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The problem of decision-making based on partial, precedential information is the most
important when the creation of arti�cial intelligence systems. According to the results of
observations over the behaviour of external objects or systems it is necessary to synthesize
or, more precisely, extract from the data a mathematical model of optimization of the
object on the basis of accumulated empirical information in the form of a �nite set of
triples: "a state vector, the value of the quality of functioning of the object, a binary
indicator of the admissibility of this state". The aim of the work is to create and substantiate
mathematical methods and algorithms that allow to synthesize models of scalar pseudo-
Boolean optimization with a constraint in the form of disjunctive normal form (DNF)
using this precedential information. The peculiarity of pseudo-Boolean optimization models
with separable objective functions and DNF constraint, which has a bounded constant
length, is their polynomial solvability. However, the complexity of bringing the problem
to the form with a DNF constraint in general case is exponential. When extracting the
model from the data the DNF constraint is synthesized approximately but with polynomial
complexity and the number of conjunctions in the extracted DNF does not exceed the
number of examples in the initial precedential information. In the paper is shown how to use
binary decision trees to construct a disjunctive constraint, proposed the methods to identify
the properties of monotonicity and linearity of the partially de�ned objective functions,
and developed algorithms for solving problems pseudo-Boolean scalar optimization in the
presence of incomplete, precedential initial information. The scope of application of the
obtained results includes intelligent control systems, intelligent agents. Although the control
models derived from the data are approximate, their application can be more successful than
the use of less realistic, inconsistent with the objects models which are chosen on the base
of subjective considerations.

Keywords: pseudo-Boolean optimization; disjunctive constraint; machine learning;

decision trees.

Introduction

Discrete pseudo-Boolean models of conditional scalar optimization generally have the
form

max (min) f(x̃) under condition x̃ ∈ Ω ⊂ Bn, (1)

where Bn = {0, 1}n is the set of vertices of a unit n-dimensional cube, Ω is the set of
admissible solutions de�ned by constraints of di�erent types, f : Bn → R is a pseudo-
Boolean objective function, x̃ = (x1, . . . , xi, . . . , xn) ∈ Bn is an arbitrary Boolean vector
or set of variables that accept values 0 or 1 [1]. In the most common particular case, the
model (1) contains restrictions in the form of linear inequalities and a linear objective
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function, such as 
max

n∑
i=1

cixi;

aj1x1 + · · ·+ ajixi + · · ·+ ajnxn ≤ bj; j = 1,m;

xi ∈ {0, 1}; ci, aji ∈ R; i = 1, n.

(2)

Model (2) is widely used to solve problems of production planning, equipment loading,
investment, and in many other applications. When large dimension of the model (2) (when
n and m are large) can arise the situation of the complexity or even the impossibility of
obtaining the full source numeric information in the form of objective function coe�cients
ci, matrix constraints [aji]m×n, and values bj. Moreover, it may be even that there is no
information on how the model constraints that de�ne the set of admissible solutions Ω are
"arranged". The statement of problems solved in this article can be explained using the
concept of "black box". The system or controlled object under study is considered as a
black box exposed to x̃ and generating some responses in the form of numbers f(x̃) and
possibly values of predicates [x̃ ∈ Ω]. It is required to construct as accurate as possible a
model M̂ =< f̂, Ω̂ > approximating its true but unknown model M, knowingly belonging
to the class (1) by the given set of impacts and responses. Then �nd the optimum point
x̃∗ = agmax(min)f̂(x̃)/x̃ ∈ Ω̂, and if some of the vector variables x̃ are controllable, suggest
an optimal control or planning for the model M̂.

In broad terms, problems considered in this paper are included in the scope of
problems acquisition of optimization models from data and making decisions by incomplete
information. Such problems were the �rst investigated by Vl.D. Mazurov [2].

Source partial information is represented by the training sample {(x̃j, f(x̃j), γj)}lj=1

which is a set of triples: points with known value of the function f and the predicate
γj = [x̃ ∈ Ω] in these points. This source information is believed to re�ect the properties
of a regular object or system and to be error-free (correct).

1. Basic De�nitions and Statements Required

De�nition 1. The set of variables (the point) x̃ = (x1, . . . , xi, . . . , xn) precedes the set
z̃ = (z1, . . . , zi, . . . , zn) (denoted as x̃ ≼ z̃ ) if for all i = 1, n the inequality xi ≤ zi is
satis�ed, and strictly precedes ( x̃ ≺ z̃ ) if ∀i (xi ≤ zi) and at the same time ∃i (xi < zi).

De�nition 2. Pseudo-Boolean (Boolean) function f is called monotone if for any pair
of points x̃, z̃ ∈ Dom(f) such that x̃ ≼ z̃ the following inequality is satis�ed f(x̃) ≤ f(z̃).

De�nition 3. A pseudo-Boolean function is called a linear one if it has the form
f(x1, . . . , xi, . . . , xn) = c0 + c1x1 + · · ·+ cixi + · · ·+ cnxn where ci are real numbers.

A literal is an expression xσ where x is Boolean variable, and σ is a Boolean constant
such that xσ = x when σ = 1 and xσ = x̄ when σ = 0. To match the values of the Boolean
variable x equivalent to its real values, formulas are introduced x̄ = 1 − x è x = ¯̄x =
1− (1− x). For variables that accept values only 0 or 1 the identities xi · xi · · · · · xi ≡ xi
and xi · x̄i ≡ 0 are performed. Therefore pseudo-Boolean polynomials may not include
members that contain a degree variable, and may include only the products of di�erent
variables without inversions.
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Theorem 1. Any pseudo-Boolean function can be represented as a polynomial.

Proof. Let arbitrary pseudo-Boolean function of n variables f : Bn → R takes at points
σ̃0, . . . , σ̃j, . . . , σ̃2n−1 values y0, y1, . . . , y2n−1, σ̃j = (σ1

j , . . . , σ
n
j ). If one multiply the

characteristic function of each of these points by the corresponding value of the function
f in them and then add the resulting members, then an expression f(x1, x2, . . . , xn) =∑2n−1

j=0 yj ·x
σ1
j

1 ·xσ
2
j

2 · · · xσ
n
j

n where x
σi
j

i = 1 ⇔ xi = σi
j will be obtained. Replacing x

0
i = 1−xi,

multiplication and bringing like terms gives the polynomial.
2

In the optimization model (1) constraints, generally speaking, can be presented in
di�erent forms � algebraic, graph, logical, even in the form of a speci�c algorithm. The
objective function as well can be represented by various ways. The variety of possible
representations of the model (1) makes it reasonable to introduce the concept of the form
of representation. For example (2) is a model with constraints in the form of non-strict
inequalities and with a linear objective function.

De�nition 4. The model of scalar pseudo-Boolean optimization in the form

max (min)f(x1, . . . , xn) provided
m∨
j=1

x
σj1

j1 ∧ · · · ∧ x
σjkj

jkj
= 1 (3)

is called the �rst form with disjunctive (DNF) constraint and the model

max (min)f(x1, . . . , xn) provided

µ∨
q=1

x
σq1

q1 ∧ · · · ∧ xσqkq

qkq
= 0 (4)

is the second form with DNF constraint.

Theorem 2. Any model of pseudo-Boolean conditional optimization can be represented
both in the �rst and in the second forms with DNF constraint.

Proof. The constraint x̃ ∈ Ω in general form contained in the model (1) can be represented
in the following equivalent form. We introduce Boolean function φΩ(x̃) = 1 ⇔ x̃ ∈ Ω.
Then the constraint takes the equivalent form φΩ(x̃) = 1. Any Boolean function can be
represented in a disjunctive normal form, so when representing the function φΩ in the DNF
the �rst form can be obtained. De�ning otherwise Boolean function: ΨΩ(x̃) = 0 ⇔ x̃ ∈ Ω
one can get the second form.

2
Lemma 1. If in the linear pseudo-Boolean optimization model (1) all coe�cients of the
constraints are positive and

aj1x1 + · · ·+ ajixi + · · ·+ ajnxn ≤ bj ⇔ ψj(x̃) = 0

then ψj is monotone Boolean function and ΨΩ =
∨m

j=1 ψj is monotone Boolean function.

Proof. Let α̃ ≼ β̃, i.e. ∀i (αi ≤ βi). Then

Sα̃ =
n∑

i=1

ajiαi − bj ≤
n∑

i=1

ajiβi − bj = Sβ̃.
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By the condition of the Lemma Sα̃ ≤ 0 ⇔ ψj(α̃) = 0 è Sβ̃ ≤ 0 ⇔ ψj(β̃) = 0. Because

of the inequality Sα̃ ≤ Sβ̃ the following mathematical expressions are valid: ψj(β̃) = 0 ⇒
ψj(α̃) = 0 è ψj(α̃) = 1 ⇒ ψj(β̃) = 1 whence it follows the inequality ψj(α̃) ≤ ψj(β̃), i.e.
ψj is monotone Boolean function. The class of monotone Boolean functions is closed and
contains disjunction, so the function ΨΩ =

∨m
j=1 ψj is also monotone. 2

Theorem 3. If the problem of conditional linear pseudo-Boolean optimization (2) with
positive coe�cients in constraints-inequalities is presented in the second form with DNF
constraint

ΨΩ(x̃) =

µ∨
q=1

x
σq1

q1 ∧ · · · ∧ xσqkq

qkq
= 0,

then ΨΩ is monotone function.

Proof. Using Theorem 2 and Lemma 1 it is easy to get a proof of the theorem.
2

Theorem 4. The problem of scalar pseudo-Boolean conditional optimization of a linear
function with n variables and DNF constraint

max (min)
n∑

i=1

cixi /

m∨
j=1

x
σj1

j1 ∧ · · · ∧ x
σjkj

jkj
= 1 (5)

which contains m conjunctions is solvable with a time complexity O(mn).

Proof. DNF-constraint in (5) contains m conjunctions x
σj1

j1 ∧ · · · ∧ x
σjkj

jkj
each of which is

drawn per unit at its corresponding interval of rank kj. Boolean variables with numbers
j1, . . . , jkj are �xed for this interval by values σj1, . . . σjkj , and the other variables are
free. If the linear function is maximized any free variable xi should be taken equal to one
if ci > 0, equal to zero, if ci < 0, and arbitrary when ci = 0. Therefore, the linear pass at
all m conjunctions with simultaneous search of the maximum of the linear function at all
intervals will require O(mn) of calculation steps.

2
Corollary 1. If the problem of conditional optimization of a linear pseudo-Boolean
function is reduced to the form with DNF constraint for polynomial number of steps, then
it is polynomial solvable.

Most often, the problems of conditional optimization of pseudo-Boolean functions
including those presented by the model (2) are NP-hard. The exceptions are, in particular,
models with separable objective function the set of constraints of which corresponds to the
structure of the matroid. Therefore, taking into account corollary 1, the construction of
the constraint DNF is in itself a complex problem. However, within the framework of the
problems considered in this article, the approximation of the domain of admissible solutions
by logical machine learning algorithms leads to the construction of DNFs having a length
not exceeding the number of training sample examples.

2. DNF Constraint Synthesis as a Problem of Machine Learning:

Approach Based on the Use of Decision Trees

If the initial partial information contains the predicate values γj = [x̃j ∈ Ω] at the
training sample points then mathematical precedent-based machine learning methods
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can be used to construct an approximation φ̂Ω(x̃) or Ψ̂Ω(x̃) of Ω̂ in the form of DNF.
The most suitable for this purpose are learning algorithms based on the construction
of binary decision trees (BDT) which are algorithmic operators that display training
sequences of precedents in a family of Boolean functions having a tree-like structural
representation [3]. It is necessary for such algorithmic operators to possess the ability
for empirical generalization and guarantee learnability in the sense of arbitrarily accurate
approximation of the constructed empirical DNF D̂ to the true but unknown DNF D as
the number of precedents in the training sample grows.

When one builds BDT classifying the points x̃ ∈ Bn (considered in this article the
case � onto two classes: satisfying the constraints and do not satisfying them), the initial
information is a training sample {(x̃j, γj)}lj=1, where γj = 1 ⇔ x̃j ∈ Ω and γj = 0 ⇔
x̃j /∈ Ω. The procedure of BDT synthesis consists in sequential execution of the same-type
branching steps or, in a set-theoretic interpretation, splitting intervals of Bn, starting from
the set of Bn as n-dimensional interval, when the root vertex of the tree is built, containing
one of the variables and two outgoing edges that correspond to the unit and zero values of
the selected variable. Such a partition is called splitting or branching. Branching continues
until the condition of stopping is met which is the presence in each interval of the resulting
partition (or, let's say, in each leaf of the tree) of points of only one and the same class [4].

The following simple example is intended to illustrate the proposed approach to the
construction of a constraint in the form of DNF by decision tree machine learning.

Example 1. Assume that the learning information was generated by the following M
model with a single constraint in the form of an inequality:

max f(x1, x2, x3, x4) = 2x1 + x2 + 4x3 + 2x4; 3x1 + x2 + 2x3 + x4 ≤ 3. (6)

Let the target function in (6) be known exactly, and the area of admissible solutions
actually de�ned by inequality (6) is unknown, but is partially represented by eight
precedent points (Table 1).

Table 1

Precedents for learning

x1 x2 x3 x4 γ
0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 0 1 1 0
1 1 1 0 0

Each point has a value of γ equal to one if the point satis�es the inequality (6) and
zero � otherwise. One of the possible BDT built on the learning sample contained in the
Table 1 is presented on Figure. This BDT is equivalent to the following DNF:

x̄1x̄2 ∨ x̄1x2x̄3 ∨ x1x̄3 ≡ x̄1x̄2 ∨ x̄3. (7)
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We obtain approximation φ̂(x̃) = x̄1x̄2 ∨ x̄3 and, accordingly, constraint φ̂Ω(x̃) = 1 in the
�rst form. Since Ψ̂Ω(x̄) = 0 ⇔ φ̂(x̃) = 1, we obtain the approximating function Ψ̂Ω(x̄) =
x̄1x̄2 ∨ x̄3 = x1x3 ∨ x2x3. DNF (7) de�nes two possibilities for choosing a solution: either
x1 = x2 = 0, and the remaining variables can be assigned by any (since the coe�cients of
the target function are positive, then by units); or x3 = 0, and the remaining variables
can be assigned by units. As a result, f(0, 0, 1, 1) = 6, f(1, 1, 0, 1) = 5, and the decision
max f(x̃) = 6 at point x̃ = (0, 0, 1, 1). Approximations φ̂Ω(x̃) and Ψ̂Ω(x̃) are di�erent
from the true functions

φΩ(x̂) = x̄1x̄2︸︷︷︸
6

∨ x̄1x̄3︸︷︷︸
3

∨ x̄1x̄4︸︷︷︸
5

∨ x̄2x̄3x̄4︸ ︷︷ ︸
2

= 1 ⇔ 3x1 + x2 + 2x3 + x4 ≤ 3 and

ΨΩ(x̃) = x1x2 ∨ x1x3 ∨ x1x4 ∨ x2x3x4 = 0 ⇔ 3x1 + x2 + 2x3 + x4 ≤ 3

(under conjunctions of DNF of function φΩ(x̂) the maximal values of the object function
2x1 + x2 + 4x3 + 2x4 in the intervals corresponding to these conjunctions are signed).

Binary Decision Tree

In a particular case considered in the example 1 the constraint φ̂Ω(x̂) = 1 built on the
learning sample information really allowed to �nd the exact solution of the problem (6).
But in the general case, it is no guarantee of obtaining an exact solution of this problem
according to partial learning information. 2

Denote Ω̂ = {x̃ : φ̂Ω(x̂) = 1}. When constructing a BDT to obtain an approximation
of the constraints region Ω̂ at each branching step t the set Bn is split into shredded
intervals N1, . . . , Ns, . . . , Nt.

De�nition 5. Interval Ns ⊂ Bn is called correct if Ns ⊂ Ω or Ns ⊂ Bn \ Ω. The union
of all correct intervals obtained after execution the step t of BDT constructing is called the
correct approximation region Ωcorr

t , and the set Bn \ Ωcorr
t is called incorrect region.

Theorem 5.
1o Ωcorr

1 ⊆ · · · ⊆ Ωcorr
s ⊆ · · · ⊆ Ωcorr

t for all t satisfying the double inequality 2 ≤ t ≤ T
where T is the �nal step of the BDT synthesis;

2o In some step t∗ ≤ (2n − 1) the equality Ωcorr
t∗ = Bn can be performed provided that

the length of the training sample l ≥ t∗ + 1.
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Proof. 1) Let's suppose that after the branching step t−1, t ≥ 2, the correct approximation
region Ωcorr

t−1 is formed (this region may be empty at the �rst branching steps). By de�nition,
it consists only of correct intervals. In step t the correct intervals are not partitioned, so a
certain interval N from the region Bn \Ωcorr

t−1 will be selected for partitioning. This interval
will be split into two intervalsN0 èN1 : N0∪N1 = N. If at least one of the intervalsN0,N1

will be correct the area of correctness will expand otherwise it will remain unchanged, so
Ωcorr

t−1 ⊆ Ωcorr
t .

2) In the �rst step the set Bn is split into two intervals. Then, at each subsequent
step, some selected interval of already obtained partition is split into two new intervals
and sooner or later the equality Ωcorr

t = Bn can be ful�lled. Indeed, in the step t of the
partitioning t+1 intervals will be obtained, and in the worst-case such process will continue
until a step t = 2n − 1 when the set Bn will be split onto 2n intervals of rank n so that
each of them will contain exactly one point from the correct learning sample. Therefore,
the equality Ωcorr

2n−1 = Bn will certainly be achieved.
2

Theorem 5 states the monotonous re�nement of the region of correct approximation
of the partially given constraint with the growth of the length of the training sample right
down until an accurate result. But herewith the correctness of all examples in the training
sample is obligatory condition. The latter condition is natural in the approach to extracting
optimization models from the data when regular processes and systems are investigated. In
this case, we are not talking about any probabilistic distributions, but a possibility exists
to assess the acceptability of the synthesized DNF on the base of Kolmogorov approach to
the evaluation of the regularity as non-randomness.

A.N. Kolmogorov emphasized the need to distinguish between actual randomness as
the absence of regularity and a stochastic randomness as the subject of the theory of
probability [5, p. 42]. When empirical extraction of regularity based on the Kolmogorov
approach, it is possible to estimate the non-randomness of the found regularity, in the
considered case � of empirical DNF approximating the constraints of the optimization
problem.

De�nition 6. A result of machine learning is called an exact tuning on a training sample
when the obtained empirical decision rule accurately calculates the approximable value at
each sampling point (for each precedent).

Theorem 6. [6] Let empirical regularity is extracted from the family F and an appearance
in the sample {(x̃j, γj)}lj=1 of any example from the general population Bn+1 × · · · × Bn+1︸ ︷︷ ︸

l

is equiprobably. Then the probability P (F , l) of a random exact tuning on a training sample
of length l satis�es the inequality P (F , l) < 2−l+K(F) where K(F) is Kolmogorov
algorithmic complexity of the family F .

Corollary 2. When the conditions of the theorem 6 are met there is the estimation
P (F , l) < 2−l+pV CD(F) where pV CD(F) is upper bound on the Kolmogorov complexity of
the family F which is obtained by pV CD method [6].

If binary decision trees are used to extract such regularity as DNF constraint then the
family F is a class BDTn,µ of trees with at most µ leaves and from n Boolean variables.
It is known the estimation [7]
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pV CD(BDTn,µ) = (µ− 1)
(
⌈log2n⌉+ ⌈log2(µ+ 3)⌉

)
. (8)

We require the conditionP (F , l) ≤ ε which will lead to an equation to determine
the required length of the training sample to ensure that the probability of random
extraction of the DNF constraint will not exceed ε. From the equation ε =

2−l+(µ−1)
(
⌈log2n⌉+⌈log2(µ+3)⌉

)
we get l = log2

1
ε
+(µ−1)

(
⌈log2n⌉+ ⌈log2(µ+3)⌉

)
. The results

of calculating the required sample length l = l(n, µ, ε) are shown in the Table 2.

Table 2

The required length of the training sample when
1

ε
= 128, ε ≈ 0, 0078

n 20 20 20 50 50 100
µ 20 50 100 30 100 100

l(n,µ, ε) 197 546 1195 355 1294 1393

3. Approximation of Partially De�ned Pseudo-Boolean Functions

Assume that objective function f is monotone, we need to �nd its maximum, and
monotone approximation f̂ is obtained. Let the empirical DNF constraint

∨m
j=1Kj = 1

is constructed. Then in any interval of the set Bn which corresponds to the conjunction

Kj = x
σj1
j1

∧ · · · ∧ xσji
ji

∧ · · · ∧ x
σjkj

jkj
the extreme value f̂(x̃∗Kj

) is immediately found in the

point x̃∗Kj
which is de�ned as follows. Variables with numbers ji such that σji = 1 are

getting unit values, σji = 0 � zero values, and the rest variables, free from entering the
conjunction Kj, according to the monotonicity of the objective function are determined

by units. Next is ˆ̃x∗ = argmaxj f̂(x̃
∗
Kj
) = argmaxj f̂(x̃) / x

σj1
j1

∧ · · · ∧ xσji
ji

∧ · · · ∧ x
σjkj

jkj
= 1.

It is easy to make sure that the time complexity of the described algorithm for �nding the
extremum of a monotone pseudo-Boolean function with DNF constraint is estimated as
O(mn).

As shown above, information on the monotony of the function partially de�ned by
sample greatly simpli�es the solution of the problem. To check the monotony condition on
a given training sample it is quite simply by the following Algorithm 1.

Algorithm 1. Checking the consistency property with monotonicity of a function on a
training sample.

Input: the correct sample {(x̃j, f(x̃j))}lj=1.
Output: M = 1 if the sample does not contradict the monotony condition otherwise
M = 0.

1: M := 1;
2: for j := 1 to l − 1 do
3: for s := j + 1 to l do
4: if (x̃j ≺ x̃s) ∧ (f(x̃j) > f(x̃s)) ∨ (x̃s ≺ x̃j) ∧ (f(x̃s) > f(x̃j))

then M := 0; stop end then.
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Let us denote further (C, x̃) =
∑n

i=1 cixi.

De�nition 7. The function f which is partially de�ned by the training sample
{(x̃j, f(x̃j))}lj=1 allows linear approximation if there is such a vector C ∈ Rn that for
any pair of points (x̃p, x̃q) from this sample such that f(x̃p) < f(x̃q) the inequality
(C, x̃p) < (C, x̃q) is satis�ed .

Theorem 7. The function f which is partially de�ned by the training sample
{(x̃j, f(x̃j))}lj=1 where f(x̃j) ̸= f(x̃m), 1 ≤ j < m ≤ l, admits a linear approximation
if and only if in sorted by values of objective function f(x̃j) sequence of sample points
x̃j1 , . . . , x̃jp , . . . , x̃jl such that f(x̃j1) < · · · < f(x̃jp) < · · · < f(x̃jl) for all p =
1, 2, . . . , (l − 1) the points x̃j1 , . . . , x̃jp can be separated from the points x̃jp+1 , . . . , x̃jl by
the hyperplane (C∗, x̃) = λp, at that (C

∗, x̃jp) < (C∗, x̃jp+1).

Proof. The necessity. Let the sample allows a linear approximation. Then there exists a
vector C∗ ∈ Rn such that (C∗, x̃j1) < · · · < (C∗, x̃jp) < (C∗, x̃jp+1) < · · · < (C∗, x̃jl). It

is obvious that the hyperplanes (C∗, x̃) = λp, p = 1, (l − 1), where λp = 1
2

(
(C∗, x̃jp) +

(C∗, x̃jp+1))
)
satisfy the condition of the theorem.

Su�ciency. Let the separating hyperplanes (C∗, x̃) = λp exist. Then the vector C∗

satis�es the admissibility requirement of linear approximation by the transitivity of the
relation "<".

2
Theorem 8. If for the sorted by values of objective function f(x̃j) sequence of the
points x̃j1 , . . . , x̃jp , . . . , x̃jl such that f(x̃j1) < · · · < f(x̃jp) < · · · < f(x̃jl) for all
p = 1, 2, . . . , (l − 1) exists a hyperplane (Cp, x̃) = λp separating the points x̃j1 , . . . , x̃jp
from the points x̃jp+1 , . . . , x̃jl and (Cp, x̃jp) < (Cp, x̃jp+1) then a vector C∗ ∈ Rn exists
which de�nes the hyperplanes (C∗, x̃) = βp separating the points x̃j1 , . . . , x̃jp from the
points x̃jp+1 , . . . , x̃jl, herewith (C∗, x̃jp) < (C∗, x̃jp+1).

Proof. The opposite assumption

∃ C∗ ∈ Rn ∀p (C∗, x̃jp) < (C∗, x̃jp+1) ⇔ ∀ C∗ ∈ Rn ∃p : (C∗, x̃jp) ≥ (C∗, x̃jp+1)

entails the denial of the condition ∃ Cp ∈ Rn (Cp, x̃jp) < (Cp, x̃jp+1). 2
To verify the possibility of linear approximation of the objective function according to

the theorems 7 and 8 we need to check the linear separability of points x̃j1 , . . . , x̃jp , . . . , x̃jl
of the training sample which are ordered by increasing values of the objective function.
Namely: j1 point from all the others, j1 point and j2 points from all the others and forth
until separability of all points with numbers j1, . . . , j(l−1) from the point jl. Overall we
need to perform such check l − 1 times.

Remark 1. If the training sample {(x̃j, f(x̃j))}lj=1 contains a subset of the points with
the same value of the objective function f then such a subset must always be included in
one of the groups to be separated. It is easy to verify that with this addition the theorem
7 remains true, and the number of separability checks required will be one less than the
number of subsets of training sample points with the same values of the objective function.

To check sequentially the separability of two groups of points with simultaneous
construction of separating hyperplanes (in the direction of increasing the objective function
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as in 8) it is advisable to use the iterative procedure of Rosenblatt-Novikov linear
correction [8]. If two �nite sets of points G1 and G2 are linearly separable then this
procedure provides constructing a separating hyperplane in a �nite number of correction
steps k ≤ ⌈D2/ρ2⌉ where D = supx̃∈G1∪G2 ∥x̃∥, and ρ is half the distance between convex
shells of the sets G1 and G2 [8].

Let us denote Xj = (xj1, . . . , x
j
n, 1) ∈ Bn+1 � extended vector representing the

description of the point x̃j with adding the (n + 1)-th coordinate to which assigned a
value 1; C = (c1, . . . , cn, cn+1) ∈ Rn+1 is an extended vector which de�nes the separating
hyperplane c1x1 + · · · + cnxn + c0 = 0. The linear correction procedure starting with an
arbitrarily given initial vector C "adjusts" its coe�cients by formulas implemented in lines
13 and 14 of the Algorithm 2 below. The parameter of this algorithm is the maximum
number of exceeding of cyclic views of the sample when learning what means that the
algorithm failed to establish the separability of sets G1 and G2 formed in accordance with
the theorem 8.

Algorithm 2. Test of admissibility of linear approximation of the function f .

Input: A sample {
(
x̃j, f(x̃j)

)
}lj=1 sorted by non-decreasing values f(x̃j);

Max � the maximum number of cyclic views of the sample when learning.
Output: L = 1 if the sample does not contradict the monotony condition otherwise L = 0.

1: L := 1; \\ A �ag of result.
2: C = (0, ..., 0, 0); α := 1; \\ Initialization.
3: q := 1; \\ The position of the split of the sample.
4: while f(x̃q) = f(x̃q+1) do q := q + 1; \\ If the function values are equal.
5: if q = l then stop; \\ If all groups are separated.
6: G1 := {X1, . . . , Xp, . . . , Xq}; \\ The �rst group to be separated.
7: G2 := {Xq+1, . . . , Xp, . . . , Xl}; \\ The second group to be separated.
8: Count := 0; \\ A count of number of scan cycles of training sample when learning.
9: t := 1; \\ A count of number of corrections.
10: if Count > Max then L := 0; stop end then \\ Corrections number > Max.
11: LS := 1; \\ Assume that corrections was not, and next separator is constructed.
12: for p := 1 to l do \\ Cycle by all points of the sample.
13: if (C,Xp) ≥ 0 ∧ Xp ∈ G1 then C := C − α

t
·Xp; t := t+1;LS := 0 end then;

14: if (C,Xp) ≤ 0∧Xp ∈ G2 then C := C + α
t
·Xp; t := t+ 1;LS := 0 end then;

end for p;
15: if LS = 0 then Count:=Count + 1; goto 10 end then; \\ Increase cycles number.
16: if q < (l − 1) then q := q + 1; goto 4 end then. \\ To the following separation.

If it turns out that the data does not allow linear approximation, it is possible to check
the possibility of quadratic approximation. Assuming that f(x) = Σn−1

i=1 Σ
n
j=i+1cijxixj +

Σn
j=1c0jxj+c00 and by change of variables x1x2 = y1, x1x2 = y2, . . . , x1 = yn(n−1)/2+1, x2 =

yn(n−1)/2+2, . . . , xn = yn(n+1)/2 it is easy to go to the capability check and then � actually
to the approximation of the linear target function of n(n+1)/2 variables [9]. The number
of variables becomes very large but iterative algorithms allow to cope with this task.

For nonlinear approximation in the general case regression trees [4] and the trained
neural networks are applicable.
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ÑÈÍÒÅÇ ÝÌÏÈÐÈ×ÅÑÊÈÕ ÏÑÅÂÄÎÁÓËÅÂÛÕ ÌÎÄÅËÅÉ
ÏÎ ÏÐÅÖÅÄÅÍÒÍÎÉ ÈÍÔÎÐÌÀÖÈÈ

Â.È. Äîíñêîé, Êðûìñêèé ôåäåðàëüíûé óíèâåðñèòåò, ã. Ñèìôåðîïîëü,
Ðîññèéñêàÿ Ôåäåðàöèÿ

Ïðîáëåìà ïðèíÿòèÿ ðåøåíèé ïî ÷àñòè÷íîé, ïðåöåäåíòíîé èíôîðìàöèè ÿâëÿåòñÿ

âàæíåéøåé ïðè ñîçäàíèè ñèñòåì èñêóññòâåííîãî èíòåëëåêòà. Ïî ðåçóëüòàòàì íàáëþäå-

íèé íàä ïîâåäåíèåì âíåøíèõ îáúåêòîâ èëè ñèñòåì íåîáõîäèìî íà îñíîâå íàêîïëåííîé

èíôîðìàöèè â âèäå êîíå÷íîãî ìíîæåñòâà òðîåê: ≪âåêòîð ñîñòîÿíèÿ, çíà÷åíèå êà÷åñòâà

ôóíêöèîíèðîâàíèÿ îáúåêòà, áèíàðíûé èíäèêàòîð äîïóñòèìîñòè ýòîãî ñîñòîÿíèÿ≫ ñèí-

òåçèðîâàòü èëè, òî÷íåå, èçâëå÷ü èç äàííûõ ìàòåìàòè÷åñêóþ ìîäåëü îïòèìèçàöèè îáú-

åêòà. Öåëüþ ðàáîòû ÿâëÿåòñÿ ñîçäàíèå è îáîñíîâàíèå ìàòåìàòè÷åñêèõ ìåòîäîâ è àëãî-

ðèòìîâ, ïîçâîëÿþùèõ ñèíòåçèðîâàòü ìîäåëè ñêàëÿðíîé ïñåâäîáóëåâîé îïòèìèçàöèè ñ

îãðàíè÷åíèåì â âèäå äèçúþíêòèâíîé íîðìàëüíîé ôîðìû (ÄÍÔ), èñïîëüçóÿ óêàçàííóþ

ïðåöåäåíòíóþ èíôîðìàöèþ. Îñîáåííîñòüþ ïñåâäîáóëåâûõ îïòèìèçàöèîííûõ ìîäåëåé

ñ ñåïàðàáåëüíûìè öåëåâûìè ôóíêöèÿìè è ÄÍÔ îãðàíè÷åíèåì, èìåþùèì îãðàíè÷åí-

íóþ êîíñòàíòîé äëèíó, ÿâëÿåòñÿ èõ ïîëèíîìèàëüíàÿ ðàçðåøèìîñòü. Îäíàêî ñëîæíîñòü
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ïðèâåäåíèÿ çàäà÷è ê ôîðìå ñ ÄÍÔ îãðàíè÷åíèåì â îáùåì ñëó÷àå ÿâëÿåòñÿ ýêñïîíåí-
öèàëüíîé. Ïðè èçâëå÷åíèè ìîäåëè èç äàííûõ ÄÍÔ îãðàíè÷åíèå ñèíòåçèðóåòñÿ ïðèáëè-
æåííî, è ñëîæíîñòü åãî àïïðîêñèìàöèè îêàçûâàåòñÿ ïîëèíîìèàëüíîé, à ÷èñëî êîíú-
þíêöèé â èçâëå÷åííîé ÄÍÔ íå ïðåâûøàåò ÷èñëà ïðèìåðîâ â íà÷àëüíîé ïðåöåäåíòíîé
èíôîðìàöèè. Â ñòàòüå ïîêàçàíî, êàê èñïîëüçîâàòü äëÿ ïîñòðîåíèÿ äèçúþíêòèâíîãî
îãðàíè÷åíèÿ áèíàðíûå ðåøàþùèå äåðåâüÿ. Ïðåäëîæåíû ìåòîäû âûÿâëåíèÿ ñâîéñòâ
ìîíîòîííîñòè è ëèíåéíîñòè ÷àñòè÷íî çàäàííîé öåëåâîé ôóíêöèè è àëãîðèòìû ðåøå-
íèÿ çàäà÷ ïñåâäîáóëåâîé ñêàëÿðíîé îïòèìèçàöèè ïðè íàëè÷èè íåïîëíîé, ïðåöåäåíòíîé
íà÷àëüíîé èíôîðìàöèè. Îáëàñòü ïðèìåíåíèÿ ïîëó÷åííûõ ðåçóëüòàòîâ � ñèñòåìû èí-
òåëëåêòóàëüíîãî óïðàâëåíèÿ, èíòåëëåêòóàëüíûå àãåíòû. Íåñìîòðÿ íà òî, ÷òî ìîäåëè
óïðàâëåíèÿ, èçâëå÷åííûå èç äàííûõ, ÿâëÿþòñÿ ïðèáëèæåííûìè, èõ ïðèìåíåíèå ìî-
æåò áûòü áîëåå óñïåøíûì, ÷åì èñïîëüçîâàíèå ìåíåå ðåàëèñòè÷íûõ, íå ñîãëàñîâàííûõ
ñ ìîäåëèðóåìûì îáúåêòîì è âûáðàííûõ èç ñóáúåêòèâíûõ ñîîáðàæåíèé ìîäåëåé.

Êëþ÷åâûå ñëîâà: ïñåâäîáóëåâà îïòèìèçàöèÿ; äèçúþíêòèâíîå îãðàíè÷åíèå; ìà-

øèííîå îáó÷åíèå; èíòåëëåêòóàëüíîå óïðàâëåíèå; ðåøàþùèå äåðåâüÿ.
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