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STOCHASTIC MODEL OF OPTIMAL DYNAMIC MEASUREMENTS
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Under consideration is the stochastic model of optimal dynamic measurements. To
solve this problem, the theory of optimal dynamic measurements which has actively been
developing for the deterministic problems is extended to the stochastic case. The main
purpose of the model is to restore a dynamically distorted input signal from a given
observation using methods of the theory of dynamic measurements and the optimal control
theory for Leontief type systems. Based on the results obtained by the authors earlier it is
shown that optimal dynamic measurement as a minimum point of the cost functional doesn’t
depend on stochastic interference such as resonances in chains and random interference at
the output of measuring transducer.
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Introduction

The stochastic problem of dynamic measurements can be considered within the
framework of the general control theory, based, on one hand, on the deterministic
description in the class of differential equations of the system itself, on the other hand —
on the stochastic description of the control and perturbing effects applied to it. One of the
main characteristics of the control system is the dynamic accuracy of signal transmission
or conversion, which is determined either by the difference or functional of the difference
between the required and the actual values of the signal in time. There is a resonant
problem, to get rid of noise in the observed signal, and to receive the measured signal
in the required form. Since it is not possible to get rid of noise in full (in practice) even
with the use of modern measuring instruments, filters and technical methods, there arises
a question about mathematical solution of the problem, in particular with the use of
methods of optimal control theory.

Mathematical model of measuring transducer (MT) is represented by the Leontief type
system of equations (descriptor system [1])

Li = Ax + Bu,
{ 0

y=Cz,

where L and A are matrices that characterize the structure of the MT, in some cases it
is possible that det L = 0 [2], z(t) and @(t) are vector functions of the state of the MT
and the velocity of the state change, respectively; y(t) is a vector-function of observations;
C is a rectangular matrix characterizing the interrelation between the system state and
observation; u(t) is a vector-function of measurements; B is the matrix characterizing
interrelation between the system state and measurement. If L is not degenerate then
system (1) can be reduced to

r = Mx+ Fu,
(2)
y = Cu,
where M = L7'A, F = L7'B.
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This system appeared in the dynamic measurements theory |3| from the remote control
theory, where (2) was obtained in the study of the transfer function of the MT. Finally, in
accordance to new approaches in the field of measurements [4], it is possible to replace the
terms "input signal" to "measurement" and "output signal" to "observation", respectively.
We emphasize that all observations and measurements in systems (1) and (2) are simulated
or "virtual".

The initial Showalter — Sidorov condition

[(aL — A7 L) (2(0) — 20) = 0 (3)

for some 2y € R", a € p(M), reflects initial state of the MT. The initial Showalter —
Sidorov condition is equivalent to the initial Cauchy condition x (0) = x¢ in case det L # 0.

The main goal of the theory of optimal dynamic measurements [5] is the restoration of
a dynamically distorted input signal (measurement) u(t) according to a given observation
Yo(t). When using this approach the key concept is the optimal dynamic measurement
v(t), which is constructed as a minimum of the functional

J(v) = nin J(z(u), v)

on a set of admissible measurements Uy, where the pair (z(u), u) satisfies system (1), and
Uy contains a priori information about measurements. The functional J(z(u),u) reflects
the evaluation of the proximity of actual observation yo(t) and virtual observation y(t),
obtained from (1). At present, within the framework of the theory of optimal dynamic
measurements, the deterministic case is well studied [5, 6] algorithms for solving such
problems are constructed [7]. However, the deterministic problem does not take into
account the effects of random interferences, which are always present in real processes,
so it was suggested to use the stochastic model of MT

{ L22A5+B(u+90), (4)
n=0CE+v,
[(aL — A)7" L) (£(0) — &) = 0. (5)

Here matrices L, A, B, C' have the same sense as in (1). Random processes ¢ and v
determine noises in the circuits and at the output of the the MT respectively.

1. Stochastic Leontief Type System in Spaces of "Noises"

Let Q = (2, A, P) be a complete probability space, R be a set of real numbers, endowed
with the Boreal o-algebra. The measurable mapping € : {2 — R is called a random variable.
The set of random variables with F¢ = 0 and finite variance forms a Hilbert space Lo
with an inner product < &,& >= E(&&). Let I C R be some interval. The mapping
n:IxQ — R of the form n = n(t,w) is called a (one-dimensional) stochastic process,
thus for every fixed ¢ € I the value of the mapping n = n(t, -) is a random variable,
ie. n = n(t, -) € Ly and for every fixed w € Q) the value of a stochastic process n =
n(-,w) is called the (sample) trajectory. The random process n is called continuous, if
almost surely all its trajectories are continuous. Denote by CLy the space of continuous
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random processes. Continuous random process, which independent random variables are

Gaussian, is called Gaussian. By 707“) denote the ¢-th Nelson — Gliklikh derivative of of
the stochastic process 1 [8]. The set of continuous stochastic processes having continuous
Nelson — Gliklikh derivatives up to order k € N at each point of the set I forms a space,
which is denoted by C*Ls.

Consider the stochastic Leontief type system

LE= A + Blu+ o). (6)

Where u : I — R" is a vector-function, ¢ is a stochastic process. Let the matrix A be
(L,p)-regular, p € {0} UN, and initial states of (6) are described by the Showalter —
Sidorov condition

[(aL = A)7'L]" (£(0) = &) =0, (7)
where § = > &oxx, o are the pairwise independent Gaussian random variables and
{er},—, is an orthonormal basis in R™.

Theorem 1. For any vector-function u € CPT(I,R™), initial values & and stochastic
process ¢ € CP Ly (I, R™) independent for every t € I, there exists a unique solution & of
(6), (7) given by

E(t) = &ult) +&(1), & € CH(ILR), &, € C'Ly(I,R"), (8)

where
t

Eu(t) = / ULy Qu(s)ds + Y - (M7 (I, = Q) L)' M~ (Q — I,) u)(t) (9)
0 9=0
1s the deterministic part and
E(t) = Ul + /Ut_stngp(s)ds + Z (M (L, —Q)L)'M " (Q—1,) e @) (10)
0 7=0

15 the stochastic part of the solution.

Here U = lm ((L—tM)7'L), @ = lim (rLE(M))", LH(M) = L(L—1M)7",
r—00 r—00
and I, is an identity matriz of order n.

Proof. Problem (6), (7) can be split into a deterministic

L¢, = A&, + Bu, (11)
[(aL = A) L] (£,(0)) = 0 (12)
and stochastic problems
LE, = A, + Bo, (13)
[(aL = A)7'L)"™ (£,(0) — &) = 0. (14)

Due to (L, p)-regularity of matrix A there exists a unique solution [9] given by (9) of
(11), (12). Using results on solvability of stochastic Sobolev type equations in spaces of
"noises" [10-12] we can conclude existence of unique solution of stochastic Leontief type
system (13), (14) as a particular case.

|
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2. Stochastic Model of Optimal Dynamic Measurements

The key concept is the optimal dynamic measurement simulated by solving the
optimal control problem for (4), (5). For finding it introduce the space of measurements
U= {u € Ly(I,R") : uP*) € Ly((0,7),R™)} and allocate in it a closed convex set of
admissible measurements Uy C U which contains a priori information about measurements
Analogously to the deterministic case when investigating the problem of restoration a
dynamically distorted signal by random interference in the circuits and at the output of
MT, we consider the control problem

J(v) = min J(u), (15)

uelUy

where the cost functional

dt (16)

reflects the closeness of the real observation 7y(t) and the virtual observation 7(t), obtained
on the basis of mathematical model of the MT.

The minimum point v(¢) of the functional (16) on the set Up, being a solution of optimal
control problem (15) is called an optimal dynamic measurement. In practice, there is only
indirect information about v(t).

Theorem 2. Optimal dynamic measurement doesn’t depend on random initial condition,
noises in the circuits and at the output of the MT.

Proof. Since the input signal is a subject to noise in circuits and and at the output of
MT, the virtual observation 7n(t) is a stochastic process, the real observation 7y(t) also
varies from experiment to experiment and it can also be considered as a stochastic process
with a finite expectation 7,(¢) at each point ¢ € I. Denote by 7(¢) a stochastic process
no(t) — 7y (t) with zero expectation. Transform the cost functional

J(u):i/TE

k=07,

° 2
19—l at =

2
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1 2
+Z/EHC€§0’“)(7€>+B<’“>—ﬁé’“(t) dt =
k=0 0
! T 1 T o o] 2
ZZ/HCSS’“’@) _ék)(t)H dt+Z/EH05§f)(t)+u(’“)—ﬁé’“)(t) dt.
k=0 0 k=0 0

Thus, noises and random initial condition do not affect the optimal dynamic measurement
as a minimum point of cost functional. They affect only the value of the optimality
criterion, namely, it increases.

O

Remark 1. The theorem allows us to assert the possibility of applying numerical
algorithms developed for the deterministic case [13]| to solve the problem of restoration
of the measured signal distorted by stochastic interference. In the future, it is planned to
modify the methods of finding the optimal dynamic measurement in the presence of noise.

Acknowledgements. The work was supported by Act 211 Government of the Russian
Federation, contract No. 02.A03.21.0011.

References

1. Belov A.A., Kurdyukov A.P. Descriptor Systems and Control Problems. Moscow,
FIZMATLIT, 2015. (in Russian)

2. Khudyakov Yu.V. On Mathematical Modeling of the Measurement Transducers. Journal
of Computational and Engineering Mathematics, 2016, vol. 3, no. 3, pp. 68-73.
DOI: 10.14529/jcem160308

3. Granovsky V.A. Dynamic Measurements: Theory and Metrological Assurance at Yesterday
and Tomorrow. Sensors and Systems, 2016, no. 3, pp. 57-72. (in Russian)

4. Ruhm K.H. Dynamics and Stability — A Proposal for Related Terms in Metrology from
a Mathematical Point of View. Measurement: Journal of the International Measurement
Confederation, 2016, vol. 79, pp. 276-284. DOI: 10.1016/j.measurement.2015.07.026

5. Shestakov A.L., Keller A.V., Sviridyuk G.A. Optimal Measurements. XXI IMEKO World
Congress "Measurement in Research and Industry”, 2015, pp. 2072-2076.

6. Shestakov A.L., Sagadeeva M.A., Sviridyuk G.A. Reconstruction of a Dynamically Distorted
Signal with Respect to the Measuring Transducer Degradation. Applied Mathematical
Sciences, 2014, vol. 8, no. 41-44, pp. 2125-2130. DOI: 10.12988/ams.2014.312718

7. Keller A.V., Shestakov A.L., Sviridyuk G.A., Khudyakov Yu.V. The Numerical Algorithms
for the Measurement of the Deterministic and Stochastic Signals. Springer Proceedings in
Mathematics and Statistics, 2015, vol. 113, pp. 183-195. DOI: 10.1007/978-3-319-12145-1 11

8. Gliklikh Yu.E., Mashkov E.Yu. Stochastic Leontieff Type Equations and Mean Derivatives
of Stochastic Processes. Bulletin of the South Ural State University. Series: Mathematical
Modelling, Programming and Computer Software, 2013, vol. 6, no. 2, pp. 25-39.

9. Shestakov A.L., Sviridyuk G.A., Khudyakov Yu.V. Dynamical Measurements in the View
of the Group Operators Theory. Springer Proceedings in Mathematics and Statistics, 2015,
vol. 113, pp. 273-286. DOI: 10.1007/978-3-319-12145-1 17

Bectauk FOYpI'Y. Cepusa «MartemaTudecKoe MoJejinpoBaHue 151
u nporpammupoBanues (Becruunk FOYpI'Y MMII). 2018. T. 11, Ne 2. C. 147-153



A.A. Zamyshlyaeva, A.V. Keller, M.B. Syropiatov

10.

Zamyshlyaeva A A Sviridyuk G.A. The Linearized Benney — Luke Mathematical Model with
Additive White Noise. Springer Proceedings in Mathematics and Statistics, 2015, vol. 113,
pp. 327-337. DOI: 10.1007/978-3-319-12145-1 21

11. Zagrebina S.A., Soldatova E.A. Linear Sobolev Type Equations with Relatively p-Bounded
Operators and Additive White Noise. News of Irkutsk State University. Series: Mathematics,
2013, vol. 6, no. 1, pp. 20-34. (in Russian)

12. Favini A., Sviridyuk G.A., Manakova N.A. Linear Sobolev Type Equations with Relatively
p-Sectorial Operators in Space of "Noises". Abstract and Applied Analysis, 2015, vol. 2015,
p. 697410. DOI: 10.1155/2015/697410

13. Khudyakov Yu.V. The Numerical Algorithm to Investigate Shestakov — Sviridyuk’s Model of
Measuring Device with Inertia and Resonances. Mathematical Notes of YSU, 2013, vol. 20,
no. 2, pp. 211-221. (in Russian)

Received April 17, 2018

YAK 517.9 DOI: 10.14529 /mmp180212

CTOXACTUYECKASI MOJEJIb OIITUMAJIBHBIX TTHAMUNYECKIUX
N3MEPEHUI

A.A. Bamvwasnesa', A.B. Keanep', M.B. Cuponamos
"Owxm0-Ypanbekuit rocyapeTBenHbIi yEIBepCcHTeT, I. e a0uHCK,
Poccuiickag ®enepaius

PaccmarpuBaeTcs cToxacTrdecKkas MaTeMaTuIecKas MOTEb ONTHMATbLHBIX TWHAMTIE-
CKUX M3MEPEHUH, KOTOpad IIO3BOJIAET OCYIIECTBATH BOCCTAHOBJICHUE ITWHAMWYECKHA HCKa-
2KEHHOT'O BXOTHOTO CUTHAJIA 110 33JaHHOMY HAOIIOIEHWIO C UCIIOIB30BAHUEM METOI0B TEOPUH
JAVMHAMUYECKUX U3MepeHHil U TeOpUH ONTUMAJIBHOI'O YIIPABJIEHUA JIJId CUCTEM JICOHTbEBCKO-
ro tuna. JI7g ee nccaeIoBaHus TEOPUs ONTUMATBHBIX IHHAMUYECKUX U3MEPEHUil, KOTopast
AKTHUBHO Pa3BUBAJIACH JJId NETePMUHHUPOBAHHBIX 33144, PACIPOCTPAHSAETCA HA CTOXACTHYe-
ckuit ciyvait. Ha ocHOBe pe3y/bTaToB, MOJYYEHHBIX aBTOPAMU paHee, TOKa3aHO, YTO OI-
TUMAJbHOE JTUHAMHYECKOE U3MEPEHUE KAK TOYKA MUHUMYyMa (DYHKIMOHAJA HE 3aBUCUT OT
CTOXaCTUYECKHUX MOMeX, TAKMX, KAK PE30HAHCHI B IIeNAX U CjaydvaiiHble IIOMeXH Ha BBbIXOJE
U3MEPUTEIbHOI'O yCTPOUCTBA.

Karouesbie cA08a: cmoracmuveckas mModeasb; OnmumaisbHoe OUHAMUNECKOE USMEPERUE;

PYHKYUOHAA KA UECNEA.

Cmamova swnosnena npu noddepscke Ilpasumesvemsa PO (Hocmanosaerue N 211

om 16.03.2013 2.), coeaawenue N 02.A03.21.0011.
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