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Delay di�erential-algebraic equations (DDAEs) can be used for modelling real-life
phenomena that involve simultaneously time-delay e�ect and constraints. It is also known
that solving delay DAEs is more complicated than solving non-delay ones because
approximation of solutions in the past time is usually needed and discontinuity in higher
derivatives of the solutions is typical. Recently, we have proposed and investigated linear
multistep (LM) methods for strangeness-free DAEs (without delay). In this paper, we
extend the use of LM methods to a class of structured strangeness-free DAEs with constant
delay. For the approximation of solutions at delayed time we use polynomial interpolation.
Convergence analysis for LM methods is presented. It is shown that, similarly to the non-
delay case, the strict stability of the second characteristic polynomial associated with the
methods is not required for the convergence if we discretize an appropriately reformulated
DDAE instead of the original one. Numerical experiments are also given for illustration.
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Introduction

Delay di�erential-algebraic equations (DDAEs) arise as mathematical models of
real-life processes in which time lag and constraints simultaneously appear. Areas of
applications include electrical circuit design, real-time simulation of mechanical systems,
chemical engineering, power systems, control and optimal control, etc, see [1�4]. While the
theory and numerical analysis of delay (ordinary) di�erential equations (DDEs) as well
as those of DAEs (without delay) have been fairly well established, see [2, 5, 6] and [7�9],
respectively, the same cannot be said in the case of delay DAEs which analytical and
numerical solutions have not been completely understood yet. Even the solvability of
general linear delay DAEs has been investigated only very recently in [3, 10]. Very few
papers have been devoted to the convergence analysis of numerical methods for delay DAEs
and most of them are restricted to consideration of delay DAEs in semi-explicit form and
implicit numerical schemes. In [11], Ascher and Petzold investigated BDF and collocation
Runge�Kutta methods for semi-explicit DDAEs of retarded and neutral type with single
delay. Later, Hauber extended the use of collocation methods to retarded DDAEs of
index two with state-dependent delay [12]. Liu and Xiao studied the convergence of linear
multistep and one-leg methods for semi-explicit index 2 DDAEs with variable delay [13].
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Di�culties that arise in solving DDAEs were discussed in [1, 2, 4]. It was pointed out
that in general DDAEs are neither DAEs nor DDEs. However, under certain appropriate
conditions, a DDAE may be reduced to a DDE of retarded or neutral type [1].

Recently, in [3,10] Ha et.al. investigated general linear variable coe�cient DDAEs with
constant delay

E(t)x′(t) = A(t)x(t) +B(t)x(t− τ) + γ(t), (1)

which may arise, for example, as the result of linearizing general DDAE
F
(
t, x′(t), x(t), x(t−τ)

)
= 0 around a reference trajectory. They proposed an algorithm for

regularization of DDAE (1), i.e. a procedure that reduces the original system to a regular
strangeness-free DDAE of form[

Ê1(t)
0

]
x′(t) =

[
Â1(t)

Â2(t)

]
x(t) +

[
B̂1(t)

B̂2(t)

]
x(t− τ) + γ̂(t), (2)

where

[
Ê1(t)

Â2(t)

]
is pointwise invertible. Then, it was also shown that s-stage collocation

methods can be implemented for (2) and they are convergent of order at least s.
In this paper, we consider a more general class of nonlinear structured DDAEs of form

f
(
t, x(t), x(t− τ), E(t)x′(t)

)
= 0,

g
(
t, x(t), x(t− τ)

)
= 0

(3)

for all t ∈ I = [0, T ], τ > 0 is a constant delay, which clearly includes DDAEs (2)
as a special case. Here we assume that E ∈ C1(I,Rm1,m) and functions f(t, u, v, w) :
I×Rm ×Rm ×Rm1 → Rm1 , g(t, u, v) : I×Rm ×Rm → Rm2 ,m1 +m2 = m are su�ciently
smooth functions with bounded partial derivatives. Given initial condition

x(t) = ϕ(t) for t ∈ [−τ, 0], (4)

we suppose that initial value problem (IVP) (3), (4) has unique solution x(t). Here, x is
said to be a solution if the followings hold: (i) It is continuous and piecewise continuously
di�erentiable on I; (ii) It satis�es DDAE (3) for t ∈ I pointwise except for a �nite number of
discontinuity points as well as initial condition (4). In this paper, we assume that Jacobian[

fwE(t)
gu

]
is nonsingular (5)

along reference solution x(t). Then, nonlinear DDAE (3) is said to be strangeness-free
(in a su�ciently small neighbourhood of x) [9]. Semi-explicit DDAEs of index one that
are considered in [1, 4, 11] are obviously only a special case of (3). For solvability, initial
function ϕ must be consistent, that is g

(
0, ϕ(0), ϕ(−τ)

)
= 0 and ϕ ∈ C([−τ, 0],Rm) at

least.
The main aim of this paper is to extend the use of linear multistep methods that are

proposed for non-delay DAEs in [14, 15] to DDAEs (3). Similarly to the approach used
in [15�17], instead of direct discretization, numerical schemes are applied to reformulated
form

f
(
t, x(t), x(t− τ), (Ex)′(t)− E ′(t)x(t)

)
= 0,

g
(
t, x(t), x(t− τ)

)
= 0.

(6)

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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In the implementation, approximation of numerical solutions at retarded time may be
needed and it is done by using interpolation or continuous extension. The linear multistep
methods proposed in this paper provide an alternative approach in addition to the existing
BDF and collocation methods. Moreover, discretizations based on explicit methods require
less computational cost than implicit ones in the case of large-sized and nonsti� problems.

The organization of the paper is as follows. In Section 1, we present some preliminary
results including the method of steps and the analysis of DDAEs (3) by using
transformation and reduction. Construction and convergence analysis of linear multistep
(LM) methods combined with polynomial interpolation are given in Section 2. In Section 3,
some numerical experiments are carried out to illustrate the theoretical results in previous
sections. We close the paper by conclusions in Section 4.

1. Preliminary

1.1. Method of Steps

For DDEs with constant delay, the method of steps is a standard tool to investigate
analytical as well as numerical solutions [5]. Analogously, this method can be extended to
the analysis of DDAEs. Here IVP (6), (4) is replaced by a sequence of the IVPs on the
time intervals [lτ, (l + 1)τ ] for nonnegative integer l provided that x is known on interval
[(l−1)τ, lτ ]. Therefore, we obtain a sequence of "local" IVPs for non-delay strangeness-free
DAEs of the form

f
(
t, xl+1(t), xl(t− τ), (Exl+1)

′(t)− E ′(t)xl+1(t)
)
= 0,

g
(
t, xl+1(t), xl(t− τ)

)
= 0,

t ∈ [lτ, (l + 1)τ ] (7)

together with initial conditions

xl+1(lτ) = xl(lτ), l = 0, 1, . . . (8)

For l = 0, we de�ne x0(t) = ϕ(t− τ), 0 ≤ t ≤ τ . Assuming that all the initial conditions
are consistent, i.e. g

(
lτ, xl(lτ), xl((l − 1)τ)

)
= 0, the solvability of IVPs (7), (8) for all

l = 0, 1, . . . , implies the solvability of original IVP (6), (4). Then, we set

x(t) = xl+1(t) if t ∈ [lτ, (l + 1)τ ], l = 0, 1, . . . .

Clearly, the "global" solution x(t) is continuous and piecewise continuously di�erentiable.
At the connecting points lτ , discontinuity in the �rst or higher derivatives of x is typical.
For both DDEs and DDAEs with a single constant delay τ , the discontinuity happens
at points lτ, l = 0, 1, . . . , see [1]. Moreover, the existence, uniqueness and smoothness of
solutions depend on given initial function ϕ(t). Throughout this paper, we assume that
initial function ϕ(t) is consistent and su�ciently smooth such that the unique solution of
IVP (3)�(4) is continuous on [0, T ] and su�ciently smooth on each subinterval [lτ, (l+1)τ ].

1.2. Reformulation and Conditioning

Conditioning analysis of semi-explicit DAEs of index less or equal to two was considered
�rst in [18]. Then, the authours extended the analysis to semi-explicit DDAEs of retarded
and neutral type with single delay in [11]. They showed that a semi-explicit DDAE of index
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1 is well conditioned when the essential-underlying-delay ODE (EUDODE) associated with
the DDAE is well conditioned. For implicit DDAEs like (3) or even more general ones, the
di�culty relies in the de�nition of EUDODE and the classi�cation of the problem because
di�erential and algebraic variables are not separated as in the case of semi-explicit DDAEs.

Returning to the structured strangeness-free DDAEs (3), by the same approach
as in [15, 17], the special structure of (3) is exploited to transform DDAEs (3) into
reformulated form (6) which are equivalent to semi-explicit index-1 DDAEs. By condition
(5), there exists a pointwise invertible matrix function Q(t) = [Q(1) Q(2)], where Q(1) ∈
C1(I,Rm,m1), Q(2) ∈ C1(I,Rm,m2), such that EQ = [I 0]. Thus, we can assert that

matrices fw, guQ
(2),

[
E
gu

]
are nonsingular. Using the change of variables x = Qy =

Q(1)y1+Q(2)y2, we have that (Ex)′(t) = (EQy)′(t) = y′1(t). Therefore, system (6) becomes

f
(
t, Q(t)y(t), Q(t− τ)y(t− τ), y′1(t)− E ′(t)Q(t)y(t)

)
= 0,

g
(
t, Q(t)y(t), Q(t− τ)y(t− τ)

)
= 0.

(9)

By the Implicit Function Theorem, there exists a function f̄ such that from the �rst
equation of (9), we have

y′1(t)− E ′(t)Q(t)y(t) = f̄
(
t, y1(t), y2(t), y1(t− τ), y2(t− τ)

)
. (10)

Then, the system (9) is rewritten as

y′1(t) = f̃
(
t, y1(t), y2(t), y1(t− τ), y2(t− τ)

)
,

0 = g̃
(
t, y1(t), y2(t), y1(t− τ), y2(t− τ)

)
,

(11)

where f̃
(
t, y1(t), y2(t), y1(t − τ), y2(t − τ)

)
= f̄

(
t, y1(t), y2(t), y1(t − τ), y2(t − τ)

)
+

E ′(t)Q(t)y(t), g̃
(
t, y1(t), y2(t), y1(t−τ), y2(t−τ)

)
= g

(
t, Q(t)y(t), Q(t−τ)y(t−τ)

)
. It is easy

to check that ∂g̃
∂y2(t)

= guQ
(2) which is nonsingular. Hence, system (11) is a semi-explicit

index-1 DDAE of retarded or neutral type that is analyzed in [11]. All the discussions on
the conditioning of the IVPs for (11) that was studied in [11] can be applied. Again by
the Implicit Function Theorem, there exists a function ḡ such that the algebraic variable
of (11) is expressed in the form

y2(t) = ḡ
(
t, y1(t), y1(t− τ), y2(t− τ)

)
. (12)

We consider two cases.
a) If y2(t − τ) does not appear in the second equation (11), then the equation (12)

becomes

y2(t) = ĝ
(
t, y1(t), y1(t− τ)

)
. (13)

Similarly, at time t− τ , we also have

y2(t− τ) = ĝ
(
t− τ, y1(t− τ), y1(t− 2τ)

)
. (14)

Inserting (13), (14) into the �rst equation (11), we obtain a DODE of retarded type

y′1(t) = f̃
(
t, y1(t), ĝ

(
t, y1(t), y1(t− τ)

)
, y1(t− τ), ĝ

(
t− τ, y1(t− τ), y1(t− 2τ)

))
, (15)

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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which can be also written by renotation as

y′1(t) = f̂
(
t, y1(t), y1(t− τ), y1(t− 2τ)

)
. (16)

The DDAE (3) is well conditioned (in the sense that its solutions are not too sensitive
to small changes in the initial function) if EUDODE (16) is well conditioned and
transformation Q is well conditioned.

b) In the general case, we have to propagate the recursion in (12) back from t to t− lτ ,
where −τ ≤ t − lτ ≤ 0, i.e. t ∈ [lτ, (l + 1)τ ] is assumed. For simplicity, we suppose that
linearization is applied, equation (12) is written in the form

y2(t) = ĝ
(
t, y1(t), y1(t− τ)

)
+R(t)y2(t− τ), (17)

where R(t) = −
(
guQ

(2)(t)
)−1

gvQ
(2)(t− τ). This gives

y2(t) =
[ l−1∏
j=0

R(t− jτ)
]
y2(t− lτ)+

+
l−1∑
i=0

[ i−1∏
j=0

R(t− jτ)
]
ĝ
(
t− iτ, y1(t− iτ), y1(t− iτ − τ)

)
.

(18)

A similar formula holds

y2(t−τ) =
[ l−1∏
j=1

R(t−jτ)
]
y2(t−lτ)+

+
l−1∑
i=1

[ i−1∏
j=0

R(t−jτ)
]
ĝ
(
t−iτ, y1(t−iτ), y1(t−iτ−τ)

)
.

(19)

Substituting (18), (19) into the �rst equation (11), we also get DODE with l lags

y′1(t) = F
(
t, y1(t), y1(t− τ), y1(t− 2τ), . . . , y1(t− lτ), y2(t− lτ)

)
, (20)

which is actually DDE of a neutral type. The well-conditioning of DDAEs (11) depends
not only on this DODE but also on factor R. If supt≥0 ∥R(t)∥ < 1, Q is well-conditioned,
and DODE (20) is well conditioned, then DDAE (11) is well-conditioned, too.

The above analysis is demonstrated in the following example.

Example 1. We consider strangeness-free DDAE with constant delay τ > 0 of form[
1 −ωt
0 0

]
x′(t) =

[
λ ω(1− λt)
−1 (1 + ωt)

]
x(t)+

+

[
0 a
b c− bω(t− τ)

]
x(t− τ)−

[
aeλ(t−τ)

(b+ c)eλ(t−τ)

] (21)

on interval [0, T ] with real parameters a, b, c, ω, λ. System (21) possesses analytical solution

x =

[
eλt(1 + ωt)

eλt

]
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provided that the initial function is given equal to the exact solution for all −τ ≤ t ≤ 0.

If we take Q(t) =

[
1 ωt
0 1

]
, using the change of variables x(t) = Q(t)y(t) system (21)

becomes [
1 0
0 0

]
y′(t) =

[
λ 0
−1 1

]
y(t) +

[
0 a
b c

]
y(t− τ)−

[
aeλ(t−τ)

(b+ c)eλ(t−τ)

]
, (22)

where y(t) = [y1(t), y2(t)]
T . System (22) is rewritten as

y′1(t) = λy1(t) + ay2(t− τ)− aeλ(t−τ),

y2(t) = −cy2(t− τ) + y1(t)− by1(t− τ) + (b+ c)eλ(t−τ).
(23)

If c = 0, we obtain algebraic constraint

y2(t) = y1(t)− by1(t− τ) + (b+ c)eλ(t−τ),

and DODE of retarded type with two lags

y′1(t) = λy1(t) + ay1(t− τ)− aby1(t− 2τ)− a(b+ c− 1)eλ(t−τ). (24)

If DODE (24) is well conditioned and ωT is of moderate size, then DDAE (21) is well
conditioned, too. This property depends on the choice of parameters λ, a and b.

If c ̸= 0, the second equation (23) leads to

y2(t) = cly2(t− lτ) +H
(
t, y1(t), y1(t− τ), . . . , y1(t− lτ)

)
, (25)

where H is an appropriately de�ned function and −τ < t− lτ ≤ 0. Then, we also have

y2(t− τ) = cl−1y2(t− lτ) +H
(
t− τ, y1(t− τ), y1(t− 2τ), . . . , y1(t− lτ)

)
. (26)

Substituting (26) into the �rst equation (23), we obtain DODE with l lags

y′1(t) = λy1(t) + H̄
(
t, y1(t− τ), y1(t− 2τ), . . . , y1(t− lτ)

)
+ acl−1y2(t− lτ), (27)

which is actually neutral DODE. Therefore, we say that DDAE (21) is of neutral type. If
EUDODE (27) is well conditioned, the time interval is not too large and the constant c
satisfying |c| ≤ 1 or |c| > 1, but of moderate size, then problem (21) is well conditioned.
Fig. 1 shows actual errors, the exact solution (Exact. Sol) and a numerical solutions (Num.
Sol) of well-conditioned problem (21) with time-delay τ = 1 and parameter set λ =
−1, 5, ω = 10, a = 0, 5, b = 1, c = 0, 8. The results of ill-conditioned problem (21) with
time-delay τ = 1 and parameter set λ = −1, 5, ω = 10, a = −2, b = 1, 5, c = 1, 2 are
plotted in Fig. 2. For both problems, time interval [0, 20] is used.

For retarded DDAE (21) with τ = 1, the results of well-conditioned problem with λ =
−1, ω = 1, a = −1, b = 1, 5, c = 0 on time interval t ∈ [0, 10] are plotted in Fig. 3. It should
be noted that a small delay might make a well-conditioned problem be ill-conditioned. This
is demonstrated in Fig. 4 for problem (21) with λ = −1, ω = 1, a = −1, b = 1, 5, c = 0
and τ = 0, 2.

For the above illustrations, the numerical solutions are computed by 2-step half-explicit
Adams�Bashforth (HEAB2) method, which is presented in the next section.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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Fig. 1. Numerical results for well-conditioned problem (21)

Fig. 2. Numerical results for ill-conditioned problem (21)

2. Linear Multistep Methods

In this section, we construct and analyze half-explicit linear multistep (HELM)
methods for reformulated DDAEs (6). Consider linear multistep (LM) method which
coe�cients αi, βi, (i = 0, 1, . . . , k) satisfy α0 ̸= 0 and βs ̸= 0, where βs denotes the �rst
non-zero coe�cient among βi-s. If s = 0, then the method is said implicit. Otherwise, it
is explicit. LM scheme applied to IVP for ODEs

y′(t) = χ(t, y),

y(t0) = y0,
(28)

is proposed as follows
k∑

i=0

αiyn−i = h
k∑

i=s

βiχ(tn−i, yn−i). (29)
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Fig. 3. Numerical results for well-conditioned problem (21)

Fig. 4. Numerical results for ill-conditioned problem (21)

Construction and numerical analysis (order, zero-stability, convergence) of linear multistep
methods for ODEs are given in details in numerous books, e.g., see [7, 19].

We assume that the unique solution of IVP (3), (4) is continuous on [0, T ], p-
times continuously di�erentiable and (p+ 1)-th derivative is bounded on each subinterval
[lτ, (l+1)τ ]. This means that at points lτ higher derivatives of the solution may not exist.
Assuming w.l.g that the length of integration interval T is multiple of τ , we introduce a
mesh π = {0 = t0 < t1 < . . . < tN = T} which include all "discontinuity points" lτ . The
mesh is not necessarily uniform, but just for the sake of simplicity we assume that a uniform
mesh with stepsize h is used. It is possible to extend the construction of LM schemes and
their analysis to the case of variable stepsize. Let us denote by xn,Wn the approximations
of exact solution x(tn) and derivative W (tn) := (Ex)′(tn). Suppose that approximate
solution obtained at the mesh points of π is denoted by xh. For implementation, we will
solve numerically IVP (3), (4) on successive intervals [lτ, (l + 1)τ ] for any nonnegative

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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integer l. At time step t = tn, (lτ ≤ tn−k < tn ≤ (l + 1)τ), we assume that previous
approximations xn−1, xn−2, . . . , xn−k, and Wn−2,Wn−3, . . . ,Wn−k are given. Moreover, we
need to approximate the values of x at retarded times tn − τ and tn−s − τ which may
not be mesh points (for example, if the mesh is not uniform). If l = 0 then those values
are given by the initial function. Otherwise, they are approximated by local interpolant φ
through values of xh at mesh points.

From equation (29), we have

Wn−s =
1

hβ1

k∑
i=0

αiEn−ixn−i −
k∑

i=s+1

βi

β1

Wn−i, (30)

where En−i = E(tn−i). A LM scheme applied to reformulated DDAEs (6) is proposed as
follows

f
(
tn−s, xn−s, φx

h(tn−s − τ),
1

hβs

k∑
i=0

αiEn−ixn−i −
k∑

i=s+1

βi

βs

Wn−i − E ′
n−sxn−s

)
= 0,

g
(
tn, xn, φx

h(tn − τ)
)
= 0,

(31)

here E ′
n−s = E ′(tn−s). System (31) is equivalent to

hβs

α0

f
(
tn−s, xn−s, φx

h(tn−s−τ),
k∑

i=0

αi

hβs

En−ixn−i−
k∑

i=s+1

βi

βs

Wn−i−E ′
n−sxn−s

)
= 0,

g
(
tn, xn, φx

h(tn − τ)
)
= 0.

(32)

We obtain a nonlinear equation for unknown variable xn as follows

Hn

(
xn, xn−1, . . . , xn−k,Wn−2,Wn−3, . . . ,Wn−k, φx

h(tn − τ), φxh(tn−s − τ), h
)
= 0, (33)

where Jacobian matrix of Hn with respect to xn is

∂

∂xn

Hn

(
xn, xn−1, . . . , xn−k,Wn−2,Wn−3, . . . ,Wn−k, φx

h(tn − τ), φxh(tn−1 − τ), h
)

=

fw(tn−s, xn−s, φx
h(tn−s − τ),

k∑
i=0

αi

hβs
En−ixn−i −

k∑
i=s+1

βi

βs
Wn−i − E ′

n−sxn−s

)
En

gu
(
tn, xn, φx

h(tn − τ)
)
,

 ,

(34)

which is nonsingular provided that h is su�ciently small. Therefore, system (31) has
unique solution xn provided that h is su�ciently small and approximate values of x are
su�ciently close to the exact ones. Numerical solution xn of nonlinear equation (31) can
be approximated by Newton's iterative method. After that, approximation Wn−s that will
be used for the next step is computed by (30).

We note that the computational procedure should be implemented carefully. First,
we have to evaluate the starting values on each subinterval [lτ, (l + 1)τ ]. At time t = tn,
approximations φxh(tn−s−τ) and φxh(tn−τ) are interpolated by using approximate values
at mesh points close to tn−s − τ and tn − τ , respectively, provided that these node points
must belong to interval [(l − 1)τ, lτ ]. Therefore, formulas of interpolant φ depend on the
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concrete location of tn−s − τ and tn − τ , but they are assumed to have the same order. If
the underlying LM method is explicit (s ≥ 1), then scheme (31) for DDAEs (31) is called
half-explicit. Otherwise, it is said an implicit LM scheme for DDAEs (31).

In the following, we analyze the convergence of LM scheme (31).

Theorem 1. Consider well-conditioned IVP (3), (4) and k-step LM method, which is zero-
stable and of order km ≥ 2 for ODEs. We assume that interpolant φ is accurate of order
O(hka), ka ≥ 2. Then, k-step LM scheme (31) is convergent of order q = min(p, km, ka),
i.e.,

max
0≤n≤N

∥x(tn)− xn∥ = O(hq),

provided that the starting values are accurate to O(hq)

Proof. We use the method of steps and prove the convergence of LM method (31) on
each subinterval [lτ, (l + 1)τ ]. First, we consider interval [0, τ ] and time step tn (0 ≤
tk ≤ tn ≤ τ). We suppose that starting values x0, x1, . . . , xk−1, and W0,W1, . . . ,Wk−s−1

are accurate to O(hq). The retarded values are given by φ(tn−s − τ) = ϕ(tn−s − τ), and
φ(tn − τ) = ϕ(tn − τ). Therefore scheme (31) becomes

f
(
tn−s, xn−s, ϕ(tn−s − τ),

1

hβs

k∑
i=0

αiEn−ixn−i −
k∑

i=s+1

βi

βs

Wn−i − E ′
n−sxn−s

)
= 0,

g
(
tn, xn, ϕ(tn − τ)

)
= 0.

(35)

This is exactly LM method applied to DAE (7) that is analyzed in [15]. By [15, Theorem 4],
we conclude that scheme (31) is convergent of order q on [0, τ ], i.e., ∥x(tn)− xn∥ = O(hq)
for all 0 ≤ tn ≤ τ.

Next, we consider interval [lτ, (l+ 1)τ ] for l ≥ 1, and assume that approximates xi =
x(ti)+O(hq), (ti ≤ lτ) are given. We assume that starting values xml+1, xml+2, . . . , xml+k−1

and Wml+1,Wml+2, . . . ,Wml+k−s−1 are already given and accurate of order q, where tml
=

lτ. At time t = tn (ml + k ≤ n ≤ ml+1), from the assumption of interpolant φ, we have

φxh(tn − τ) = x(tn − τ) +O(hq), φxh(tn−s − τ) = x(tn−s − τ) +O(hq). (36)

Substituting (36) into system (31) yields

f
(
tn−s, xn−s, x(tn−s−τ) +O(hq),

1

hβs

k∑
i=0

αiEn−ixn−i−
k∑

i=s+1

βi

βs

Wn−i−E ′
n−sxn−s

)
= 0,

g
(
tn, xn, x(tn − τ) +O(hq)

)
= 0.

(37)

It follows that

hβsf
(
tn−s, xn−s, xl(tn−s−τ),

1

hβs

k∑
i=0

αiEn−ixn−i−
k∑

i=s+1

βi

βs

Wn−i−E ′
n−sxn−s

)
= δn,

g
(
tn, xn, xl(tn − τ)

)
= θn,

(38)

where δn = O(hq+1), θn = O(hq). This is exactly perturbed LM scheme applied to DAE
(7), whose analysis is already studied in [15]. Let us denote by {x̃n} the solution of following
(unperturbed) LM scheme applied to DAE (7)
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hβsf
(
tn−s, x̃n−s, xl(tn−s−τ),

1

hβs

k∑
i=0

αiEn−ix̃n−i−
k∑

i=s+1

βi

βs

W̃n−i−E ′
n−sx̃n−s

)
= 0,

g
(
tn, x̃n, xl(tn − τ)

)
= 0,

(39)

where the starting values are taken by exact values x(tml+1), x(tml+2), . . . , x(tml+k−1) and
W (tml+1),W (tml+2), . . . ,W (tml+k−s−1). By [15, Theorem 2], we conclude that

∥x̃n − xn∥ ≤ C max
ml≤i≤ml+k−1

∥x(ti)− xi∥+D max
ml≤i<ml+k−s−1

∥W (ti)−Wi∥+

+K max
ml+k≤i≤ml+1

∥δi/h∥+ L max
ml+k≤i≤ml+1

∥θi∥ = O(hq)
(40)

for all ml + k ≤ n ≤ ml+1, where C,D,K,L are constants independent of h. From [15,
Theorem 4], it follows that

∥x(tn)− x̃n∥ = O(hq) for all ml + k ≤ n ≤ ml+1.

By combining the above estimates, we have

∥x(tn)− xn∥ ≤ ∥x(tn)− x̃n∥+ ∥x̃n − xn∥ = O(hq) (41)

for all ml + k ≤ n ≤ ml+1. Therefore, we conclude that the global error of x on interval
[lτ, (l + 1)τ ] is O(hq). The analysis is repeated on successive interval [(l + 1)τ, (l + 2)τ ]
in the same way. Finally, by induction, we obtain the global convergence of scheme (31)
on interval [0, T ].

2
Remark 1. The implementation of LM methods is more complicated than in the non-
delay case because we must calculate starting values on each subinterval [lτ, (l+1)τ ]. This
extra cost can be reduced when the solution of IVP (3), (4) is su�ciently smooth globally
on [0, T ]. Then, LM scheme (31) is applied right from n = 1.

Furthermore, if we use a uniform mesh π∗ with stepsize h = τ
M
for some integerM ≥ 1,

then retarded values x(tn−τ) and x(tn−s−τ) are taken by xn−M and xn−M−s, respectively.
Therefore, LM scheme (31) is rewritten as

f
(
tn−s, xn−s, xn−M−s,

1

hβs

k∑
i=0

αiEn−ixn−i −
k∑

i=s+1

βi

βs

Wn−i − E ′
n−sxn−s

)
= 0,

g
(
tn, xn, xn−M

)
= 0.

(42)

We do not need to call any explicit interpolation at each step of the computation. It is
easy to verify that in this case LM method is convergent of order q = min(p, km).

Remark 2. For more general DDAEs of form

f
(
t, x(t), x(t− τ), x′(t)

)
= 0,

g
(
t, x(t), x(t− τ)

)
= 0,

(43)

direct discretization by LM methods can be realized analogously to the non-delay case that
is proposed and analyzed in [14]. However, for the stability of this direct discretization, an
extra condition is required, namely the second characteristic polynomial associated with
underlying LM method must be strictly stable, i.e. all their roots must lie inside the unit
complex disk. For example, among the popular classes of LM methods, Adams-Moulton
methods do not ful�ll this condition.
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3. Numerical Experiments

We consider again Example 1 with time-delay τ = 1. We �rst check the convergence of
the half-explicit two-step Adams�Bashforth (HEAB2) method that has already been used
in Section 1. System (21) is reformulated as follows(

x1(t)− ωtx2(t)
)′

= λx1(t)− λωtx2(t) + ax2(t− 1)− aeλ(t−1)

x1(t)− (1 + ωt)x2(t) = bx1(t− 1) + (c+ bω − bωt)x2(t− 1)− (b+ c)eλ(t−1).
(44)

Discretizing (44) by HEAB2 method on a uniform mesh and using 4-node forward Newton
interpolation, numerical results of two well-conditioned problems are displayed in Tables
1 and 2. Here, we compute actual errors ei(h) = max |xi(tn) − xi,n|, i = 1, 2 for various

step-sizes. The numerical convergence order is also estimated by rate = log2

(
ei(h)

ei(h/2)

)
.

The computations are implemented in Matlab. The second-order convergence of HEAB2
method is con�rmed in the case of well-conditioned IVPs. However, Figs. 2 and 4 in
Section 1 show that it is not the case with ill-conditioned problems, for which the errors
may grow very fast as time t is increasing.

Table 1

Numerical results for (21) on interval [0, 20] with λ = −1, 5, ω = 10, a = 0, 5, b = 1, c = 0, 8

HEAB2 method
h = 0,03 Error in x1 Rate in x1 Error in x2 Rate in x2

h 6,9380e-03 � 3,4484e-04 �
h/2 1,7201e-03 2,0120 8,5222e-05 2,0166
h/4 4,2736e-04 2,0090 2,1173e-05 2,0090
h/8 1,0650e-04 2,0047 5,2760e-06 2,0047
h/16 2,6580e-05 2,0024 1,3168e-06 2,0024
h/32 6,6394e-06 2,0012 3,2893e-07 2,0012

Table 2

Numerical results for (21) on interval [0, 5] with λ = −2, ω = 1, a = −2, b = −1, 5, c = 1, 5

HEAB2 method
h = 0,03 Error in x1 Rate in x1 Error in x2 Rate in x2

h 9,7882e-04 � 5,7463e-04 �
h/2 2,4387e-04 2,0050 1,4062e-04 2,0308
h/4 6,0642e-05 2,0077 3,4811e-05 2,0142
h/8 1,5107e-05 2,0051 8,6617e-06 2,0068
h/16 3,7692e-06 2,0029 2,1604e-06 2,0033
h/32 9,4129e-07 2,0015 5,3949e-07 2,0016

We perform two other experiments with �rst well-conditioned problem (21). The
numerical results are obtained by 3-step HELM (HELM3) method and they are compared
with those by the standard HELM3 method (i.e. the direct discretization) in Table 3.
Here, the coe�cients of underlying 3-step explicit LM method are given by α0 = 1, α1 =
−1, α2 = α3 = 0, β0 = 0, β1 =

1
2
, β2 =

3
2
, β3 = −1. This method is of the second order and
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zero-stable. However, its second characteristic polynomial is not stable. Finally, we carry
out a similar experiment with well-known 2-step Adams-Moulton (AM2) method, which is
of the third order and whose second characteristic polynomial is not stable. The numerical
results are presented in Table 4. If it is necessary, for the approximation of retarded values,
4- and 5-node forward Newton interpolations can be used, respectively. It is clearly seen
that HELM3 method and AM2 method for (6) are convergent of the second order and third
order, respectively, but the direct discretizations based on the same underlying methods
fail, which veri�es the discussion in Remark 2.

Table 3

Numerical results for (21) on interval [0, 20] with λ = −1, 5, ω = 10, a = 0, 5, b = 1, c = 0, 8

HELM3 method Standard HELM3 method
h = 0,1 Error in x1 Rate in x1 Error in x1 Rate in x1

h 4,6970e-01 � 6,6845e+145 �
h/2 7,7009e-02 2,6086e 1,3742e+270
h/4 1,6818e-02 2,1950 7,2704e+305 Not
h/8 4,1021e-03 2,0356 1,9288e+305 convergent
h/16 1,0138e-03 2,0165 2,9598e+304
h/32 2,5205e-04 2,0080 9,1235e+303

h = 0,1 Error in x2 Rate in x2 Error in x2 Rate in x2

h 1,4985e-02 � 3,3256e+143
h/2 3,4649e-03 2,1126 6,8368e+267
h/4 8,3080e-04 2,0603 5,9109e+303 Not
h/8 2,0322e-04 2,0314 2,9392e+303 convergent
h/16 5,0236e-05 2,0163 8,5637e+302
h/32 1,2487e-05 2,0082 5,0164e+302

Table 4

Numerical results for (21) on interval [0, 20] with λ = −1, 5, ω = 10, a = 0, 5, b = 1, c = 0, 8

AM2 method Standard AM2 method
h = 0,1 Error in x1 Rate in x1 Error in x1 Rate in x1

h 1,2114e-03 � 1,7141e+125 �
h/2 1,4609e-04 3,0518 1,2302e+172
h/4 1,7941e-05 3,0256 3,5469e+266 Not
h/8 2,2271e-06 3,0100 1,1341e+305 convergent
h/16 2,7735e-07 3,0054 Inf
h/32 3,4612e-08 3,0024 Inf

h = 0,1 Error in x2 Rate in x2 Error in x2 Rate in x2

h 5,9310e-05 � 8,5280e+122 �
h/2 7,2103e-06 3,0402 6,1205e+169
h/4 8,8852e-07 3,0206 1,7646e+264 Not
h/8 1,1031e-07 3,0098 8,3234e+302 convergent
h/16 1,3741e-08 3,0050 Inf
h/32 1,7147e-09 3,0025 Inf
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Conclusion

In this work, we have analyzed the conditioning of IVPs for a class of structured
strangeness-free DDAEs with constant delay (3). Then, we have proposed LM methods
combined with interpolation for solving this class of DDAEs. Convergence of the numerical
methods have been established. The numerical experiments have con�rmed the theoretical
results.

There are numerous di�culties that arise in solving general DDAEs. From the analysis
and results of this paper, it seems that there are many interesting works in the future. First,
we should analyze the use of Runge�Kutta methods with continuous extension for DDAEs.
Secondly, we could extend the analysis of numerical methods for general strangeness-free
DDAEs with non-constant (time-varying, state-dependent) delay, which are much more
di�cult than the constant-delay case and would require more e�orts.
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ÀÍÀËÈÇ ÑÕÎÄÈÌÎÑÒÈ ËÈÍÅÉÍÛÕ ÌÍÎÃÎØÀÃÎÂÛÕ
ÌÅÒÎÄÎÂ ÄËß ÐÅØÅÍÈß ÎÄÍÎÃÎ ÊËÀÑÑÀ
ÄÈÔÔÅÐÅÍÖÈÀËÜÍÎ-ÀËÃÅÁÐÀÈ×ÅÑÊÈÕ ÓÐÀÂÍÅÍÈÉ

Âó Õîàíã Ëèíü1, Íãóåí Äóé Òðóîíã2, Ì.Â. Áóëàòîâ3

1Íàöèîíàëüíûé óíèâåðñèòåò Âüåòíàìà, ã. Õàíîé, Âüåòíàì
2Óíèâåðñèòåò Òðàí ×îê Òóàí, ã. Õàíîé, Âüåòíàì
3Èíñòèòóò äèíàìèêè ñèñòåì è òåîðèè óïðàâëåíèÿ èì. Â.Ì. Ìàòðîñîâà ÑÎ ÐÀÍ,
ã. Èðêóòñê, Ðîññèéñêàÿ Ôåäåðàöèÿ

Äèôôåðåíöèàëüíî-àëãåáðàè÷åñêèå óðàâíåíèÿ (ÄÀÓ) ñ çàïàçäûâàíèÿìè èñïîëüçó-

þòñÿ äëÿ ìîäåëèðîâàíèÿ ðåàëüíûõ ÿâëåíèé, â êîòîðûõ ìîãóò îäíîâðåìåííî ïðèñóò-

ñòâîâàòü îãðàíè÷åíèÿ è çàïàçäûâàíèÿ. Èçâåñòíî òàêæå, ÷òî ðåøåíèå ÄÀÓ ñ çàïàçäû-

âàíèÿìè ÿâëÿåòñÿ áîëåå ñëîæíîé çàäà÷åé, ÷åì ðåøåíèå ÄÀÓ áåç çàïàçäûâàíèé, ò.ê.

â ñëó÷àå ñ çàïàçäûâàíèÿìè îáû÷íî òðåáóåòñÿ ïðèáëèæåíèå ðåøåíèé íà ïðåäûäóùèõ

âðåìåííûõ îòðåçêàõ è ÷àñòî ìîæíî íàáëþäàòü ðàçðûâ ó ñòàðøèõ ïðîèçâîäíûõ ðå-

øåíèé. Â ïîñëåäíåå âðåìÿ íàìè áûëè ïðåäëîæåíû ëèíåéíûå ìíîãîøàãîâûå ìåòîäû
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ðåøåíèÿ äëÿ ÄÀÓ íèçêîãî èíäåêñà áåç çàïàçäûâàíèÿ. Â äàííîé ðàáîòå ìû ðàñøèðèëè
ïðèìåíåíèå ðàçðàáîòàííûõ ìåòîäîâ è èñïîëüçóåì èõ äëÿ ðåøåíèÿ ÄÀÓ âûñîêîãî èí-
äåêñà ñ ïîñòîÿííûì çàïàçäûâàíèåì. Äëÿ àïïðîêñèìàöèè ðåøåíèé ïðè çàïàçäûâàíèè
èñïîëüçóåòñÿ ïîëèíîìèàëüíàÿ èíòåðïîëÿöèÿ. Ïðåäñòàâëåí àíàëèç ñõîäèìîñòè ëèíåé-
íûõ ìíîãîøàãîâûõ ìåòîäîâ. Ïîêàçàíî, ÷òî, êàê è â ñëó÷àå îòñóòñòâèÿ çàïàçäûâàíèÿ,
åñëè âìåñòî èñõîäíîãî ÄÀÓ ñ çàïàçäûâàíèåì ìû äèñêðåòèçèðóåì îñîáûì îáðàçîì ïåðå-
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