT.

Proof. Since the input signal is a subject to noise in circuits and and at the output of
MT, the virtual observation η(t) is a stochastic process, the real observation η0(t) also
varies from experiment to experiment and it can also be considered as a stochastic process
with a �nite expectation η0(t) at each point t ∈ I. Denote by η̃0(t) a stochastic process
η0(t)− η0(t) with zero expectation. Transform the cost functional

J(u) =
1∑

k=0

τ∫
0

E
∥∥∥o
η (k)(t)− η

(k)
0 (t)

∥∥∥2

dt =

=
1∑

k=0

τ∫
0

E

∥∥∥∥C o

ξ (k)(t) +
o
ν (k) − (η0(t)

(k) +
o

η̃
(k)
0 (t))

∥∥∥∥2

dt =

=
1∑

k=0

τ∫
0

E

∥∥∥∥Cξ(k)u (t) + C
o

ξ (k)
φ (t) +

o
ν (k) − (η

(k)
0 (t) +

o

η̃
(k)
0 (t))

∥∥∥∥2

dt =

=
1∑

k=0

τ∫
0

∥∥∥Cξ(k)u (t)− η
(k)
0 (t)

∥∥∥2

dt+

+2
1∑

k=0

τ∫
0

E

(
Cξ(k)u (t)− η

(k)
0 (t), C

o

ξ (k)
φ (t) +

o
ν (k) −

o

η̃
(k)
0 (t)

)
dt+
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+
1∑

k=0

τ∫
0

E

∥∥∥∥C o

ξ (k)
φ (t) +

o
ν (k) −

o

η̃
(k)
0 (t)

∥∥∥∥2

dt =

=
1∑

k=0

τ∫
0

∥∥∥Cξ(k)u (t)− η
(k)
0 (t)

∥∥∥2

dt+
1∑

k=0

τ∫
0

E

∥∥∥∥C o

ξ (k)
φ (t) +

o
ν (k) −

o

η̃
(k)
0 (t)

∥∥∥∥2

dt.

Thus, noises and random initial condition do not a�ect the optimal dynamic measurement
as a minimum point of cost functional. They a�ect only the value of the optimality
criterion, namely, it increases.

2

Remark 1. The theorem allows us to assert the possibility of applying numerical
algorithms developed for the deterministic case [13] to solve the problem of restoration
of the measured signal distorted by stochastic interference. In the future, it is planned to
modify the methods of �nding the optimal dynamic measurement in the presence of noise.
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ÑÒÎÕÀÑÒÈ×ÅÑÊÀß ÌÎÄÅËÜ ÎÏÒÈÌÀËÜÍÛÕ ÄÈÍÀÌÈ×ÅÑÊÈÕ
ÈÇÌÅÐÅÍÈÉ

À.À. Çàìûøëÿåâà1, À.Â. Êåëëåð1, Ì.Á. Ñûðîïÿòîâ1

1Þæíî-Óðàëüñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, ã. ×åëÿáèíñê,
Ðîññèéñêàÿ Ôåäåðàöèÿ

Ðàññìàòðèâàåòñÿ ñòîõàñòè÷åñêàÿ ìàòåìàòè÷åñêàÿ ìîäåëü îïòèìàëüíûõ äèíàìè÷å-

ñêèõ èçìåðåíèé, êîòîðàÿ ïîçâîëÿåò îñóùåñòâèòü âîññòàíîâëåíèå äèíàìè÷åñêè èñêà-

æåííîãî âõîäíîãî ñèãíàëà ïî çàäàííîìó íàáëþäåíèþ ñ èñïîëüçîâàíèåì ìåòîäîâ òåîðèè

äèíàìè÷åñêèõ èçìåðåíèé è òåîðèè îïòèìàëüíîãî óïðàâëåíèÿ äëÿ ñèñòåì ëåîíòüåâñêî-

ãî òèïà. Äëÿ åå èññëåäîâàíèÿ òåîðèÿ îïòèìàëüíûõ äèíàìè÷åñêèõ èçìåðåíèé, êîòîðàÿ

àêòèâíî ðàçâèâàëàñü äëÿ äåòåðìèíèðîâàííûõ çàäà÷, ðàñïðîñòðàíÿåòñÿ íà ñòîõàñòè÷å-

ñêèé ñëó÷àé. Íà îñíîâå ðåçóëüòàòîâ, ïîëó÷åííûõ àâòîðàìè ðàíåå, ïîêàçàíî, ÷òî îï-

òèìàëüíîå äèíàìè÷åñêîå èçìåðåíèå êàê òî÷êà ìèíèìóìà ôóíêöèîíàëà íå çàâèñèò îò

ñòîõàñòè÷åñêèõ ïîìåõ, òàêèõ, êàê ðåçîíàíñû â öåïÿõ è ñëó÷àéíûå ïîìåõè íà âûõîäå

èçìåðèòåëüíîãî óñòðîéñòâà.

Êëþ÷åâûå ñëîâà: ñòîõàñòè÷åñêàÿ ìîäåëü; îïòèìàëüíîå äèíàìè÷åñêîå èçìåðåíèå;

ôóíêöèîíàë êà÷åñòâà.

Ñòàòüÿ âûïîëíåíà ïðè ïîääåðæêå Ïðàâèòåëüñòâà ÐÔ (Ïîñòàíîâëåíèå � 211
îò 16.03.2013 ã.), ñîãëàøåíèå � 02.À03.21.0011.
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