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The case of the active and passive team relay-race, in which an active team operates

in accordance with rigid schedule and a passive team overcome the stage of its distance

at randomly selected alternative routs during occasional time intervals is considered.

Due to high complexity of classical relay-race analysis, method of simulation, based on

representation of time intervals densities of passing stages routs with discrete distributions

is proposed. It is shown, that after transformation of time intervals densities into discrete

distributions the problem of a relay race analysis reduces to the task of analysis of two-team

system with rigid schedules.

The method of sampling of densities composition with estimation a sampling error,

and recursive procedure of rigid schedule relay-race analysis with calculation of forfeit are

worked out. It is shown, that forfeit depends on the di�erence of stages, teams overcome at

current time and a strategy, which active team realizes during relay-race.

Keywords: relay race; semi-Markov process; distance; stage; route; sampling; schedule;

distributed forfeit.

Introduction

Corporative-concurrent systems, in which corporative part is represented by the team,
which must overcome some distance, and concurrency is the natural environment of their
existence, are widespread in manifold �elds of human activity, such as economics, politics,
defense, sport, etc. [1�4].

Below paired relay race is considered [5, 6], in which two teams, A and B, participate.
Team A adheres the active strategy and has a rigid schedule of passing the distance,
divided onto stages. Also team A watch the team B, which from the point of view of team
A passes its stages during occasional time interval, may overcome the stage on one of
possible routes, which team B can select randomly too. The cost of the relay race depends
not only on common winning or loosing the relay-race as a whole, but on winning and
loosing the stages. So the team, which passes at current time a stage with a lower number,
pays the team, which is situated at the time at a stage with higher number, the forfeit,
which depends on the time, until the stage inequality persists.

The analytical model of such a system, based on the semi-Markov processes theory
[7�10], adopt little to computer interpretation due to extremely high computational
complexity of the calculation both current functional states of the system, and the sum
of forfeit, which a winner receives from a loser. To reduce complexity it is necessary to
work out a special approach, oriented onto the algorithmic realization. Such approaches
are currently known insu�ciently, that explains the necessity and relevance of the
investigations in this domain.
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1. Model of Active and Passive Team Paired Relay Race

Structure of paired relay race under consideration is shown on Fig. 1 [5, 6].

Fig. 1. Relay-races with alternative routes of the partner

On the Fig. 1:
• nodes

{
Aa1, ...,

Aaj, ...,
AaJ−1

}
of graph "Team A" and

{
Ba1, ...,

Baj, ...,
BaJ−1

}
of

graph "Team B" simulate relay points of the distance;
• nodes Aa0 and

Ba0 simulate starting points;
• nodes AaJ and BaJ simulate end points of the distance.

The next assumption when modelling relay race was made:
• two teams, A and B, participate in relay race;
• relay race unfolds in real physical time t ;
• the distances are divided into J stages;
• participants of team A passes their stages in the time, predetermined with a rigid
schedule;
• time intervals of passing j (A)-th stage, 1 ≤ j (A) ≤ j (B) by a participant from team
A are expressed with determinate, nonrandom values, and densities of these intervals are
performed with Dirac δ-functions δ

(
t− Tj(A)

)
, where Tj(A) is the time of passing j-th stage

by a participant from the team A;
• j -th stage of B team includes K (B, j ) routes;
• time intervals of passing k(B, j ), 1(B, j ) ≤ k(B, j ) ≤ K (B, j ), 1 ≤ j ≤ J, route by
team B participants are random ones and are determined with the accuracy to density
fk(B,j) (t);
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• after �nishing of (j-1)-th stage by the (j-1)-th participant from team B j -th participant
may select one of K (B, j ) possible routes of j -th stage with probability pk(B,j),

K(B,j)∑
k(B,j)=1

pk(B,j) = 1;

• both teams, A and B, start their distances at once;
• after completion of j -th stage by the previous participant the next participant starts
(j+1)-th stage without a lag;
• winning or losing of a stage competition is understood as the completion of the stage
the �rst or not the �rst;
• the winner's forfeit is distributed in time and depends on the di�erence of stages, which
the winner and loser pass.

The model of the paired relay race may be performed as two-parallel semi-Markov
process [7�10]

Ah (t) =
[
Ahj(A),l(A) (t)

]
, (1)

Bh (t) =
[
Bhj(B),l(B) (t)

]
, (2)

where Ah (t), Bh (t) are semi-Markov matrices of size (J + 1)× (J + 1),

Ahj(A)−1,l(A) (t) =

{
δ
(
t− Tj(A)

)
, when 1 ≤ j (A) ≤ J (A) and l (A) = j (A) ,

0 otherwise,
(3)

Bhj(B)−1,l(B) (t) =

{
hj(B) (t) , when 1 ≤ j (B) ≤ J (B) and l (B) = j (B) ,
0 otherwise,

(4)

Bhj(B) (t) =
[
h1(B,j) (t) , ..., hk(B,j) (t) , ..., hK(B,j) (t)

]
, 1 ≤ j (B) ≤ J (B) , (5)

δ
(
t− Tj(A)

)
is the Dirac function; Tj(A) is the rigid time of overcoming j (A)-th stage by

j -th participant of the A; hk(B,j) (t) = pk(B,j) · fk(B,j) (t) is the weighted time density of
overcoming k (B, j)-th route by j -th participant of team B.

The summation of weighted densities hk(B,j) (t) gives the time density of the residence
of team B participant at stage j (B), when passing along any rout:

fj(B) (t) =

K(B,j)=1∑
k(B,j)=1

hk(B,j) (t) . (6)

Recursive procedures of the analysis of the relay race and the evaluation of the sum
of forfeit is too complicated [5, 6] and unsuitable for cybernation, so simpli�cation of the
procedure is quite an actual task.

2. Discrete Model

Let us represent time density (6) as a histogram [11, 12]. For this purpose let us
divide domain 0 ≤ Tj(B)min ≤ arg

[
fj(B) (t)

]
≤ Tj(B)max ≤ ∞, where Tj(B)min is the lower

boundary of the domain, Tj(B)min is the upper boundary of the domain, onto intervals

τk̃(B,j)−1 ≤ t ≤ τk̃(B,j), 1 ≤ k̃ (B, j) ≤ K̃ (B, j), 1 ≤ j ≤ J , as it is shown in Fig. 2.
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Fig. 2. The density sampling

For the de�nition of histogram digit parameters it is necessary to set up an accuracy
ε of the histogram sampling. The value of ε may be calculated as follows:

ε =

τ0(B,j)∫
0

fj(B) (t) dt+

K̃(B,j)∑
k̃(B,j)=1

τk̃(B,j)∫
τk̃(B,j)−1

∣∣∣fj(B) (t)− pk̃(B,j)

∣∣∣ dt+ ∞∫
τK̃(B,j)

fj(B) (t) dt, (7)

where τk̃(B,j)−1 and τk̃(B,j) are the left and right boundaries of k̃ (B, j)-th, 1 ≤ k̃ (B, j) ≤
K̃ (B, j), histogram digit, correspondingly,

τk̃(B,j) = τ0(B,j) + k̃ (B, j) ·∆τ , (8)

∆τ =
τK̃(B,j) − τ0(B,j)

K̃ (B, j)
. (9)

The values of histogram digits pk̃(B,j) are calculated as follows:

pk̃(B,j) =



τ1(B,j)∫
0

fj(B) (t) dt, when k̃ (B, j) = 1,

τk̃(B,j)∫
τk̃(B,j)−1

fj(B) (t) dt, when 2 ≤ k̃ (B, j) ≤ K̃ (B, j)− 1,

∞∫
τK̃(B,j)

fj(B) (t) dt, when k̃ (B, j) ≤ K̃ (B, j) .

(10)

The density sampling task may be putted on and solved as an optimization task [13],
where ε→ min is the criterion, and τ0(B,j), τ ...

K(B,j), K̃ (B, j) are optimization variables.

Rigid time intervals Tk̃(B,j), 1 ≤ k̃ (B, j) ≤ K̃ (B, j), represented arguments of
histogram digits, may be calculated as follows:

T...
k (B,j) = τk̃(B,j)−1 +

∆τ

2
, 1 ≤ k̃ (B, j) ≤ K̃ (B, j) . (11)
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Taking into account (10) and (11), one may build up the semi-Markov discrete model
of team B operation. The structure of the semi-Markov model is quite alike the structure,
shown in the Fig. 1, except that indices k (B, j) of the primary model should be replaced
by indices k̃ (B, j) in the discrete model, and in common, K (B, j) ̸= K̃ (B, j).

Discrete operation team B model, based on semi-Markov process is as follows:

Bh̃ (t) =
[
Bh̃j(B),l(B) (t)

]
, (12)

where

Bh̃j(B)−1,l(B) (t) =

{
h̃j(B) (t) , when 1 ≤ j (B) ≤ J (B) and l (B) = j (B) ,
0 otherwise,

(13)

Bh̃j(B) (t) =
[
p1(B,j)δ

(
t− T1(B,j)

)
, ..., pk̃(B,j)δ

(
t− Tk̃(B,j)

)
, ..., pK̃(B,j)δ

(
t− TK̃(B,j)

)]
,

1 ≤ j (B) ≤ J (B) , (14)

where δ
(
t− Tk̃(B,j)

)
, 1 ≤ k̃ (B, j) ≤ K̃ (B, j) are Dirac functions; Tk̃(B,j) are the rigid

time intervals of overcoming j (B)-th stage by j (B)-th participant of team B.

3. Formulae for Competition Analysis

Due to the reduction primary model (1) � (5) to its discrete analogue (1), (3), (12)
� (14), the conception of team B operation may be considered as a rigid schedule [14�
17] relay-race with alternative routes, which on j (B)-th stage are occasionally selected
from K̃ (B, j) possible routes with probabilities pk̃(B,j), 1 ≤ k̃ (B, j) ≤ K̃ (B, j), after
the completion [j (B)-1]-th stage. So general formulae, used in [5, 6] for working out the
recursive procedure of competition and relay-races analysis should be adapted to the case
under consideration, in which:
• only two teams participate in a relay-race;
• both teams operate due to rigid schedules [18, 19].

The adaptation of formulae gives the next result.
Formulae, which determine the weighted time densities of winning j -th stage of the

race by team A and team B, correspondingly, when both teams start their j -th stages
simultaneously are as follows:
• in common case

ψw
A (t) = fj(A) (t)

[
1− Fj(B) (t)

]
, ψw

B (t) = fj(B) (t)
[
1− Fj(A) (t)

]
, (15)

where F... (t) =
t∫
0

f... (θ) dθ is the distribution function; θ is the auxiliary argument;

• when rigid schedule

ψw
A (t) =

{
δ
(
t− Tj(A)

)
, when Tj(A) = min

{
Tj(A), Tj(B)

}
,

nonsense, otherwise,

ψw
B (t) =

{
δ
(
t− Tj(B)

)
, when Tj(B) = min

{
Tj(A), Tj(B)

}
,

nonsense, otherwise.
(16)
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Formulae, which determine probabilities of winning j -th stage of the race by team A
and team B, correspondingly, are as follows:
• in common case

πw
A (t) =

∞∫
0

fj(A) (t)
[
1− Fj(B) (t)

]
dt, πw

B (t) =

∞∫
0

fj(B) (t)
[
1− Fj(A) (t)

]
dt; (17)

• when rigid schedule

πw
A (t) =

{
1, when Tj(A) = min

{
Tj(A), Tj(B)

}
,

0 otherwise,

πw
B (t) =

{
1, when Tj(B) = min

{
Tj(A), Tj(B)

}
,

0 otherwise.
(18)

Formulae, which describe the time density of waiting by the winner team until the
loser team �nishes the stage
• in common case

φA→B (t) =

η (t)
∞∫
0

fj(A) (θ) · fj(B) (t+ θ) dθ

∞∫
0

Fj(A) (t) dFj(B) (t)

,

φB→A (t) =

η (t)
∞∫
0

fj(B) (θ) · fj(A) (t+ θ) dθ

∞∫
0

Fj(B) (t) dFj(A) (t)

, (19)

where η (t) is the Heaviside function,

η (t) =

{
0, when t ≤ 0,
1, otherwise;

• when rigid schedule

ψA→B (t) =

{
δ
(
t− Tj(B) + Tj(A)

)
, when Tj(A) ≤ Tj(B),

nonsense, otherwise,

ψB→A (t) =

{
δ
(
t− Tj(A) + Tj(B)

)
, when Tj(B) ≤ Tj(A),

nonsense, otherwise.
(20)

It is necessary to admit, that at the rigid schedules case the draw e�ect emerges.
It is impossible in common case, when there is an in�nitesimal probability of A and B
teams stage passing time intervals coincidence, is quite real when at rigid schedule case
Tj(A) = Tj(B).
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4. Recursive Procedure of Evaluation of Forfeit

Recursive procedure of evaluation of forfeit should be considered in the two-
dimensional space of functional states, shown in Fig. 3 [20].

The states of space are formed as Cartesian product of sets
[1 (A) , ..., j (A) , ..., J (A) , J (A) + 1] and [1 (B) , ..., j (B) , ..., J (B) , J (B) + 1].
Elements of sets perform the stages, which participants of teams A and B overcome at
the current time. There are additional elements in the sets under consideration, namely
J (A) + 1 and J (B) + 1. These elements simulate states, which teams fall into after
completion J -th stages of distances. The race begins from state [1(A), 1(B)] and ends at
state [J (A)+1, J (B)+1]. Wandering through the space has the character of evolution, in
which after every switch one (horizontal and vertical arrows in Fig. 3) or two (diagonal
arrows in Fig. 3) elements of vector [j (A), j (B)] increments by unit. Switches continue
until the vector reaches the state [J (A) + 1,J (B) + 1].

Fig. 3. The space of functional states

Time intervals of passing stage j (B) depend on route k̃ (B, j), which team B select for
passing j (B)-th stage. Common number of routes selected for passing distance as a whole
is equal to

L =
J∏

j=1

K̃ (B, j) . (21)

Let us extract from all possible routes of team B route

sl(B) =
[
k̃ (B, 1) , ..., k̃ (B, j) , ..., k̃ (B, J)

]
, (22)

and evaluate the forfeit, which team A received from the team B, when evolution of team
B will be developed on route (23).

For evaluation of the evolution e�ectiveness lets utilize quite a natural model of forfeit,
de�ned as the distributed payment by opponent team B to gamer team A, σj(A),j(B) (t),
value of which depends on time. Below the case of payment by opponent team B to gamer
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team A, σj(A),j(B) (t), is considered. Rate of payment, σj(A),j(B) (t), is as follows:

σi(A),j(B) (t)


> 0, when i (A) > j (B) ,
= 0, when i (A) > j (B) ,
< 0, when i (A) < j (B) ,

(23)

where 1 ≤ i (A) , j (B) ≤ J + 1.
For the evaluation of common forfeit, which team A receives from n-th team B, one

can use the recursive procedure, for realization of which it is necessary to introduce the
auxiliary time intervals θs (A), θs (B), where s is the number of previous switches.

When starting the competition from the initial functional state [1 (A) , ..., 1 (B)] no
switches is done (s = 0), substitutions θ0 (A) ⇐ T1(A) and θ0 (B) ⇐ τ1(B) should be made,
and time intervals θ0 (A), θ0 (B) compete between them. A possible result of competition
may be the next:

a) if θ0 (A)<θ0 (B), then wins team A, and Θ∗
0 = {θ∗0 (A)} = min {θ0 (A) , θ0 (B)},

θ∗0 ⇐ θ∗0 (A), r = 1;
b) if θ0 (A)>θ0 (B), then wins team B, and Θ∗

0 = {θ∗0 (B)} = min {θ0 (A) , θ0 (B)},
θ∗0 ⇐ θ∗0 (B), r = 1;

c) if θ0 (A)=θ0 (B), then competition is in a draw, and Θ∗
0 = {θ∗0 (A) , θ∗0 (B)} =

min {θ0 (A) , θ0 (B)}, θ∗0 ⇐ θ∗0 (A) = θ∗0 (B), r = 2.
The value of forfeit is equal as follows:

σs (A,B, l) =

θ∗s∫
0

σ1(A),1(B) (t) dt. (24)

Substitutions for preparing the next step of recursion are as follows:
• indices of θ0 (A), θ0 (B), and σi(A),j(B) (t) should be replaced with

s⇐ 0 + r, (25)

i (A) =

{
i (A) + 1 in the case a), c),
i (A) in the case a),

j (B) =

{
j (B) + 1 in the case b), c),
j (B) in the case a);

(26)

• time intervals, which will compete further should be replaced as follows

θs (A) ⇐
{
T2(A) in the cases a), c),
θ0 (A)− θ∗0 in the case b),

θs (B) ⇐
{
T2(B) in the cases b), c),
θ0 (A)− θ∗0 in the case a).

(27)

In such a way the second step or recursion rigid time intervals θs (A) , θs (B) will
compete between them.

Let us assume that (s = v)-th step of the recursion vector of functional state of semi-
Markov process is [i (A) , j (B)], and time intervals θv (A) , .θv (B) compete between them.
The possible result of the competition may be the next:
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a) if θv (A)<θv (B), then wins team A and Θ∗
s = {θ∗v (A)} = min {θv (A) , θv (B)},

θ∗s ⇐ θ∗v (A), s⇐ v + 1;
b) if θv (A)>θv (B), then wins team B and Θ∗

s = {θ∗v (B)} = min {θv (A) , θv (B)},
θ∗s ⇐ θ∗v (B), s⇐ v + 1;

c) if θs(r−1) (m)=θs(r−1) (n), then competition is in a draw, Θ∗
s = {θ∗v (A) , θ∗v (B)} =

min {θv (A) , θv (B)}, s⇐ v + 2.
The value of forfeit is calculated as follows

σs (A,B, l) =

θ∗s∫
0

σi(A),j(B) (t) dt. (28)

Substitutions for preparing the next step of recursion are as follows:
• indices of θs (A), θs (B), should be replaced with index

s⇐ v + r; (29)

• indices of σi(A),j(B) (t) should be replaced in accordance with (26);
• time intervals, which will compete further

θs (A) ⇐
{
Ti(A) in the cases a), c),
θv (A)− θ∗v in the case b),

θs (B) ⇐
{
Tj(B) in the cases b), c),
θv (A)− θ∗sv in the case a).

(30)

Let us assume, that the last step of recursion only team A stays in the race, and time,
it spends from a previous switch till �nishing J -th stage, obtained on previous stage of
recursion, is θs(A) = θ∗s . The value of forfeit on the last stage in this case is equal as follows:

σs (A,B, l) =

θ∗
s()∫

0

σJ(A)−1,J(B) (t) dt. (31)

The common sum of forfeit, which team A receives from team B, is as follows

σ (A,B, l) =
∑
s

σs (A,B, l) . (32)

The common sum of forfeit, which m-th team receives from all other teams, is as
follows

σ (A,B) =
L∑
l=1

σ (A,B, l) . (33)

It is necessary to admit, that the common sum of forfeit, σ (A,B), team A receives
from team B, depends of its own rigid schedule and distributions of time intervals (5). The
only way to change sum of forfeit σ (A,B) in a relay-race is changing team A schedule
only. This is an essential obstacle, from point of view of putting and solving the forfeit
optimization task.
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Conclusion

In such a way in this paper proposed procedure of relay-races analysis, based on
simulation of team A, as a system with a rigid schedule, and team B as a system with
alternative routs of passing stages. The next step of simulation is the reducing initial semi-
Markov model of team B activity to the abstraction with discrete distributions of passing
stages time intervals, the task, as a whole, to analysis the concurrent system with rigid
schedules of participants. This permits to work out rather simple computational procedure
of the forfeit sum calculation.

Solving the problem of calculation the sum of the forfeit, which active team A gets
from its opponent team B, permits to work out the optimal strategy of A team behaviour
with use, f.e. game theory [21, 22]. The tactics of optimal game strategies realization is
to rescheduling of passing by team A the remaining stages of distance at the expense
of acceleration/deceleration its activity on the certain stages with taking into account
restriction of its own resources, possible response of opponents etc.
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1Òóëüñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, ã. Òóëà, Ðîññèéñêàÿ Ôåäåðàöèÿ
2Ãîñóäàðñòâåííûé íàó÷íûé öåíòð Ðîññèéñêîé Ôåäåðàöèè � Ôåäåðàëüíûé
ìåäèöèíñêèé áèîôèçè÷åñêèé öåíòð èì. À.È. Áóðíàçÿíà, ã. Ìîñêâà,
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ã. Òóëà, Ðîññèéñêàÿ Ôåäåðàöèÿ

Ðàññìàòðèâàþòñÿ ýñòàôåòû ñ àêòèâíîé è ïàññèâíîé êîìàíäàìè, â êîòîðûõ àê-

òèâíàÿ êîìàíäà ðàáîòàåò â ñîîòâåòñòâèè ñ æåñòêèì ðàñïèñàíèåì, à ïàññèâíàÿ êîìàí-

äà ïðåîäîëåâàåò ñòàäèè äèñòàíöèè ïî ñëó÷àéíî âûáðàííûì àëüòåðíàòèâíûì ìàðøðó-

òàì â òå÷åíèå ñëó÷àéíîãî âðåìåííîãî èíòåðâàëà. Âñëåäñòâèå âûñîêîé âû÷èñëèòåëüíîé

ñëîæíîñòè çàäà÷è êëàññè÷åñêîãî àíàëèçà ýñòàôåò ïðåäëîæåí ìåòîä ìîäåëèðîâàíèÿ,

îñíîâàííûé íà ïðåäñòàâëåíèè ïëîòíîñòåé ðàñïðåäåëåíèÿ âðåìåííûõ èíòåðâàëîâ ïðî-

õîæäåíèÿ ýòàïîâ äèñêðåòíûìè ðàñïðåäåëåíèÿìè. Ïîêàçàíî, ÷òî ïîñëå ïðåîáðàçîâàíèÿ
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ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

ïëîòíîñòåé ðàñïðåäåëåíèÿ âðåìåííûõ èíòåðâàëîâ â äèñêðåòíûå ðàñïðåäåëåíèÿ çàäà÷à

àíàëèçà ýñòàôåò ñâîäèòñÿ ê çàäà÷å àíàëèçà ïàðíûõ æåñòêèõ ðàñïèñàíèé.

Ðàçðàáîòàíû ìåòîä äèñêðåòèçàöèè êîìïîçèöèè ïëîòíîñòåé ðàñïðåäåëåíèÿ ñ îöåí-

êîé îøèáêè äèñêðåòèçàöèè è ðåêóðñèâíàÿ ïðîöåäóðà àíàëèçà ýñòàôåò ñ æåñòêèì ðàñ-

ïèñàíèåì ñ ðàñ÷åòîì ñóììû øòðàôà. Ïîêàçàíî, ÷òî øòðàô çàâèñèò îò ðàçíîñòè íîìå-

ðîâ ýòàïîâ, êîòîðûå êîìàíäû ïðåîäîëåâàþò â òåêóùèé ìîìåíò, è ñòðàòåãèè, êîòîðóþ

àêòèâíàÿ êîìàíäà ðåàëèçóåò â òå÷åíèå ýñòàôåòû.

Êëþ÷åâûå ñëîâà: ýñòàôåòà; ïîëóìàðêîâñêèé ïðîöåññ; äèñòàíöèÿ; ýòàï; ìàðø-

ðóò; äèñêðåòèçàöèÿ; ðàñïèñàíèå; ðàñïðåäåëåííûé øòðàô.
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