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This is a brief exposition of dynamic systems approaches that form the basis for linear

implicit evolution equations with some indication of interesting applications. Examples in

in�nite-dimensional dissipative systems and stochastic processes illustrate the fundamental

notions underlying the use of double families of evolution equations intertwined by the

empathy relation. Kisy�nski's equivalent formulation of the Hille�Yosida theorem highlights

the essential di�erences between semigroup theory and the theory of empathy. The notion

of K-bounded semigroups, a more direct approach to implicit equations, and related to

empathy in a di�erent way, is included in the survey.
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Introduction

The classic autonomous evolution equation in a Banach space Y is

d

dt
u(t) = Au(t) (1)

with A (usually) an unbounded linear operator in Y . The causal relation that underpins
such an equation is the semigroup E(t + s) = E(t)E(s). Indeed, the solution curve is of
the form u(t) = E(t)y, but it is not the only trajectory de�ned by the semigroup. The
method is e�ective if A is the generator of the semigroup and the initial state y is in the
domain of A.

In �uid mechanics and in dynamic boundary condition problems, evolution equations
of the form

d

dt
[Bu(t)] = Au(t) (2)

arise. Here two Banach spaces X and Y are involved with A and B unbounded linear
operators de�ned onD ⊂ X with values in Y . These are called implicit evolution equations.

In early studies of implicit equations, modelled according to equations of
hydrodynamics, the operators A and B were strongly elliptic partial di�erential equations
not necessarily of the same order. This led to an assumption that the operators involved
were closed or could be extended separately to closed operators. This, in turn, made
possible to use the initial condition lim

t→0+
u(t) = u0 so that lim

t→0+
[Bu(t)] = Bu0 = y. For

dynamic boundary condition problems this setting can be untenable. Indeed, an example
of the operator B not closeable was given in 1982. The natural initial condition should be

lim
t→0+

[Bu(t)] = y. (3)
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For the classic evolution equation (in a single space) treatment by means of semigroups
made it necessary that the operator A be closed or closeable. Thus we are led to the
question: what is the analog of the notion of semigroup when we treat implicit equations? It
turned out to be important to consider two families of "evolution operators". The "solution
operators" S(t) : Y → X which will represent the solution in the form u(t) = S(t)y
and another family E(t) : Y → Y that will describe the curve v(t) = Bu(t) in Y . If
we free ourselves temporarily from the operator B, this leads to the empathy relation
S(t+ s) = S(t)E(s).

If causal relations such as semigroup and empathy are used to investigate the solvability
of evolution equations, a major question not always kept in mind, is the nature of the initial
states that evolve into solutions. Our approach to the problem is via the Laplace transform
which leads in an almost natural way to an answer.

In what follows we give a survey of the development of the empathy relation. Some
proofs are given to share some secrets of the trade. Long and technical proofs have been
omitted. The �ow of text is as follows: Section 1 gives the mathematical setting for
empathy theory and the very basic results. The bearing of empathy theory on implicit
evolution equations is discussed in Section 2 where we introduce the notion of generator
of an empathy. Section 3 gives a very short indication of how the theory is applied. The
important case of holomorphic empathies is brie�y discussed in Section 4. As in the case of
holomorphic semigroups, the "admissible" class of initial states is quite large. In Section 5
we discuss integrated empathy which is the analog of integrated semigroup. An adaptation
of Jan Kisy�nski's algebraic approach to the Hille�Yosida construction to empathy theory
is discussed in Section 6. Section 7 is devoted to the role of empathy-considerations in
Markov processes. It leads to implicit Fokker�Planck equations. The topic of K-bounded
semigroups, which represents an alternative approach to implicit evolution equations, is
explained in Section 8. We conclude with Section 9 where additional background is supplied
and references are given.

1. Empathy

Let X and Y be Banach spaces (real or complex). We consider two families of bounded
linear operators, {S(t) : Y → X} and {E(t) : Y → Y } de�ned for t > 0, with the following
properties:

S(t+ s) = S(t)E(s) for all t, s > 0. (4)

For every λ > 0 and y ∈ Y the Laplace transforms

P (λ)y =

∞∫
0

exp{−λt}S(t)ydt, (5)

R(λ)y =

∞∫
0

exp{−λt}E(t)ydt (6)

exist as Lebesgue (Bochner) integrals.
As stated before, the requirement (4) is known as the empathy relation. The conditions

(5) and (6) are akin to similar requirements used in semigroup theory when the C0 -property
is not imposed.
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Direct calculations lead to

Theorem 1. For arbitrary positive λ, µ and t the following is true:

P (λ)E(t) = S(t)R(λ), (7)

P (λ)R(µ) = P (µ)R(λ),

P (λ)− P (µ) = (µ− λ)P (λ)R(µ). (8)

Additional to the assumptions (5) and (6) we make one more with far-reaching
consequences:

The invertibility assumption. There exists ξ > 0 for which the linear operator P (ξ) :
Y → X is invertible.

Theorem 2. The family {E(t)} is a semigroup, strongly continuous in (0,∞). Moreover,
the family {S(t)} is strongly continuous in (0,∞).

Proof. From (4) we see that S(t+r+s)y = S(t)E(r+s)y = S(t+r)E(s)y = S(t)E(r)E(s)y.
Taking the Laplace transform at ξ with respect to t gives P (ξ)[E(r+s)y−E(r)E(s)y] = 0
and the semigroup property follows. Assumption (6) means that the function t → E(t)y
is measurable and therefore continuous in (0,∞) [1, Theorem 10.2.3]. From (4) it is seen
that if h ∈ (0, t/2), S(t−h)y = S(t/2)E(t/2−h)y → S(t/2)E(t/2)y = S(t)y when h → 0.
Continuity from the right is easier.

2

We note that continuity at t = 0 makes no sense and {E(t)} does not have to be of
class C0 . As another important consequence we have the identities

R(λ)E(t) = E(t)R(λ), (9)

R(λ)−R(µ) = (µ− λ)R(λ)R(µ). (10)

They are derived in the same way as the identities in Theorem 1. Thus we have arrived at
two pseudo-resolvent equations namely (8) and (10). These will turn out to be crucial.

Theorem 3. For every λ > 0 the operator P (λ) is invertible.

Proof. We consider the kernels of P (λ) and R(λ). First we note from (10) that kerR(λ) =
kerR(µ) =: N

E
. Then, from (8), if y ∈ N

E
∩kerP (µ) then P (λ)y = (µ−λ)P (λ)R(µ)y = 0.

Hence P (λ) ∩N
E
= P (µ) ∩N

E
for arbitrary λ and µ. Suppose that P (λ)y = 0. From (8)

it follows that P (ξ)y = (ξ−λ)P (ξ)R(λ)y and from the invertibility assumption therefore,
y = (ξ − λ)R(λ)y. Hence R(ξ)y = (ξ − λ)R(ξ)R(λ)y. It follows from (10) that R(λ)y = 0.
Thus y ∈ kerP (λ) ∩N

E
= kerP (ξ) ∩N

E
= {0}.

2

As can be seen from the proof above, the pseudo-resolvent equations (8) and (10)
lead to invariances. There are more. Let us de�ne the domains D

E
:= R(λ)[Y ] and D :=

P (λ)[Y ]. From (8) and (10) we readily see that the de�nitions do not depend on the choice
of λ. Indeed we have, as a consequence of (7) and (9),

Theorem 4. For all t > 0, E(t)[D
E
] ⊂ D

E
and S(t)[D

E
] ⊂ D.
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Some calculations are needed to obtain the following representations:
Let y = R(λ)y

λ
∈ D

E
. Then

E(t)y = eλt[y −
t∫

0

e−λsE(s)y
λ
ds], (11)

S(t)y = eλt[P (λ)y −
t∫

0

e−λsS(s)y
λ
ds]. (12)

From these representations it is possible to prove

Theorem 5. The following statements hold:
(a) For every y ∈ D

E
, limt→0+E(t)y = y.

(b) There exists a linear operator ιB0 : D
E
→ D de�ned by ιBy = limt→0+ S(t)y.

(c) The operators R(λ) are invertible for all λ > 0.
(d) The operator ιB0 is invertible, ιB = P (λ)R

−1
(λ) and ιB[D

E
] = D.

The notation ιB0 indicates that this operator is the inverse of an operator yet to be
introduced. To end this section we state a theorem, the proof of which is based on the
dominated convergence theorem, to show that Theorem 5 is in accordance with asymptotic
behaviour of the Laplace transform.

Theorem 6. For y ∈ D
E
, lim
λ→∞

λR(λ)y = y, and lim
λ→∞

λP (λ)y = ιBy.

2. The Generator of an Empathy

We shall refer to the pair ⟨S(t), E(t)⟩ as an empathy and proceed to de�ne the notion
of its generator. To begin with we de�ne the operator B : D → D

E
as the inverse of

the operator ιB. By Theorem 5 this is possible. In fact, we have the representation B =
[ ιB]

−1
= R(λ)P

−1
(λ) which is free of the choice of λ.

Next, we de�ne the operators A
λ
:= [λR(λ)− I

Y
]P

−1
(λ). It takes some e�ort to prove

that A
λ
= Aµ =: A and that P (λ) = (λB − A)

−1
. We call the operator pair ⟨A,B⟩ the

generator of the empathy. The following result explains the word.

Theorem 7. Let u(t) = S(t)y. For y ∈ D
E
, u(t) is a solution of the Cauchy problem

d

dt
[Bu(t)] = Au(t),

lim
t→0+

[Bu(t)] = y.

 (13)

Proof. From Theorem 4 we see that u(t) ∈ D so that Au(t) and Bu(t) are well-de�ned.
Let us obtain an expression for Bu(t). If y = R(λ)y

λ
then, from the representation of B,

(7) and (9) we obtain Bu(t) = BS(t)R(λ)y
λ
= R(λ)P

−1
(λ)S(t)R(λ)y

λ
= R(λ)E(t)y

λ
=

E(t)R(λ)y
λ
= E(t)y.

From Theorem 5 we immediately see that the initial condition is satis�ed. To evaluate
the derivative of Bu(t) we use the representation (11) and note that, by Theorem 2,
Bu(t) = E(t)y is indeed di�erentiable. The derivative, with the aid of (9) and some
manipulations, turns out to be Au(t). 2
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Thus the notion of empathy, which involves two families of "evolution operators", turns
out to be the replacement of semigroups when implicit evolution equations are concerned.
We need to take the analogy further. In semigroup theory the generator needs to be a
closed (or closeable) operator (see e.g. [1, Chapter XI]). What should it be in empathy
theory? For this we note a fact that was not used before, namely that the operators P (λ)
are bounded [1, Theorem 3.8.2]. This means that the operators P

−1
(λ) = λB − A are

closed. What does that say about A and B? For this we introduce the notion of jointly
closed. Let A,B : D ⊂ X → Y be two linear operators. Then A and B are jointly closed
if the operator ⟨A,B⟩ : x ∈ D → ⟨Ax,Bx⟩ ∈ Y × Y is closed. This is the same as saying
that if {xn} ⊂ D, xn → x in X, Axn → y

A
and Bxn → y

B
, then x ∈ D and Ax = y

A
,

Bx = y
B
. It takes some refection to conclude that if λB − A is closed for two distinct

values of λ, then A and B is jointly closed. Thus we have

Theorem 8. The generator of an empathy is closed.

We note that if the operators A and B are both closed, the operator ⟨A,B⟩ is closed.
The converse is not true.

3. Applications

To apply empathy theory to concrete problems, su�cient conditions for an operator
pair to be the generator of an empathy are needed. We say that the empathy ⟨S(t), E(t)⟩
is uniformly bounded if for all t > 0 there are constants M and N such that ∥S(t)∥ ≤ M
and ∥E(t)∥ ≤ N .

Let A,B : D ⊂ X → Y be given linear operators, and suppose that P (λ) := (λB−A)
−1

exists for every λ > 0. In accordance with Theorem 5 we let R(λ) := BP (λ). The Hille�
Yosida-type theorem is

Theorem 9. Suppose that the space Y has the Radon�Nikod�ym property and the operators
P (λ) and R(λ) as de�ned above, are bounded. Then the operator pair ⟨A,B⟩ is the
generator of a bounded empathy if and only if there exist constants M and N such that
for all λ > 0 and k = 1, 2. . . .

∥λP (λ)∥ ≤ M and ∥λkRk (λ)∥ ≤ N.

Y
E
, the closure of D

E
in Y , is an invariant subspace of E(t).

This theorem is still far removed from applications. The Radon�Nikod�ym property
for the space Y is a concern, although the re�exive Banach space all have it. Of deeper
concern though, is the requirement imposed by the condition that P (λ) = (λB − A)

−1

is bounded for all λ which implies that A and B should be jointly closed. For situations
based on dissipative phenomena such as heat and di�usion, the evolution equations are
often framed in a Hilbert space setting (e.g. L2 and embedded Sobolev spaces) and the
problem is to extend the operator pair ⟨A,B⟩ to be (jointly) closed. An analogue of the
Friedrichs extension had to be found. This was done for the �rst time to deal with dynamic
boundary conditions for the Navier�Stokes equations, and later extended to cover a large
class of problems including the so-called Sobolev equations (misnamed after Sobolev) and
pseudo-parabolic equations.
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A telling example that shows the strength of the approach, is the heat equation in a
domain Ω ⊂ R3 with boundary Γ. The equation is

ut (x, t)−∆u(x, t) = 0; x ∈ Ω; t > 0,

with ∆ is the Laplacian.
If the boundary Γ is considered as heat-transferring medium with it own thermal

properties, the boundary condition is, in a very simple model

∂t [γ0u(y, t)] + kγ1u(y, t) y ∈ Γ.

Here γ0 denotes the boundary trace operator and γ1 the normal derivative. If we take

X = L2 (Ω), Y = L2 (Ω) × L2 (Γ) and D = W
2,2
(Ω), the system of equations can be

expressed in the form
∂t ⟨u, γ0u⟩ = ⟨∆u,−kγ1u⟩ = 0 ∈ Y.

We use the notation ⟨ . , . ⟩ to denote elements of Y . Thus with Bu = ⟨u, γ0u⟩ and Au =
⟨∆u,−kγ1u⟩, this becomes a respectable implicit equation. But the operator B is not
closeable. Fortunately the joint extension exists and the problem can be handled.

4. Holomorphic Empathies

If the semigroup E(t) is holomorphic, in the sense that R(λ) can be extended to a
sector Σ

ϕ
= {−(ϕ + π/2) < Arg (λ) < π + π/2 : 0 < ϕ < π/2} of the complex plane such

that
∥R(λ)∥ ≤ M

|λ| for λ ∈ Σ
ϕ
,

the operators P (λ) can also be extended and satisfy

∥P (λ)∥ ≤ N
|λ| for λ ∈ Σ

ϕ
.

In this case S(t) and E(t) can be represented by familiar contour integrals and the
associated Cauchy-problem

d

dt
[Bu(t)] = Au(t),

lim
t→0+

[Bu(t)] = y,


can be solved for y ∈ Y

E
. The holomorphic case therefore allows a larger class of initial

states.
The extension procedure mentioned in Section 3 allows for the extension of an operator

pair ⟨A,B⟩ to be the generator of a holomorphic empathy. In particular this leads to
holomorhic empathies associated with dynamic boundary conditions for heat transfer and
di�usion such as the one discussed above where the initial state can be in L2 (Ω)×L2 (Γ).
For the Sobolev-type of Cauchy-problem

∂t [Mu(x, t)] = Lu(x, t); x ∈ Ω,

lim
t→0+

[Mu(y, t)] = y; y ∈ Γ,

}
with L andM strongly elliptic partial di�erential operators of order 2ℓ and 2m respectively,
the underlying empathy is holomorphic. The joint (Friedrichs) extension of ⟨L,M⟩ leads
to a much wider class of initial states than obtained by extending L and M separately.
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Within the framework of holomorhic empathy there is a happy idea of studying
perturbations. This is based on comparison within a �xed solution space X and using
the complex plane as another steady entity while allowing the operators A and B to have
di�erent range spaces. The framework is as follows: For n = 1, 2, . . . let An , Bn : Dn ⊂
X → Yn and consider the sequence of Cauchy-problems

d

dt
[Bnu(t)] = Anu(t);

lim
t→0+

u(t) = yn ∈ Yn .


Let ⟨S(t), E(t)⟩ be holomorphic empathy in the spaces X and Y with sectorial domain
Σ
ϕ0
. If there is a sectorial domain Σ

ψ
such that

∞∩
n=0

Σ
ϕn

⊃ Σ
ψ
,

and for λ ∈ Σ
ψ
,

lim
n→∞

∥Pn (λ)yn − P (λ)y∥ = 0,

then Sn (t)yn → S(t)y in X. This result can be used to study singular perturbations of
dynamic boundary conditions and Sobolev-type equations.

5. Integrated Empathy

The requirement in Theorem 9 that the space Y have the Radon�Nikod�ym property
excludes cases where spaces of continuous functions under the supremum norm are
concerned. For semigroups this has been overcome by introducing the notion of integrated
semigroups (see [2, Chapter 3, p. 124]). In the framework of a double family ⟨S(t), E(t)⟩
of evolution operators, this concept is adapted by replacing the causal relation (4) by

S(t)E(s)y =

t∫
0

[S(s+ σ)− S(σ)]ydσ. (14)

A pair ⟨S(t), E(t)⟩ satisfying (14) is called an integrated empathy. Analogous to (5) and
(6) we introduce the Laplace transforms p(λ) and r(λ) by

p(λ)y =

∞∫
0

exp{−λt}S(t)ydt,

r(λ)y =

∞∫
0

exp{−λt}E(t)ydt

and let P (λ) := λp(λ), R(λ) := λr(λ). The analysis now follows the same pattern
as in Section 1 with some deviations. The representations (11) and (12) are di�erent
and one needs to replace lim

t→0+
E(t)y and lim

t→0+
S(t)y in Theorem 5 by lim

t→0+
t
−1
E(t)y and

lim
t→0+

t
−1
S(t)y.
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The implicit evolution equation in Theorem 7 satis�ed by u(t) = S(t)y; y ∈ D
E
is

replaced by the implicit integral equation

Bu(t) = y + A

t∫
0

u(s)ds.

For a domain smaller than D
E
the original implicit di�erential equation is still satis�ed.

Within this setting it is possible to study wave motion described by the system of
equations

u1,t (x, t)− u2,x (x, t) = 0,

u2,t (x, t)− u1,x (x, t) = 0,

for 0 < x < 1, under the dynamic boundary condition

d

dt
[lim
x→1

u1 (x, t)] + lim
x→1

u2 (x, t) = 0,

in the space C([0, 1]) of continuous functions. The boundary condition at x = 0 can be
one of many.

6. The Kisy�nski Construction

The Hille�Yosida-like generation Theorem 9 is based on considering, for given
(unbounded) linear operators A and B from D ⊂ X to Y that de�ne, for λ > 0 the
operators

P (λ) = (λB − A)
−1
; (15)

R(λ) = BP (λ), (16)

and assuming that they exist and are bounded. Moreover, the result, (Theorem 9), leans on
the Widder inversion theorem which can only hold if the space Y has the Radon�Nikod�ym
property. The question is, can these assumptions be weakened in some sense?

An answer to this question can be found in Kisy�nski's algebraic approach to the Hille�
Yosida theorem for semigroups [4, Theorem 12.5]. But there is a price to be paid.

The point of departure is to consider two families P
λ
: Y → X and R

λ
: Y → Y

of bounded linear operators de�ned for λ > 0 that satisfy the entwined pseudo-resolvent
equations

R
λ
−Rµ = (µ− λ)R

λ
Rµ ,

P
λ
− Pµ = (µ− λ)P

λ
Rµ ,

}
(17)

analogous to the expressions (8), (10). They replace the operators P (λ) and R(λ)
associated with Laplace transforms. In this way we free ourselves from the assumption that
the space Y has the Radon�Nikod�ym property which is needed for the Widder inversion
theorem to hold if the Hille�Yosida inequalities in Theorem 9 are invoked. Instead, we
assume that the pseudo-resolvent R

λ
: Y → Y ;λ > 0 satis�es the strong Widder growth

condition [5]
sup{∥[λR

λ
]k∥ : λ > 0; k ∈ N} < ∞. (18)
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In addition it is assumed that the operators R
λ
are invertible, in contrast to the

(invertibility) assumption that P
λ
be invertible.

We de�ne the class of "initial states" D
E

:= R
λ
[Y ] analogous to D

E
. The growth

condition (18) ensures the existence of a unique bounded Banach algebra representation
T : r

λ
7→ R

λ
on the convolution algebra Z := ⟨L1 (0,∞),~⟩ of integrable scalar functions.

The family of exponentials {r
λ
: λ > 0} with r

λ
(x) = exp{−λx} for x ≥ 0 is a canonical

pseudo-resolvent on Z.
Following Kis�ynski, we use the representation T to algebraically construct a semigroup

{E(t) : t ≥ 0} of class C0 on the subspace ∆
K
:= {y ∈ Y : limλ→∞ ∥λR

λ
y− y∥ = 0}. This

analytic object has the algebraic reconstruction

∆
K
= D

E
=

∪
ϕ∈Z

T (ϕ)[Y ],

which is called the T-regularity space. Now a unique C0 -semigroup E(t) on ∆
K

is
constructed from the canonical C0 -semigroup of right-shifts Rt on Z by letting E(t)y :=
[T (Rt (ϕ))]y

ϕ
for y = T (ϕ)y

ϕ
∈ ∆

K
. The (vector) subspace D

E
is precisely the domain of

the in�nitesimal generator of E(t).
As in Section 1 the domain D := P

λ
[Y ] is free of the choice of λ, and assume that that

there is, in analogy to (16), a linear operator B : D ⊂ X → Y such that R
λ
= BP

λ
. Thus

we replace the invertibility of P
λ
by the weaker condition that BP

λ
is invertible.

The problem at hand is to de�ne a class of "initial states" y and a double family
⟨S(t), E(t)⟩t>0 intertwined by the empathy relation such that u(t) = S(t)y satis�es (13).

Towards this goal we de�ne the class ∆2

K
:= R

λ
[∆

K
] and call it the T 2 -regularity space.

Then ∆2

K
is a dense subspace (like D

E
) of ∆

K
. We use the operator C := P (λ)R

−1
(λ) :

∆2

K
→ D to construct a map T 2 := CT on the algebra Z. Note that T 2 is not an

algebra representation and need not even be closed. Then we construct, (a) the semigroup
E(t) : ∆

K
→ ∆

K
by the bounded Banach algebra representation T and (b) the (family

of) operators S(t) : ∆2

K
→ D by the map T 2 as follows:

S(t)[R
λ
T (ϕ)] = T 2 (r

λ
~R

t
ϕ) = P (λ)[E(t)T (ϕ)].

The bounded operator S(t) constructed on the dense subspace ∆2

K
can be extended by

continuity to the Banach space ∆
K
. Moreover, the map T 2 that generates the operators

S(t) underscores the fact that empathy relation (4) is more than a mild generalization of
semigroup theory. Then from the relation R

λ
= BP

λ
and the commutativity of E(t) and

R
λ
we have the following result:

Theorem 10. Let ⟨P
λ
, R

λ
⟩ be an entwined pseudo-resolvent (17) and B : D ⊂ X → Y

be a linear operator such that R
λ
= BP

λ
. If R

λ
satis�es the growth condition (18), then

u(t) = S(t)y; y ∈ ∆2

K
solves the implicit Cauchy problem (13) with A = A

E
B. Here A

E

is the in�nitesimal generator of E(t).

If the operators P (λ) have the form (15) then a direct calculation shows that B is
invertible and C = B

−1
. This is at the core of the theory of empathy.
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7. Implicit Fokker�Planck Equations

Causal relations explain how a state u(t) at time t evolves to a state u(t + s) at a
later time t + s where s > 0. The semigroup relation E(t + s) = E(s)E(t) is a causal
relation that is based on the assumption that the e�ect of the state u(t) on any later state
u(t + s) is determined solely by the the time di�erence s. In many real world situations,
one only knows the probability of transition from one state to another in a given time s.
This is captured in the notion of a stochastic kernel Qs (x,B) of a Markov process X. The
Chapman�Kolmogorov equation

Qt+s (x,B) =

∫
y∈R

Qt (x, {dy})Qs (y,B) for all s, t > 0, (19)

is a causal relation that follows from the assumption of memory-less transitions. For a
homogeneous Markov process X with a transition function Q = {Qs (x,B)}s>0 intertwined
by the Chapman�Kolmogorov equation, Q has an operator representation {Es : Y →
Y }s>0 on a suitable space Y of measurable functions and Et+s = EsEt . The question
is, what causal relation similar to (19) is described by the empathy relation S(t + s) =
S(s)E(t)?

An answer to this question can be found in a dynamic boundary condition approach
to di�usion with an absorbing barrier when the boundary is a object in its own right,
interacting meaningfully with the system as another body. Two distinct intensities arise:
the absorbing barrier is seen as a distinct collection of states with zero intensity, while the
system is a typical pseudo-Poisson process with uniform intensity a > 0. Also, two distinct
state spaces arise: S

X
:= {1, . . . ,m}, the set of m safe (life) states that all have the same

intensity a, and S
Y
:= {1, . . . , n}, the set of n death states that all have the same intensity

0. This assumption can be regarded as a stochastic model of a jump di�usion coe�cient,
which is prohibited in classical di�usion equations. The bar notation distinguishes between
a life state and a death state.

The pair of state spaces ⟨S
X
, S

Y
⟩ gives rise to the pair ⟨q(n)

ij
, r

(n)

ij̄
⟩
n≥1

of n-step transition

functions,

q
(n)

ij
=

|SX |∑
k=1

q
(n−1)

ik
p
kj

with q
(1)

ij
= p

ij
;

r
(n)

ij̄
=

|SX |∑
k=1

q
(n−1)

ik
s
kj

with r
(1)

ij̄
= sij̄,


(20)

where p
ij
denotes the one step transition P (Xn+1 = j|Xn = i) and s

ij̄
denotes the one step

transition P (Yn+1 = j̄|Xn = i). For the continuous-time version of the discrete Markov
chains (20), we partition the event of a transition in the time interval (0, t] into mutually
exclusive events determined by the number of transitions in the time interval (0, t]:

Qt (i,Γ = {j}) = P (Xt = j|X0 = i) = e−at

∞∑
n=0

q
(n)

ij

(at)
n

n!
;

Rt (i,Γ = {j̄}) = P (Yt = j̄|X0 = i) = e−at

∞∑
n=0

r
(n)

ij̄

(at)
n

n!
.


94 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming

& Computer Software (Bulletin SUSU MMCS), 2018, vol. 11, no. 3, pp. 85�102



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

Now, the pair ⟨Q,R⟩ := ⟨Qt (i,Γ), Rt (i,Γ)⟩t>0 is intertwined by a countable version of
the backward extended Chapman�Kolmogorov equation:

Qt+s (x,Γ) =

∫
y∈R

Qt (x, {dy})Qs (y,Γ); s, t > 0;

Rt+s (x,Γ) =

∫
y∈R

Qt (x, {dy})Rs (y,Γ); s, t > 0. (21)

Their operator representation ⟨St : X → Y,Et : Y → Y ⟩t>0 produces a pair of function
spaces X := BM(S

Y
) and Y := BM(S

X
) of bounded measurable functions on S

X

and S
Y
, respectively. The two-state space uni-directional transition (21) forces the two

state spaces X and Y to be disjoint. Indeed, the pair ⟨St , Et ⟩t>0 has exponential (pencil-
operator) representations St = e−ateatKR and Et = e−ateatKQ where ⟨K

R
, K

Q
⟩ are the

operator representations of the pair of defective transition matrices ⟨[s
i,j
]
i∈X,j∈Y

, [p
ij
]
i,j∈X ⟩,

respectively. Moreover,
ea(t+s)KR = eatKQeasKR . (22)

By (22), the pair ⟨St , Et ⟩t>0 is intertwined by the reverse empathy relation St+s =
EtSs ; s, t > 0. From the adjoint of the defective transition matrices, we then construct

an empathy ⟨St : Y → X,Et : Y → Y ⟩. The machinery of empathy theory then yields an
implicit Fokker�Planck equation.

8. K-Bounded Semigroups and Implicit Evolution Equations

Very often the existence of the semigroup {E(t)}
t≥0

solving (1) is established in a non-
constructive way and then very little quantitative information on the evolution is available.
On the other hand, there may exist an operator K such that t → KE(t) can be calculated
constructively yielding some information about the evolution. In other words, it may be
possible to look at the evolution through the "lens" of another operator and �lter out the
information we are not able to quantify. This idea led to the following de�nition:

De�nition 1. Let X and Y be Banach spaces and let L : D
L
⊂ Y → Y and K : D

K
⊂

Y → X be linear operators. Suppose that D
L
⊂ D

K
and for some ω ∈ R the resolvent set

of L satis�es
ρ(L) ⊃ (ω,∞). (23)

A family of operators {Z(t)}
t≥0

from D
K
to X, which satis�es

1) for every t ≥ 0 and f ∈ D
K

∥Z(t)f∥
X
≤ M exp{ωt}∥Kf∥

X
, (24)

2) for every f ∈ D
K
the function t → Z(t)f ∈ C([0,∞), X),

3) for f ∈ D
K(L)

:= {f ∈ D
L
∩D

K
: Lf ∈ D

K
}

Z(t)f = Kf +

t∫
0

Z(s)Lf ds; t ≥ 0,

is called a K-bounded semigroup generated by L.
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For an operator A we write A ∈ G(M,ω, Y ) if A generates a C0 -semigroup in Y, that
satis�es estimate such as (24). If there is a need to indicate that a semigroup is generated
by A we write {E

A
(t)}

t≥0
. Similarly, we write L ∈ K − G(M,ω, Y,X) if L generates a

K-bounded semigroup as in De�nition 1.
Let Y

K
be the completion of the quotient space D

K
/ kerK with respect to the semi-

norm ∥f∥
K
= ∥Kf∥

X
. Then D

K
/ kerK is isometrically isomorphic to a dense subspace of

Y
K
, say Y . The canonical injection of Y into Y

K
(and onto Y) will be denoted by p. In a

standard way, K can be extended by density to an isometry K : Y
K
→ X.

An important observation is that if L generates a K-bounded semigroup, then L
preserves cosets of D

K
/ kerK and therefore it can be de�ned to act from pD

K(L)
⊂ Y into

Y . We denote by L
K
the part of L in D

K
, i.e. L

K
= L|

DK(L)
. It can be also proved that if

L ∈ K − G(M,ω, Y,X), then the shift of L to Y is closeable in Y
K
; we denote its closure

by L.
To simplify the notation we will use the same notation for the operators L and K

and their shifts to Y . With this convention the injection p becomes the identity (or more
precisely projection) and for any operator C de�ned in Y

K
and f ∈ D

K
, the symbol Cf is

to be understood as Cpf , if the latter is de�ned.
We can provide a complete characterization of K-bounded semigroups.

Theorem 11. If L ∈ K − G(M,ω, Y,X) and K[D
K(L)

]
X

= X
K
, then L ∈ G(M,ω, YK).

Conversely, if there is L ⊃ L such that L ∈ G(M,ω, YK), then L = L and L ∈ K −
G(M,ω, Y,X).

The K-bounded semigroup {Z(t)} for f ∈ D
K
is given by

Z(t)f = E
KLK

−1 (t)Kf = KE
L
(t)f. (25)

The assumption that K[D
K(L)

] is dense in X
K
can be discarded if X (and consequently

X
K
) are re�exive spaces.
Since the space Y

K
is in many cases rather di�cult to handle, Theorem 11 is most

often used in the following version.

Theorem 12. Let the operators L and K satisfy the conditions of De�nition 1. Then L
is the generator of a K-bounded semigroup satisfying

Z(0)f = Kf for all f ∈ D
K
, (26)

if and only if the following conditions hold:

1) K[DK(L)] is dense in XK,

2) there exist M > 0 and ω ∈ R such that for every f ∈ D
K
, λ > ω and n ∈ N:

∥K(λI − L)
−n
f∥

X
≤ M

(λ− ω)n
∥Kf∥

X
.

If we do not require {Z(t)} to satisfy (26), then condition 1. is su�cient but not necessary.

We observe that it is not necessary for L to generate a semigroup in Y and Y need
not have any topological structure. Let us adopt the following assumptions on L and Y .
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(2.1′) The space Y is a linear space and the operator L
K
is closeable in Y

K
. Denoting

L = L
K

YK

, we assume further that there exist subspaces: Y satisfying D
K

⊆ Y ⊆
Y
K
, and D such that D

K(L)
⊂ D ⊂ X∩D

L
such that (λ−L|

D
) : D → Y is bijective

for all λ > ω.

Theorem 13. Let the operators L and K satisfy the conditions of De�nition 1 with
assumption (23) replaced by 2.1′. Then L ∈ K −G(M,ω, Y,X) and (26) holds if and only
if the following conditions are satis�ed:

1) K[D] is dense in X
K
,

2) there exist M > 0 and ω ∈ R such that for every y ∈ Y, λ > ω and n ∈ N:

∥K(λI − L|
D
)
−n
y∥

X
≤ M

(λ− ω)n
∥Ky∥

X
.

If (26) is not assumed, the assumption 1. is su�cient but not necessary. In both cases the
K bounded semigroup is given again by the expression (25).

Let us consider again the original Cauchy problem (2), (3). It is often the case that
the original spaces X and Y are not the most convenient spaces from the mathematical
point of view. We are usually interested to keep the values of the solution in the original
space which may be related to some physical properties like the �nite total energy space,
�nite mass, etc., but for (2) to hold in the strict sense may be too restrictive and often it
is enough that it holds in some other Banach (or even linear topological) space Ỹ with B
and A replaced by appropriate extensions B̃ and Ã acting from X to Ỹ .

To be able to link B and A with B̃ and Ã we restrict these extensions to the closures
of respective operators. In other words, D

A
and D

B
are required to be cores for Ã and B̃,

respectively.
As we mentioned above, in general, thanks to Theorem 13, we don't need any

topological structure in Y and therefore there is no need to introduce any topological
assumptions on B and A separately � as we shall see, these will be replaced by appropriate
assumptions imposed on either AB

−1
or B

−1
A.

Let us introduce the following de�nition.

De�nition 2. Let Y ⊂ Ỹ and Ã = A
Ỹ

, B̃ = B
Y

. An X-valued function t → u(t) is called
a Ỹ -solution of the problem (2) if it is a classical solution of the problem

d

dt
[B̃u(t)] = Ãu

lim
t→0+

[B̃u(t)] = ů,

 (27)

that is, t → B̃u(t) is continuously di�erentiable in Ỹ , the di�erential equation holds for
all t > 0 in Ỹ , and the initial condition holds as a limit in the topology of Ỹ .

This de�nition suggests an alternative way of approaching implicit problems (2) with
a "bad" operator B � to move the problem to a space in which B has desirable properties.
The theory ofK-bounded semigroups o�ers tools for such an approach and, as the following
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theorem shows, the space Y
B−1 turns out to be a good choice as on this space a suitable

extension of B is an isomorphism (and even an isometry).

Theorem 14. Let us suppose that we are given operators B : D
B
→ Y and A : D

A
→

Y with D
A
,D

B
⊂ X, where X is a Banach and Y is a linear space. Assume that B

is a densely de�ned, one-to-one operator. De�ne L = AB
−1

with the natural domain
D

L
= B[D

A
∩ D

B
] and K = B

−1
. If L ∈ K − G(M,ω, Y,X), then for ů ∈ D

K(L)
=

{u ∈ B[D
A
∩ D

B
] : AB

−1
u ∈ B[D

B
]}, the function t → Z(t)̊u, where {Z(t)}t≥0 is the

K-bounded semigroup generated by L, is an Y
K
-solution of the problem (27).

Assumption (23), speci�ed to the present conditions, means that the operator
(AB

−1
,D

AB−1 ) satis�es ρ(AB
−1
) ⊃ [ω,∞) for some ω ∈ R. If this assumption is satis�ed,

we can combine Theorems 14 and 12 to obtain the following result speci�ed to the
holomorphic case.

Theorem 15. Assume that

1) the set D
B−1A

= {y ∈ D
A
∩D

B
: Ay ∈ ImB} is dense in D

B

X

,

2) for f ∈ D
B

∥(λI −B
−1
A)

−1
f∥

X
≤ M

|λ− ω|
∥f∥

X
, (28)

for λ in some sector with the opening greater than π, then for any ů ∈ D
K(L)

, the

function t → Z(t)̊u is an Y
K
-solution to (27).

In re�exive spaces Assumption 1 is super�uous.

We illustrate the approach by considering the same example as in Section 3 where, for
simplicity, we consider Ω = (0, 1) and k = 1. Let us begin with the setting of Section 3;
that is, with X = L2(0, 1). The boundary operators are γ0u = ⟨u(0), u(1)⟩ and γ1u =

⟨−ux (0), ux (1)⟩, for su�ciently regular u. Let D
A
= W

2,2
(0, 1) and, on D

A
,

Au = ⟨uxx ,−γ1u⟩ = ⟨uxx , ux (0),−ux (1)⟩

and D
B
= W

1,2
(0, 1) with

Bu = ⟨u, γ0u⟩ = ⟨u, u(0), u(1)⟩.

However, we see that with such a domain we cannot achieve A[D
A
] ⊂ ImB as uxx

does not have traces at x = ±1. Let us now change the setting and take X = W
1,2
(0, 1).

Then B is well-de�ned and bounded on X with ImB = ⟨u, u(0), u(1)⟩ ⊂ Y := X × C2 .
Since this set is closed in Y , B is an isomorphism onto its image. According to Theorem
14 we should de�ne A on such a domain that Au = ⟨uxx , ux (0),−ux (1)⟩ ∈ ImB; that is,

D
A
= {u ∈ W

3,2
(0, 1) : uxx (0)− ux (0) = 0, uxx (1) + ux (1) = 0}.

Now, B
−1
A = uxx and (28) with ω = 0 can be proved by standard Hilbert space methods.

Since we are working in Hilbert (re�exive) spaces, we get the density of D
B−1A

in X and

therefore the problem is solvable. Here X
K

= X, the semigroup t → E
B−1A

(t) acts in
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X and the solution operator is de�ned as t → E
B−1A

(t)B
−1
, see (25). Thus the solution

operator acts on the subspace ofW
1,2
(0, 1)×C2 of initial conditions satisfying compatibility

conditions, ⟨̊u, ů(0), ů(1)⟩, in contrast to the solution in [3] where a weaker regularity of
the solution does not require such a restriction.

Notes and Remarks

For the heuristic underpinning of evolution equations by semigroups, consult
S.G. Krein [6].

The results of Sections 1, 2 and 3 are based on the paper [7] where complete proofs
and discussions can be found. Of historical interest is that the notion of empathy, in a
primitive form was introduced in an earlier paper [8]. That was preceded by the notion of
B-evolution introduced in [3] which involves only the solution operators S(t), pre-supposes
the operator B and uses the causal relation S(t + s) = S(t)BS(s) on the space Y . If one
sets E(t) = BS(t) this is in line with the same expression derived in Section 2 (valid only
on the domain D

E
). The example of a non-closeable operator B can be found in [9].

Equations of Sobolev-type were studied by Showalter and Ting in [10,11]. Within the
framework of B-evolutions this was studied by Van der Merwe [12]. Also of note, are the
studies of Favini�Yagi where the vantage point is that the operators A and B are assumed
to be closed [13].

The Friedrichs extension of an operator-pair was �rst introduced in [24] and e�ectively
used in a study of dynamic boundary conditions for the Navier�Stokes equations [25]. This
was extended in [26] where applications to dynamic boundary conditions and equations
of Sobolev-type were treated as examples. An example to illustrate that the empathy-
approach gives better results for Sobolev equations can be found in [27].

The idea of using B-evolution theory to study perturbations of evolution problems
came from Alna van der Merwe [28] who formulated it in a Hilbert space context. Extension
to empathy theory in Banach spaces is without di�culty.

Integrated semigroups were introduced by Arendt in [29] although it was anticipated
in earlier work of Favini [30]. Adaptation to double families can be found in [31]. The
system of equations in Section 5 is closer to the physics of the problem than the wave
equation would be, and the dynamic boundary condition is physically and mathematically
"realistic".

The Kisy�nski-result has been proved to be equivalent to the classical Hille�Yosida
theorem (Chojnacki, [32]). A complete account of the discussion of Section 6 can be found
in [33].

Very recently an algebraic-analytic approach to causal relations was pioneered in [34]. In
this work a generalized convolution-type algebra, which extends the notion of convolution
algebra in abstract harmonic analysis, is developed. The basic idea is the consider linear
operators from so-called test spaces of uniformly bounded continuous functions to a Banach
space as homomorphisms and de�ne a convolution product of such homomorphisms. The
convolution product, in turn, induces a dualism map back to the test space which can be
implemented to describe, in a di�erent way, a number of known causal relations such as
semigroups, integrated semigroups, empathy and integrated empathy. It also provides a new
understanding of linear operators associated with probability measures and the semigroups
associatedwith stochastic processes that satisfy theChapman�Kolmogorov relation.
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In probability theory the occurrence of implicit Fokker�Planck equations is unknown.
It was recently introduced in [35] where complete details of the discussion in Section 7 can
be found.

The concept of K-bounded semigroups (precisely, B-bounded semigroups but we had
to change the name to avoid the con�ict of notation) was introduced by Belleni-Morante,
[14, 15]. The generation theorems can be found in [16, 17, 19, 20]. The latter work also
contains a comparison of K-bounded semigroups and C-semigroups. De�nition 2 is based
on [21], while the idea of usingK-bounded semigroups to solve implicit evolution equations
was developed in [18,22,23]; [22] also contains a comparison of K-bounded semigroups and
empathy. It is also worthwhile to note that K-bounded semigroups are closely related to
the lumpability theory, [23], where one seeks an operator that can aggregate the states of
the system, decreasing its complexity without changing salient aspects of its dynamics �
the idea possibly being the closest to what originally Belleni-Morante had in mind.
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ÏÐÈ×ÈÍÍÎ-ÑËÅÄÑÒÂÅÍÍÛÅ ÎÒÍÎØÅÍÈß

Â ÍÅßÂÍÛÕ ÝÂÎËÞÖÈÎÍÍÛÕ ÓÐÀÂÍÅÍÈßÕ

H. Ñàóýð1, ß. Áàíàñÿê1, Âà-Ñàê Ëè1

Óíèâåðñèòåò Ïðåòîðèè, ã. Ïðåòîðèÿ, Þæíî-Àôðèêàíñêàÿ Ðåñïóáëèêà

Äàííàÿ ñòàòüÿ ÿâëÿåòñÿ êðàòêèì èçëîæåíèåì ïîäõîäîâ â äèíàìè÷åñêèõ ñèñòåìàõ,

êîòîðûå ñîñòàâëÿþò îñíîâó äëÿ ëèíåéíûõ íåÿâíûõ ýâîëþöèîííûõ óðàâíåíèé, âåäóùèõ

ê èíòåðåñíûì ïðèëîæåíèÿì. Ïðèìåðû â áåñêîíå÷íîìåðíûõ äèññèïàòèâíûõ ñèñòåìàõ

è ñòîõàñòè÷åñêèõ ïðîöåññàõ èëëþñòðèðóþò ôóíäàìåíòàëüíûå ïîíÿòèÿ, ëåæàùèå â îñ-

íîâå èñïîëüçîâàíèÿ äâîéíûõ ñåìåéñòâ ýâîëþöèîííûõ óðàâíåíèé, ñâÿçàííûõ îòíîøå-

íèåì ýìïàòèè. Ýêâèâàëåíòíàÿ ôîðìóëèðîâêà Êèñèíüñêîãî òåîðåìû Õèëëå � Èîñèäû

ïîä÷åðêèâàåò ñóùåñòâåííûå ðàçëè÷èÿ ìåæäó òåîðèåé ïîëóãðóïï è òåîðèåé ýìïàòèè.

Â îáçîðå ïðåäñòàâëåíî ïîíÿòèå K-îãðàíè÷åííûõ ïîëóãðóïï, ÿâëÿþùèõñÿ áîëåå åñòå-

ñòâåííûì ïîäõîäîì ê íåÿâíûì óðàâíåíèåì ñ îäíîé ñòîðîíû è îòíîøåíèåì ýìïàòèè ñ

äðóãîé.
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