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The problem of decision-making based on partial, precedential information is the most
important when the creation of artificial intelligence systems. According to the results of
observations over the behaviour of external objects or systems it is necessary to synthesize
or, more precisely, extract from the data a mathematical model of optimization of the
object on the basis of accumulated empirical information in the form of a finite set of
triples: "a state vector, the value of the quality of functioning of the object, a binary
indicator of the admissibility of this state". The aim of the work is to create and substantiate
mathematical methods and algorithms that allow to synthesize models of scalar pseudo-
Boolean optimization with a constraint in the form of disjunctive normal form (DNF)
using this precedential information. The peculiarity of pseudo-Boolean optimization models
with separable objective functions and DNF constraint, which has a bounded constant
length, is their polynomial solvability. However, the complexity of bringing the problem
to the form with a DNF constraint in general case is exponential. When extracting the
model from the data the DNF constraint is synthesized approximately but with polynomial
complexity and the number of conjunctions in the extracted DNF does not exceed the
number of examples in the initial precedential information. In the paper is shown how to use
binary decision trees to construct a disjunctive constraint, proposed the methods to identify
the properties of monotonicity and linearity of the partially defined objective functions,
and developed algorithms for solving problems pseudo-Boolean scalar optimization in the
presence of incomplete, precedential initial information. The scope of application of the
obtained results includes intelligent control systems, intelligent agents. Although the control
models derived from the data are approximate, their application can be more successful than
the use of less realistic, inconsistent with the objects models which are chosen on the base
of subjective considerations.

Keywords: pseudo-Boolean optimization; disjunctive constraint; machine learning;

decision trees.

Introduction

Discrete pseudo-Boolean models of conditional scalar optimization generally have the
form

max (min) f(Z) under condition Z € Q C B", (1)

where B" = {0,1}" is the set of vertices of a unit n-dimensional cube, €2 is the set of
admissible solutions defined by constraints of different types, f : B"™ — R is a pseudo-
Boolean objective function, & = (z1,...,2;,...,2,) € B" is an arbitrary Boolean vector
or set of variables that accept values 0 or 1 [1]. In the most common particular case, the
model (1) contains restrictions in the form of linear inequalities and a linear objective
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function, such as

n
max y | G;x;;
i=1

aﬂxl—|—~~+ajia:i+~~+ajn:cnSbj; jI , TN (2)
z; € {0,1}; ¢i,a; €ER; i=1,n.

Model (2) is widely used to solve problems of production planning, equipment loading,
investment, and in many other applications. When large dimension of the model (2) (when
n and m are large) can arise the situation of the complexity or even the impossibility of
obtaining the full source numeric information in the form of objective function coefficients
c;, matrix constraints [aji]mxn, and values bj. Moreover, it may be even that there is no
information on how the model constraints that define the set of admissible solutions () are
"arranged". The statement of problems solved in this article can be explained using the
concept, of "black box". The system or controlled object under study is considered as a
black box exposed to Z and generating some responses in the form of numbers f(Z) and
possibly values of predicates [z € Q. Tt is required to construct as accurate as possible a
model M =< f,Q > approximating its true but unknown model M, knowingly belonging
to the class (1) by the given set of impacts and responses. Then find the optimum point
#* = agmax(min) f(Z)/Z € Q, and if some of the vector variables Z are controllable, suggest
an optimal control or planning for the model M.

In broad terms, problems considered in this paper are included in the scope of
problems acquisition of optimization models from data and making decisions by incomplete
information. Such problems were the first investigated by V1.D. Mazurov [2].

Source partial information is represented by the training sample {(Z;, f(Z;),7;)},—,
which is a set of triples: points with known value of the function f and the predicate
v; = [Z € Q] in these points. This source information is believed to reflect the properties
of a regular object or system and to be error-free (correct).

1. Basic Definitions and Statements Required

Definition 1. The set of variables (the point) & = (xy1,...,24, ..., x,) precedes the set
Z = (21,2, 2n) (denoted as & = Z ) if for all i = 1,n the inequality x; < z; is
satisfied, and strictly precedes ( & < Z ) if Vi (x; < z;) and at the same time Ji (x; < z;).

Definition 2. Pseudo-Boolean (Boolean) function f is called monotone if for any pair
of points T,z € Dom(f) such that & = Z the following inequality is satisfied f(Z) < f(2).

Definition 3. A pseudo-Boolean function is called a linear one if it has the form
flzr, . @y xn) =co+ oy + -+ Gy + -+ - + cpxy, where ¢; are real numbers.

A literal is an expression £ where x is Boolean variable, and o is a Boolean constant
such that 7 = z when 0 = 1 and 27 = ¥ when o = 0. To match the values of the Boolean
variable = equivalent to its real values, formulas are introduced T = 1 —zxux =1 =
1 — (1 — x). For variables that accept values only 0 or 1 the identities z; - x;- -+ -z; = x5
and z; - r; = 0 are performed. Therefore pseudo-Boolean polynomials may not include
members that contain a degree variable, and may include only the products of different
variables without inversions.
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Theorem 1. Any pseudo-Boolean function can be represented as a polynomial.

Proof. Let arbitrary pseudo-Boolean function of n variables f : B" — R takes at points
G0y .30y 001 values yo,y1,....Yan—1, 0; = (0f,...,00). If one multiply the
characteristic function of each of these points by the corresponding value of the function

f in them and then add the resulting members, then an expression f(x1,xo,...,x,) =
1 2 n i

on_1 . o7 ; g ; . . .
Yo Yirxy’xy’ ---xy’ where z;” =14 x; = o} will be obtained. Replacing ) =1—u,

multiplication and bringing like terms gives the polynomial. 0

In the optimization model (1) constraints, generally speaking, can be presented in
different forms — algebraic, graph, logical, even in the form of a specific algorithm. The
objective function as well can be represented by various ways. The variety of possible
representations of the model (1) makes it reasonable to introduce the concept of the form
of representation. For example (2) is a model with constraints in the form of non-strict
inequalities and with a linear objective function.

Definition 4. The model of scalar pseudo-Boolean optimization in the form

max (min)f(xq,...,z,) provided \/ T A A :Bj,ifj =1 (3)
j=1

is called the first form with disjunctive (DNF) constraint and the model

o
max (min) f(xq,...,2,) provided \/ T A A x;‘;lsq =0 (4)

q=1
15 the second form with DNF constraint.

Theorem 2. Any model of pseudo-Boolean conditional optimization can be represented
both in the first and in the second forms with DNF constraint.

Proof. The constraint Z € €2 in general form contained in the model (1) can be represented
in the following equivalent form. We introduce Boolean function ¢qo(Z) =1 < 7 € Q.
Then the constraint takes the equivalent form ¢q(Z) = 1. Any Boolean function can be
represented in a disjunctive normal form, so when representing the function ¢q in the DNF
the first form can be obtained. Defining otherwise Boolean function: ¥ (%) =0 < & € Q

one can get the second form. .

Lemma 1. If in the linear pseudo-Boolean optimization model (1) all coefficients of the
constraints are positive and

ajlarl+---~|—aji93i+---+ajn$n S bj = @Z)](.CIE) =0
then 1; is monotone Boolean function and Vo = \/;”:1 ;18 monotone Boolean function.

Proof. Let & < B, i.e. Vi (c; < ;). Then

=1 =1
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By the condition of the Lemma S5 <0 « ¢;(a@) =0u 53 <0 & ¥;(B) = 0. Because
of the inequality Sz < Sj the following mathematical expressions are valid: ¢;(3) = 0 =
Yi(@) =0 n (@) =1=1,;(8) =1 whence it follows the inequality ¢;(&) < ¢;(8), i.e
1; is monotone Boolean function. The class of monotone Boolean functions is closed and
contains disjunction, so the function Wo = \/7_, ¢; is also monotone. O

Theorem 3. If the problem of conditional linear pseudo-Boolean optimization (2) with
positive coefficients in constraints-inequalities is presented in the second form with DNF

constraint
o
‘7q1 U‘lkq
\/ qk =0,

then Wq is monotone function.

Proof. Using Theorem 2 and Lemma 1 it is easy to get a proof of the theorem. O

Theorem 4. The problem of scalar pseudo-Boolean conditional optimization of a linear
function with n variables and DNF constraint

max (min) chxl/ \/3:031 : J,;k” = (5)

which contains m conjunctions is solvable with a time complexity O(mn).

Proof. DNF-constraint in (5) contains m conjunctions x A AT ik "7 each of which is
drawn per unit at its corresponding interval of rank k;. Boolean Varlables with numbers
J1,...,jk; are fixed for this interval by values oji,... 0jt;, and the other variables are
free. If the linear function is maximized any free variable x; should be taken equal to one
if ¢; > 0, equal to zero, if ¢; < 0, and arbitrary when ¢; = 0. Therefore, the linear pass at
all m conjunctions with simultaneous search of the maximum of the linear function at all
intervals will require O(mn) of calculation steps. .

Corollary 1. If the problem of conditional optimization of a linear pseudo-Boolean
function is reduced to the form with DNF constraint for polynomial number of steps, then
it s polynomial solvable.

Most often, the problems of conditional optimization of pseudo-Boolean functions
including those presented by the model (2) are NP-hard. The exceptions are, in particular,
models with separable objective function the set of constraints of which corresponds to the
structure of the matroid. Therefore, taking into account corollary 1, the construction of
the constraint DNF is in itself a complex problem. However, within the framework of the
problems considered in this article, the approximation of the domain of admissible solutions
by logical machine learning algorithms leads to the construction of DNFs having a length
not exceeding the number of training sample examples.

2. DNF Constraint Synthesis as a Problem of Machine Learning:
Approach Based on the Use of Decision Trees

If the initial partial information contains the predicate values v, = [Z; € €] at the
training sample points then mathematical precedent-based machine learning methods
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can be used to construct an approximation ¢qo(Z) or Wo(Z) of Q in the form of DNF.
The most suitable for this purpose are learning algorithms based on the construction
of binary decision trees (BDT) which are algorithmic operators that display training
sequences of precedents in a family of Boolean functions having a tree-like structural
representation [3]. It is necessary for such algorithmic operators to possess the ability
for empirical generalization and guarantee learnability in the sense of arbitrarily accurate
approximation of the constructed empirical DNF D to the true but unknown DNF D as
the number of precedents in the training sample grows.

When one builds BDT classifying the points & € B™ (considered in this article the
case — onto two classes: satisfying the constraints and do not satisfying them), the initial
information is a training sample {(Z;,7;)},_,, where 7, =1 & I; € Qandy; =0 &
z; ¢ Q. The procedure of BDT synthesis consists in sequential execution of the same-type
branching steps or, in a set-theoretic interpretation, splitting intervals of B", starting from
the set of B™ as n-dimensional interval, when the root vertex of the tree is built, containing
one of the variables and two outgoing edges that correspond to the unit and zero values of
the selected variable. Such a partition is called splitting or branching. Branching continues
until the condition of stopping is met which is the presence in each interval of the resulting
partition (or, let’s say, in each leaf of the tree) of points of only one and the same class [4].

The following simple example is intended to illustrate the proposed approach to the
construction of a constraint in the form of DNF by decision tree machine learning.

Example 1. Assume that the learning information was generated by the following M
model with a single constraint in the form of an inequality:

max f(zq,xe, T3, 14) = 221 + To + 4z + 21y, 311 + Ty + 2w5 + 24 < 3. (6)

Let the target function in (6) be known exactly, and the area of admissible solutions
actually defined by inequality (6) is unknown, but is partially represented by eight
precedent points (Table 1).

Table 1

Precedents for learning

T1 | T2 | XT3 | Ta || Y
0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 0 1 1 0
1 1 1 0 0

Each point has a value of 7 equal to one if the point satisfies the inequality (6) and
zero — otherwise. One of the possible BDT built on the learning sample contained in the
Table 1 is presented on Figure. This BDT is equivalent to the following DNF:

T1To V T122T3 V 0183 = T1T2 V T3. (7)
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We obtain approximation ¢(Z) = 1z V 3 and, accordingly, constraint ¢o(z) = 1 in the
first form. Since ¥q(Z) = 0 < @(i) = 1, we obtain the approximating function W (z) =
T1Z9 V T3 = 2123 V xows. DNF (7) defines two possibilities for choosing a solution: either
x1 = x5 = 0, and the remaining variables can be assigned by any (since the coefficients of
the target function are positive, then by units); or x3 = 0, and the remaining variables
can be assigned by units. As a result, (0,0,1,1) =6, f(1,1,0,1) = 5, and the decision
max f(Z) = 6 at point Z = (0,0,1,1). Approximations () and Wq(Z) are different
from the true functions

0a(Z) = 1TV T1T3V T134 V ToZsTy = 1 & 3w + 29 + 223 + 24 < 3 and
N~ e T N~
6 3 5 2
Uo(Z) = x129 V 2123 V 2124 V 222324 = 0 & 321 + 29 + 223 + 24 < 3

(under conjunctions of DNF of function ¢q () the maximal values of the object function
221 + x2 + 423 + 224 in the intervals corresponding to these conjunctions are signed).

Binary Decision Tree

In a particular case considered in the example 1 the constraint () = 1 built on the
learning sample information really allowed to find the exact solution of the problem (6).
But in the general case, it is no guarantee of obtaining an exact solution of this problem
according to partial learning information. O

Denote 2 = {7 : ¢q(#) = 1}. When constructing a BDT to obtain an approximation

of the constraints region {2 at each branching step t the set B"™ is split into shredded
intervals Ny,..., Ng, ..., Ny

Definition 5. Interval Ny C B™ is called correct if Ny C Q or Ny C B™\ Q. The union
of all correct intervals obtained after execution the step t of BDT constructing is called the
correct approximation region Q5" and the set B™ \ Q" is called incorrect region.

Theorem 5.

10 Qo C ... CQ C - C QP for all t satisfying the double inequality 2 <t < T
where T 1s the final step of the BDT synthesis;

2°  In some step t* < (2" — 1) the equality Q" = B™ can be performed provided that
the length of the training sample [ > t* + 1.
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Proof. 1) Let’s suppose that after the branching step t—1, ¢ > 2, the correct approximation
region Q77 is formed (this region may be empty at the first branching steps). By definition,
it consists only of correct intervals. In step t the correct intervals are not partitioned, so a
certain interval D from the region B™\ Q7 will be selected for partitioning. This interval
will be split into two intervals 9y u D1, : DU, = DN, If at least one of the intervals Dy, M,y
will be correct the area of correctness will expand otherwise it will remain unchanged, so
Qgﬁ’f’l’r‘ g QEOT‘T’.

2) In the first step the set B™ is split into two intervals. Then, at each subsequent
step, some selected interval of already obtained partition is split into two new intervals
and sooner or later the equality Q7" = B™ can be fulfilled. Indeed, in the step t of the
partitioning £+ 1 intervals will be obtained, and in the worst-case such process will continue
until a step ¢ = 2" — 1 when the set B™ will be split onto 2" intervals of rank n so that
each of them will contain exactly one point from the correct learning sample. Therefore,
the equality Q59" = B™ will certainly be achieved.

(I

Theorem 5 states the monotonous refinement of the region of correct approximation
of the partially given constraint with the growth of the length of the training sample right
down until an accurate result. But herewith the correctness of all examples in the training
sample is obligatory condition. The latter condition is natural in the approach to extracting
optimization models from the data when regular processes and systems are investigated. In
this case, we are not talking about any probabilistic distributions, but a possibility exists
to assess the acceptability of the synthesized DNF on the base of Kolmogorov approach to
the evaluation of the reqularity as non-randomness.

A.N. Kolmogorov emphasized the need to distinguish between actual randomness as
the absence of reqularity and a stochastic randomness as the subject of the theory of
probability [5, p. 42]. When empirical extraction of regularity based on the Kolmogorov
approach, it is possible to estimate the non-randomness of the found regularity, in the
considered case — of empirical DNF approximating the constraints of the optimization
problem.

Definition 6. A result of machine learning is called an exact tuning on a training sample
when the obtained empirical decision rule accurately calculates the approrimable value at
each sampling point (for each precedent).

Theorem 6. (6| Let empirical reqularity is extracted from the family F and an appearance
in the sample {(:%j,vj)}é»:l of any example from the general population B™™ x - x B"HJ

g

!
is equiprobably. Then the probability P(F,l) of a random exact tuning on a training sample

of length 1| satisfies the inequality P(F,1) < 279K where IC(F) is Kolmogorov
algorithmic complexity of the family F.

Corollary 2. When the conditions of the theorem 6 are met there is the estimation
P(F, 1) < 27HPVEDE) where pV CD(F) is upper bound on the Kolmogorov complexity of
the family F which is obtained by pV CD method [6].

If binary decision trees are used to extract such regularity as DNF constraint then the
family F is a class BDT, , of trees with at most u leaves and from n Boolean variables.
It is known the estimation [7]
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pVCD(BDT,,) = (11— 1)([logsn] + [loga(u + 3)1). ®)

We require the conditionP(F,l) < e which will lead to an equation to determine
the required length of the training sample to ensure that the probability of random
extraction of the DNF constraint will not exceed e. From the equation ¢ =

o tn=1) (Ttogan] +log2 ()T 1 get | = logst + (n—1)([logan] + [loga(pe+3)7). The results
of calculating the required sample length [ = I(n, u, €) are shown in the Table 2.

Table 2

1
The required length of the training sample when o= 128, ¢~ 10,0078

n 20 20 20 20 20 100
I 20 20 100 30 100 100

I(n,p, )| 197 546 1195 355 1294 1393

3. Approximation of Partially Defined Pseudo-Boolean Functions

Assume that objective function f is monotone, we need to find its maximum, and
monotone approximation f is obtained. Let the empirical DNF constraint \/m K; =1
is constructed Then in any mterval of the set B™ which corresponds to the conjunction

K; = x PA AT TN A x VJ the extreme value f(xK ) is immediately found in the

point Ty which is deﬁned as fo]lovvq Variables with numbers j; such that o; = 1 are
getting unit values, 0;, = 0 — zero values, and the rest variables, free from entering the

conjunction K according to the monotonicity of the objective function are determined
07k

by units. Next is * = = argmax; f(xK ) = argmax; (&) / x Ay TN - ANz 0 =1

It is easy to make sure that the time complexity of the descrlbed algorlthm for ﬁndlng the
extremum of a monotone pseudo-Boolean function with DNF constraint is estimated as
O(mn).

As shown above, information on the monotony of the function partially defined by
sample greatly simplifies the solution of the problem. To check the monotony condition on
a given training sample it is quite simply by the following Algorithm 1.

Algorithm 1. Checking the consistency property with monotonicity of a function on a
training sample.

Input: the correct sample {(Z;, f(Z;))},_,.

Output: M = 1 if the sample does not contradict the monotony condition otherwise
M = 0.

1: M = 1
2:for j:=1tol—1 do
3: for s:=j4+1tol do
di (3 < @) A (F(35) > F@E)V (@, < 35) A (F(FS) > F(E5)
then M :=0; stop end then.
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Let us denote further (C,Z) = >"" | ¢

Definition 7. The function f which is partially defined by the training sample
{(z;, f(2;))},=, allows linear approzimation if there is such a vector C € R" that for
any pair of points (T,,T,) from this sample such that f(z,) < f(Z,) the inequality
(C,z,) < (C,7,) is satisfied .

Theorem 7. The function f which is partially defined by the training sample
{(z;, f(z;)) Yoy where f(Z;) # f(Zm), 1 < j < m <1, admits a linear approzimation
if and only if in sorted by values of objective function f(Z;) sequence of sample points
Tjiyeooy Ty &y, such that f(T;) < -+ < f(%;,) < - < [f(&;,) for all p =
1,2,...,(l = 1) the points T;,...,T;, can be separated from the points Tj,..,...,%; by
the hyperplane (C*,Z) = Xy, at that (C*,Z;,) < (C*,5,,,).

Proof. The necessity. Let the sample allows a linear approximation. Then there exists a
vector C* € R" such that (C*,7;) < --- < (C*,7;,) < (C*,%;,,,) < --- < (C*,25). It
is obvious that the hyperplanes (C*,z) = \,, p = 1,(l — 1), where A\, = %((C*,:Ejp) +
(C*,&;,.,))) satisfy the condition of the theorem.

Sufficiency. Let the separating hyperplanes (C*,Z) = A, exist. Then the vector C*
satisfies the admissibility requirement of linear approximation by the transitivity of the

3 " i
relation "<". O

Theorem 8. If for the sorted by wvalues of objective function f(Z;) sequence of the
points Tj,...,T;,,...,&; such that f(Z;) < --- < f(%;,) < --- < f(z;) for all
p=1,2,....(l = 1) exists a hyperplane (C,,Z) = N, separating the points Tj,..., T,
from the points Z; ,,,...,Z; and (Cp,T;,) < (Cp,%;,,,) then a vector C* € R" exists
which defines the hyperplanes (C*,%) = B, separating the points Zj,...,T; from the
points Tj,..,...,Tj, herewith (C*,2;,) < (C*,;,,,).

Proof. The opposite assumption

IJC* e R Vp (C*,15,) < (C*,%5,,,) & YC R Ip: (C*,15,) > (C*, 75,,,)
entails the denial of the condition 3 C), € R" (C),7;,) < (Cp, Tj,.,,)- -

To verify the possibility of linear approximation of the objective function according to
the theorems 7 and 8 we need to check the linear separability of points zj,,...,Z;,,...,T;
of the training sample which are ordered by increasing values of the objective function.
Namely: j7; point from all the others, 7; point and j, points from all the others and forth
until separability of all points with numbers ji, ..., jy—1) from the point j;. Overall we
need to perform such check [ — 1 times.

Remark 1. If the training sample {(Z;, f(Z;))},_, contains a subset of the points with
the same value of the objective function f then such a subset must always be included in
one of the groups to be separated. It is easy to verify that with this addition the theorem
7 remains true, and the number of separability checks required will be one less than the
number of subsets of training sample points with the same values of the objective function.

To check sequentially the separability of two groups of points with simultaneous
construction of separating hyperplanes (in the direction of increasing the objective function
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as in 8) it is advisable to use the iterative procedure of Rosenblatt-Novikov linear
correction [8]. If two finite sets of points G1 and G2 are linearly separable then this
procedure provides constructing a separating hyperplane in a finite number of correction
steps k < [D?/p*] where D = sup;cciuae ||Z]], and p is half the distance between convex
shells of the sets G1 and G2 [8].

Let us denote X; = (z),...,27,1) € B""' — extended vector representing the
description of the point Z; with adding the (n + 1)-th coordinate to which assigned a
value 1; C' = (c1,...,Cn,Cnyp1) € R is an extended vector which defines the separating
hyperplane ciz1 + - - + ¢,x, + ¢ = 0. The linear correction procedure starting with an
arbitrarily given initial vector C' "adjusts" its coefficients by formulas implemented in lines
13 and 14 of the Algorithm 2 below. The parameter of this algorithm is the maximum
number of exceeding of cyclic views of the sample when learning what means that the
algorithm failed to establish the separability of sets G1 and G2 formed in accordance with
the theorem 8.

Algorithm 2. Test of admissibility of linear approximation of the function f.

Input: A sample {(Z;, f(Z;))}}—; sorted by non-decreasing values f(Z;);
Max — the maximum number of cyclic views of the sample when learning.
Output: L = 1 if the sample does not contradict the monotony condition otherwise L = 0.

1: L:=1, \\ A flag of result.

2: C=(0,...,0,0); a:=1; \\ Initialization.

3:q:=1; \\ The position of the split of the sample.
4: while f(Z,) = f(Z441) do ¢ := ¢+ 1; \\ If the function values are equal.

5: if ¢ = [ then stop; \\ If all groups are separated.

6: G1:={Xy,..., Xp,.... X, }; \\ The first group to be separated.

G2 ={ X1, Xpy o, X0l \\ The second group to be separated.

8: Count := 0; \\ A count of number of scan cycles of training sample when learning.
9:t:=1; \\ A count of number of corrections.

10: if Count > Max then L :=0; stop end then \\ Corrections number > Maz.

11: LS :=1; \\ Assume that corrections was not, and next separator is constructed.

12: for p:=1to [ do \\ Cycle by all points of the sample.

13: if (C,X,) >0 A X, € GlthenC:=C—%-X,; t:=1+1;LS := 0 end then;

14: if (C,X,) <0AX,€G2then C:=C+%-X,; t:=t+1,LS :=0 end then;
end for p;

15: if LS = 0 then Count:=Count + 1; goto 10 end then; \\ Increase cycles number.

16: if ¢ < (I — 1) then ¢ := ¢+ 1; goto 4 end then. \\ To the following separation.

If it turns out that the data does not allow linear approximation, it is possible to check
the possibility of quadratic approximation. Assuming that f(z) = S{'S% ¢z +
E;-l:lcojxj—l—coo and by change of variables 179 = y1, T172 = Y2, ..., T1 = Yn(n—1)/2+1, T2 =
Yn(n—1)/242> - - - » Tn = Yn(n+1)/2 it 15 easy to go to the capability check and then — actually
to the approximation of the linear target function of n(n + 1)/2 variables [9]. The number
of variables becomes very large but iterative algorithms allow to cope with this task.

For nonlinear approximation in the general case regression trees [4] and the trained
neural networks are applicable.
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CHUHTE3 SMIINPUYECKHNX IICEBIOBYJIEBBIX MO/IEJIEN
IT1O ITPEIIEAEHTHOU NMH®OPMAILINUN

B.U. /Toncxoti, Kpeimckuii dpemepanbublii yauBepcureT, T. Cumdepomnob,
Poccuiickas Pejrepariust

[Ipobsiema mpuHATHS pEIIEHU O YACTUYIHOMN, TPereIeHTHON NHMOPMAIUN SBJISIETCS
BarKHEHNIIeH IPU CO3/IAaHUN CUCTEM HCKYCCTBEHHOrO uaTesuiekTa. [1o pesyapraram Habroe-
HU HAJT TOBEIEHNEM BHEITHIX O0BEKTOB WJIU CUCTEM HEOOXOIUMO HA, OCHOBE HAKOILIEHHON
nH(OPMAIMY B BUI€ KOHEYHOTO MHOYKECTBA TPOEK: <BEKTOD COCTOSTHUS, 3HAUEHNE KAIECTBA
GyHKIMOHUPOBaHU 00beKTa, DMHAPHBIA WHINKATOP JOMYCTUMOCTH 9TOTO COCTOSHUST> CHH-
TE3UPOBATH WM, TOUHEE, U3BJIEUb U3 JAHHBIX MATEMATUYECKYHO MOIEIb ONTUMHU3AIUN 00b-
exta. lleapio paboThI siB/IsieTCA CO3/IaHne u OOOCHOBAHNE MATEMATUIECKUX METOOB U AJIr0-
PUTMOB, TO3BOJISTIONTAX CHHTE3UPOBATH MOIEN CKAJSPHON MCeBAOOYIEBOH OMTUMU3AINN C
OrDAHUYEHHUEM B BUJE AN bIOHKTHBHON HOpMabHOi dopmbl (IH®D), ucnonb3ya ykazauHuyo
npereaeHTHy 0 wHbopmaimo. OcobeHHOCTHIO TICeBA00YIEBbIX ONTUMUIANOHHBIX MOIEIeH
¢ cenapabeabHbIMU TieseBbiMu pyHKIHAME 1 JITH® orpanmyennemM, IMEOITNM OrPAHTIeH-

HYTIO KOHCTAHTOH AJURY, ABJAgEeTCA UX TOJJIMHOMUAJIbHAA PA3PEHNINMOCTD. O,HHaKO CJIOXKHOCTDb
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[MTPOTPAMMUWPOBAHUE

npuBenenna 3a7a49n K ¢opme ¢ JITH®D orpanmdeHnemM B 0OIIEM CIIydae SBJSTETCS SKCIIOHEH-
nuasbHod. Ilpy nuzsnedenun monenn u3 manubix JTH® orpannvenne cuaTe3upyercst mpubJim-
KEHHO, W CJOXKHOCTH €ro almpPOKCHMAINNA OKA3BIBAETCS MOJUHOMUAIBHON, & YUCI0 KOHb-
fouKINH B n3Baedennoll JJH® He mpeBwImmaeT Iuc/a IPUMEPOB B HAYAIHHOM MpereaeHTHON
nadopmarmu. B crarbe mokazaHo, KaK HCIOJIb30BATH IS MTOCTPOEHUS U3 bHIOHKTUBHOTO
orpaHnveHnsd OMHADHBIE PEMIAIONINE nepeBbs. 1IpesioykKeHpl METOMbI BBISBJIEHUSA CBONCTB
MOHOTOHHOCTH ¥ JIMHEHHOCTH YaCTUYIHO 3a/IAHHON I1€JIeBONl (PYHKIINK U aJITOPUTMbL DEIle-
HUS 337124 TICEBA00YIEBOM CKAISIPHOM ONTUMUBAINY TTPH HAJUIUN HETIOTHOM, PEIeIeHTHON
HadanbHOU mHpopManmu. O61acTh TPUMEHEHUS IOy YEHHBIX PE3YJIBTATOB — CHCTEMbI HH-
TEeNNIEKTYaJIbHOTO YIIPABJIEHNUsI, NHTE/LUIEKTyAJbHbIe areHThl. HecMOTpst Ha TO, 9TO MOJE N
yIpPAaBJIEHNUs, U3BJIEIEHHBIE U3 JAHHBIX, ABJISIOTCH MPUOJIMAKEHHBIMU, UX MPUMEHEHUE MO-
KeT ObITh OOJIee YCIEITHBIM, Y€M UCIIOJb30BAHUE MEHEE DEAUCTHUIHBIX, HE COIJIACOBAHHBIX
C MOZIETTMPYEMBIM 00HEKTOM U BHIOPAHHBIX M3 CyObEKTUBHBIX COOOPAKEHUH Momemne.
Karoneswie caosa: ncesdobynresa onmumu3oyus; JussONKMUBHOE 02DEHUMEHUE; Ma-

WUHHOE 06y“t€HU€,' UHMEANERTYAADHOE YNIPABAEHUE, PEULATOULUE 0epeebﬂ.
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