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Delay differential-algebraic equations (DDAEs) can be used for modelling real-life
phenomena that involve simultaneously time-delay effect and constraints. It is also known
that solving delay DAEs is more complicated than solving non-delay ones because
approximation of solutions in the past time is usually needed and discontinuity in higher
derivatives of the solutions is typical. Recently, we have proposed and investigated linear
multistep (LM) methods for strangeness-free DAEs (without delay). In this paper, we
extend the use of LM methods to a class of structured strangeness-free DAEs with constant
delay. For the approximation of solutions at delayed time we use polynomial interpolation.
Convergence analysis for LM methods is presented. It is shown that, similarly to the non-
delay case, the strict stability of the second characteristic polynomial associated with the
methods is not required for the convergence if we discretize an appropriately reformulated
DDAE instead of the original one. Numerical experiments are also given for illustration.

Keywords: delay differential-algebraic equation; strangeness-free; linear multistep
method; stability; convergence.
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Introduction

Delay differential-algebraic equations (DDAEs) arise as mathematical models of
real-life processes in which time lag and constraints simultaneously appear. Areas of
applications include electrical circuit design, real-time simulation of mechanical systems,
chemical engineering, power systems, control and optimal control, etc, see [1-4]. While the
theory and numerical analysis of delay (ordinary) differential equations (DDEs) as well
as those of DAEs (without delay) have been fairly well established, see [2,5,6] and [7-9],
respectively, the same cannot be said in the case of delay DAEs which analytical and
numerical solutions have not been completely understood yet. Even the solvability of
general linear delay DAEs has been investigated only very recently in [3,10]. Very few
papers have been devoted to the convergence analysis of numerical methods for delay DAEs
and most of them are restricted to consideration of delay DAEs in semi-explicit form and
implicit numerical schemes. In [11], Ascher and Petzold investigated BDF and collocation
Runge-Kutta methods for semi-explicit DDAEs of retarded and neutral type with single
delay. Later, Hauber extended the use of collocation methods to retarded DDAEs of
index two with state-dependent delay [12]|. Liu and Xiao studied the convergence of linear
multistep and one-leg methods for semi-explicit index 2 DDAEs with variable delay [13].
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Difficulties that arise in solving DDAEs were discussed in |1, 2,4|. It was pointed out
that in general DDAEs are neither DAEs nor DDEs. However, under certain appropriate
conditions, a DDAE may be reduced to a DDE of retarded or neutral type [1].

Recently, in [3,10] Ha et.al. investigated general linear variable coefficient DDAEs with
constant delay

E(t)z'(t) = A(t)x(t) + B(t)z(t — 7) + (1), (1)

which may arise, for example, as the result of linearizing general DDAE
F(t, x'(t), x(t), x(t—T)) = 0 around a reference trajectory. They proposed an algorithm for
regularization of DDAE (1), i.e. a procedure that reduces the original system to a regular
strangeness-free DDAE of form

~ A

[El 0@)] (1) = [ﬁm o) + [gg] o= )30 o

where [ Algti] is pointwise invertible. Then, it was also shown that s-stage collocation
2

methods can be implemented for (2) and they are convergent of order at least s.
In this paper, we consider a more general class of nonlinear structured DDAEs of form

fta(t),«(t — 1), E(t)a'(t)) = 0,

g(t,z(t),z(t—7)) =0

forall t € I = [0, T], 7 > 0 is a constant delay, which clearly includes DDAEs (2)

as a special case. Here we assume that £ € CY(I,R™™) and functions f(¢,u,v,w) :

IxR™ xR™ xR™ — R™  g(t,u,v) : [ x R™ x R™ — R™2 m; +my = m are sufficiently
smooth functions with bounded partial derivatives. Given initial condition

z(t) = ¢(t) for te[-7,0], (4)

(3)

we suppose that initial value problem (IVP) (3), (4) has unique solution z(t). Here, x is
said to be a solution if the followings hold: (i) It is continuous and piecewise continuously
differentiable on I; (ii) It satisfies DDAE (3) for ¢ € I pointwise except for a finite number of
discontinuity points as well as initial condition (4). In this paper, we assume that Jacobian

{wa (t)

g } is nonsingular (5)

along reference solution z(t). Then, nonlinear DDAE (3) is said to be strangeness-free
(in a sufficiently small neighbourhood of z) [9]. Semi-explicit DDAEs of index one that
are considered in [1,4, 11| are obviously only a special case of (3). For solvability, initial
function ¢ must be consistent, that is ¢(0,$(0),¢(—7)) = 0 and ¢ € C([—7,0,R™) at
least.

The main aim of this paper is to extend the use of linear multistep methods that are
proposed for non-delay DAEs in [14, 15] to DDAEs (3). Similarly to the approach used
in [15-17], instead of direct discretization, numerical schemes are applied to reformulated
form

ft (), =t — 1), (Ex)(t) — E'(t)x(t))
g(t, x(t), x(t — 7‘)) =
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In the implementation, approximation of numerical solutions at retarded time may be
needed and it is done by using interpolation or continuous extension. The linear multistep
methods proposed in this paper provide an alternative approach in addition to the existing
BDF and collocation methods. Moreover, discretizations based on explicit methods require
less computational cost than implicit ones in the case of large-sized and nonstiff problems.

The organization of the paper is as follows. In Section 1, we present some preliminary
results including the method of steps and the analysis of DDAEs (3) by using
transformation and reduction. Construction and convergence analysis of linear multistep
(LM) methods combined with polynomial interpolation are given in Section 2. In Section 3,
some numerical experiments are carried out to illustrate the theoretical results in previous
sections. We close the paper by conclusions in Section 4.

1. Preliminary

1.1. Method of Steps

For DDEs with constant delay, the method of steps is a standard tool to investigate
analytical as well as numerical solutions [5|. Analogously, this method can be extended to
the analysis of DDAEs. Here IVP (6), (4) is replaced by a sequence of the IVPs on the
time intervals [T, (I + 1)7] for nonnegative integer [ provided that x is known on interval
[(I—1)7, I7]. Therefore, we obtain a sequence of "local" IVPs for non-delay strangeness-free
DAEs of the form

taa(t), z(t — 1), (Exp1)' (t) — E' ()2 (t)) =0,
(b (@ mlt = 1), B ()~ FOna®) =0, 0
g(t, T (), (t — T)) =0,
together with initial conditions
$l+1(l7') :l’l(lT), l:O,l, (8)

For | = 0, we define zo(t) = ¢(t —7), 0 <t < 7. Assuming that all the initial conditions
are consistent, i.e. g(I7, z(I7),z;((I — 1)7)) = 0, the solvability of IVPs (7), (8) for all
[ =0,1,..., implies the solvability of original IVP (6), (4). Then, we set

x(t) =xq(t) fte(lr,((+1)7], I=0,1,....

Clearly, the "global" solution z(t) is continuous and piecewise continuously differentiable.
At the connecting points /7, discontinuity in the first or higher derivatives of x is typical.
For both DDEs and DDAEs with a single constant delay 7, the discontinuity happens
at points (7,0l = 0,1,..., see [1]. Moreover, the existence, uniqueness and smoothness of
solutions depend on given initial function ¢(¢). Throughout this paper, we assume that
initial function ¢(t) is consistent and sufficiently smooth such that the unique solution of
IVP (3)—(4) is continuous on [0, 7] and sufficiently smooth on each subinterval [I7, (I4+1)7].

1.2. Reformulation and Conditioning

Conditioning analysis of semi-explicit DAEs of index less or equal to two was considered
first in [18]. Then, the authours extended the analysis to semi-explicit DDAESs of retarded
and neutral type with single delay in [11]|. They showed that a semi-explicit DDAE of index
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1 is well conditioned when the essential-underlying-delay ODE (EUDODE) associated with
the DDAE is well conditioned. For implicit DDAEs like (3) or even more general ones, the
difficulty relies in the definition of EUDODE and the classification of the problem because
differential and algebraic variables are not separated as in the case of semi-explicit DDAESs.

Returning to the structured strangeness-free DDAEs (3), by the same approach
as in [15,17], the special structure of (3) is exploited to transform DDAEs (3) into
reformulated form (6) which are equivalent to semi-explicit index-1 DDAEs. By condition
(5), there exists a pointwise invertible matrix function Q(t) = [Q™W) Q®@)], where QW €
CHI,R™™), Q® ¢ CYI,R™™2), such that £Q = [I 0]. Thus, we can assert that

matrices f., gu.Q?, p are nonsingular. Using the change of variables + = Qy =

QWi +Q@yy, we have that (Ex) (£) = (EQu)(t) = v/ (¢). Therefore, system (6) becomes
F(tQWy(1), Q(t — T)y(t — ), 41 (t) — E'(1)Q(t)y(t)) =0,
g(t, Q)y(1), Q(t — 7)y(t — 7)) = 0.

By the Implicit Function Theorem, there exists a function f such that from the first
equation of (9), we have

i (t) = E'(0)Q)y(t) = f(t,y1(t), y2(1), yu(t = 7). 9a(t — 7). (10)

Then, the system (9) is rewritten as

yi(t) = f(t y1(t), y2(t), y1(t — 1), 42t — 7)),
0 =gty (t), y2(t), 11(t — 7),9(t — 7)),

where f(t,y1(t),12(t), 11 (t — 7), yz(t - 7)) = f(t,n(t ) o), 1t — 7), 2t — 7)) +
E'({t)Q)y(t), §(t y1(t), y2 (), y1(t=7), y2(t=7)) = g(t, Q(¢) ( ), Q(t=7)y(t—7)). It is easy
to check that 5 (t) = ¢,Q® which is nonsingular. Hence, system (11) is a semi-explicit
index-1 DDAE of retarded or neutral type that is analyzed in [11]. All the discussions on
the conditioning of the IVPs for (11) that was studied in [11] can be applied. Again by
the Implicit Function Theorem, there exists a function g such that the algebraic variable
of (11) is expressed in the form

y2(t) = g(t y1(), pa(t — 7), 9ot — 7). (12)

(9)

(11)

We consider two cases.
a) If yo(t — 7) does not appear in the second equation (11), then the equation (12)
becomes

ya(t) = g(t, n (), 31 (t — 7). (13)
Similarly, at time ¢ — 7, we also have
yo(t — 1) :Q(t—T,yl(t—T),yl(t—QT)). (14)
Inserting (13), (14) into the first equation (11), we obtain a DODE of retarded type

yy(t) = f(tayl(t)vg(tayl(t>7yl(t =), u(t—7),9(t — Tt —7), 01 (t — 27))>7 (15)
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which can be also written by renotation as

yi(t) = f(t,yl(t), yi(t —7),y1(t — 27)). (16)

The DDAE (3) is well conditioned (in the sense that its solutions are not too sensitive
to small changes in the initial function) if EUDODE (16) is well conditioned and
transformation () is well conditioned.

b) In the general case, we have to propagate the recursion in (12) back from t to t —I7,
where —7 <t —I7 <0, i.e. t € [IT,(l 4+ 1)7] is assumed. For simplicity, we suppose that
linearization is applied, equation (12) is written in the form

y2(t) = g(t,y1(8), y1(t — 7)) + R(t)ya(t — 7), (17)

where R(t) = —(qu(Q)(t))_lng(Q) (t — 7). This gives

i) = [ TL 8~ 7]t — 1)+
-1 -1 =0 (18)
3 TTRE = 7)ot = imn(t = i)t = i7 = 7).
A similar formula holds
nlt—7) = [T Rtt—im)]wmle—17)+
-1 —1 o (19)
#30 | TTRM=5m)a(t—im(t=im) ys (b =i 7).

Substituting (18), (19) into the first equation (11), we also get DODE with [ lags

() =F (L (t), i1t — 1), (t = 27), .. yn(t = 17),9a(t — I7)), (20)

which is actually DDE of a neutral type. The well-conditioning of DDAEs (11) depends
not only on this DODE but also on factor R. If sup,~, ||R(¢)|| < 1, @ is well-conditioned,
and DODE (20) is well conditioned, then DDAE (11) is well-conditioned, too.

The above analysis is demonstrated in the following example.

Example 1. We consider strangeness-free DDAE with constant delay 7 > 0 of form
I —wt| v A w(l—=A)
{0 0 } () = {—1 (1+wt) ] z(0)+
0 4 2eAE=T) (21)
+ [b c—bw(t—r7) ot —7) - {(b + c)ek(tf)]

on interval [0, T'| with real parameters a, b, ¢, w, A. System (21) possesses analytical solution

[
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provided that the initial function is given equal to the exact solution for all —7 <t < 0.

If we take Q(t) = [(1) aﬂ, using the change of variables z(t) = Q(t)y(t) system (21)
becomes
o o= |4 o) Jue-n-] i) e
where y(t) = [y1(t), y2(t)]?. System (22) is rewritten as
Y () = A (t) + aya(t — 7) — a7, (23)
Yo(t) = —cya(t — 7) + yi(t) — bya(t — 7) + (b + c)e? 7.
If ¢ = 0, we obtain algebraic constraint
ya(t) = yi(t) = by (t = 7) + (b + )7,
and DODE of retarded type with two lags
Yi(t) = My (t) + ayy (t — 7) — abyy (t — 27) — a(b+ ¢ — 1)eM7), (24)

If DODE (24) is well conditioned and wT is of moderate size, then DDAE (21) is well
conditioned, too. This property depends on the choice of parameters A, a and b.
If ¢ # 0, the second equation (23) leads to

Yo (t) = cya(t — 1) + H(t,yi(t),yi(t = 7), ..., 51t — 7)), (25)
where H is an appropriately defined function and —7 <t — 7 < 0. Then, we also have
Yot — 7) = ot — I7) + H(t — 7t —7),y1(t —27), ...,y (t — lT)). (26)
Substituting (26) into the first equation (23), we obtain DODE with [ lags
yi(t) = Myi(t) + ﬁ(t, y1(t —71),y1(t —27), ..., y1(t — lT)) + ac T lyy(t — I7), (27)

which is actually neutral DODE. Therefore, we say that DDAE (21) is of neutral type. If
EUDODE (27) is well conditioned, the time interval is not too large and the constant ¢
satisfying |c| < 1 or |¢| > 1, but of moderate size, then problem (21) is well conditioned.
Fig. 1 shows actual errors, the exact solution (Exact. Sol) and a numerical solutions (Num.
Sol) of well-conditioned problem (21) with time-delay 7 = 1 and parameter set A =
—1,5,w = 10,a = 0,5,b = 1,¢ = 0,8. The results of ill-conditioned problem (21) with
time-delay 7 = 1 and parameter set A = —1,5,w = 10,a = —2,b = 1,5,¢ = 1,2 are
plotted in Fig. 2. For both problems, time interval [0, 20] is used.

For retarded DDAE (21) with 7 = 1, the results of well-conditioned problem with A\ =
—l,w=1,a=—-1,b=1,5,¢c= 0 on time interval ¢ € [0, 10] are plotted in Fig. 3. It should
be noted that a small delay might make a well-conditioned problem be ill-conditioned. This
is demonstrated in Fig. 4 for problem (21) with A = —l,w =1,a = -1,b=1,5,c =0
and 7 =0,2.

For the above illustrations, the numerical solutions are computed by 2-step half-explicit
Adams—Bashforth (HEAB2) method, which is presented in the next section.
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Fig. 2. Numerical results for ill-conditioned problem (21)

2. Linear Multistep Methods

In this section, we construct and analyze half-explicit linear multistep (HELM)
methods for reformulated DDAEs (6). Consider linear multistep (LM) method which
coefficients «y, 5;, (i = 0,1,...,k) satisfy ap # 0 and 35 # 0, where (5 denotes the first
non-zero coefficient among [;-s. If s = 0, then the method is said implicit. Otherwise, it
is explicit. LM scheme applied to TVP for ODEs

y'(t) = x(t,y),

y(to) = vo, (28)

is proposed as follows
k k
Z ilYn—i = h Z Bix(tn—is Yn—i)- (29)
i=0 i=s
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Construction and numerical analysis (order, zero-stability, convergence) of linear multistep
methods for ODEs are given in details in numerous books, e.g., see [7,19].

We assume that the unique solution of IVP (3), (4) is continuous on [0, T], p-
times continuously differentiable and (p + 1)-th derivative is bounded on each subinterval
[T, (I41)7]. This means that at points [T higher derivatives of the solution may not exist.
Assuming w.l.g that the length of integration interval 7" is multiple of 7, we introduce a
mesh m = {0 =1ty <t < ... <ty =T} which include all "discontinuity points" [7. The
mesh is not necessarily uniform, but just for the sake of simplicity we assume that a uniform
mesh with stepsize h is used. It is possible to extend the construction of LM schemes and
their analysis to the case of variable stepsize. Let us denote by x,, W, the approximations
of exact solution xz(t,) and derivative W (t,) := (Fz)'(t,). Suppose that approximate
solution obtained at the mesh points of 7 is denoted by z”. For implementation, we will
solve numerically IVP (3), (4) on successive intervals [I7, (I + 1)7] for any nonnegative
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integer . At time step t = t,, (I7 < t,_x < t, < (I + 1)7), we assume that previous
approximations T,_1,Tp—2,...,Tn_, and Wy, _o W), _5 ... W, _, are given. Moreover, we
need to approximate the values of x at retarded times ¢, — 7 and t,_y — 7 which may
not be mesh points (for example, if the mesh is not uniform). If [ = 0 then those values
are given by the initial function. Otherwise, they are approximated by local interpolant ¢
through values of # at mesh points.

From equation (29), we have

n s — hﬂlzaz n—iLln—i Z _Wn ) (30)

where FE,_; = E(t,—;). A LM scheme applied to reformulated DDAEs (6) is proposed as
follows

f(tn_s, Tr_gy T (tn_s — hﬂ Z By i, 12821 — E/n_sxn_s> =0, (31)
g(tn, T, 02" (L — T)) =0,
here F',,_ = E'(t,_s). System (31) is equivalent to
iy (tn_s, Trsy " (s =), zk: Eritni— Z n_sxn_s> =0,
g hps B (32)

g(tn,zn,gm (t, — 7')) 0.
We obtain a nonlinear equation for unknown variable x,, as follows

Hy (T, o1, oy Tngos Woeo, Wogy oo, Wag, 02ty — 7), 02" (ts — 7), h) =0, (33)

where Jacobian matrix of H, with respect to z,, is

0
a_Hn (xny Lp—15+-+Ln—k, Wn—27 Wn—37 ) Wn—k7 prh(tn - 7—)7 Qoxh(tn—l - 7_)7 h)
T,
k 4
o fw( n—s; Ln—s, PT ( - ) Z n iln—i — E %ani_E,nfsxnfs>En (3 )
= i=s+1 """ )

Ju (tna Ly QOxh(tn - T))7

which is nonsingular provided that h is sufficiently small. Therefore, system (31) has
unique solution x,, provided that h is sufficiently small and approximate values of = are
sufficiently close to the exact ones. Numerical solution z,, of nonlinear equation (31) can
be approximated by Newton’s iterative method. After that, approximation W,,_, that will
be used for the next step is computed by (30).

We note that the computational procedure should be implemented carefully. First,
we have to evaluate the starting values on each subinterval [I7, (I 4+ 1)7]. At time ¢ = t,,
approximations " (t,_,—7) and pz"(t,—7) are interpolated by using approximate values
at mesh points close to t,,_s — 7 and t,, — 7, respectively, provided that these node points
must belong to interval [(I — 1)7, I7]. Therefore, formulas of interpolant ¢ depend on the
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concrete location of ¢,,_s — 7 and ¢, — 7, but they are assumed to have the same order. If
the underlying LM method is explicit (s > 1), then scheme (31) for DDAEs (31) is called
half-explicit. Otherwise, it is said an implicit LM scheme for DDAEs (31).

In the following, we analyze the convergence of LM scheme (31).

Theorem 1. Consider well-conditioned IVP (3), (4) and k-step LM method, which is zero-
stable and of order k,, > 2 for ODFEs. We assume that interpolant ¢ is accurate of order
O(h*e), k, > 2. Then, k-step LM scheme (31) is convergent of order q = min(p, ky,, kq),
1.€.,

max ||z(t,) — .| = O(h?),

0<n<N

provided that the starting values are accurate to O(h?)

Proof. We use the method of steps and prove the convergence of LM method (31) on
each subinterval [T, (I + 1)7]. First, we consider interval [0, 7] and time step ¢, (0 <
ty < t, < 7). We suppose that starting values zg,z1,...,2x_1, and Wo, Wy, ... , Wy_s 1
are accurate to O(h?). The retarded values are given by ¢(t,_s — 7) = ¢(t,—s — 7), and
o(t, — 7) = ¢(t,, — 7). Therefore scheme (31) becomes

f(tn*én Tn—s, Qb(tnfs - T); 0,

h

Z OéiEnfixnfi - _Zani - E/nfsxnfs>
3, 2 (35)

i=s+1 Bs

g(tmxm (b(tn - 7')) =0.

This is exactly LM method applied to DAE (7) that is analyzed in [15]. By [15, Theorem 4|,
we conclude that scheme (31) is convergent of order ¢ on [0, 7|, i.e., ||z(t,) — z,|| = O(h?)
forall 0 <t¢, <.

Next, we consider interval [I7, (I + 1)7| for [ > 1, and assume that approximates z; =
z(t;)+O(h9), (t; <lr) are given. We assume that starting values &, 11, Tmy+2; - - - » Ty k-1
and Wiy, 41, Wi, 42, ..., Wi, 41—s—1 are already given and accurate of order ¢, where ¢, =
IT. At time t = t,, (m; + k < n < my;1), from the assumption of interpolant ¢, we have

ox"(t, — 1) = x(t, — 7) + O(RY), @a"(t,_ s —7) = 2(t,_s —7) + O(hY). (36)

Substituting (36) into system (31) yields

k k
1 Bi

f tn—saxn—sax tn—s_T + O(h1 Y7 o CYiEn_¢$n_¢— _Wn—i_Eln—sxn—s = 07
( ( ) ( ) hﬂs ; 1‘:5+1 /BS > (37)

9(tn, Tn, 2(tn — 7) + O(h?)) = 0.

It follows that
1 < K B;
hﬁs (tnfs, Lrs, ¥ tnfS_T 1A OélEnﬂ'xn%_ _ZWn—i_E/nfsxnfs) - 5717

f i ) hp, ; v B, (38)

g<tn7 Tn, :Ul(tn - T)) = eny

where 6, = O(h4*1), 6, = O(h9). This is exactly perturbed LM scheme applied to DAE
(7), whose analysis is already studied in [15]. Let us denote by {Z,,} the solution of following
(unperturbed) LM scheme applied to DAE (7)
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h’ S (tn—m fTL—S) X tTL—S al —vrn—z 7L—’L TL—S%/TL—S> - 07
Bf i )\ Z Z (39)

= s+1
g(tna L, xl<tn - 7—)) - 07
where the starting values are taken by exact values ©(tm,+1), Z(tm;+2)s - - - s ©(tmy+x—1) and
W (tmy+1), W(tm42)s - s W(tm,+k—s—1). By [15, Theorem 2|, we conclude that
[Zp — 2| <€ max  |la(t) —zil|+D max [[W(t) — Wil|+
my<i<m;+k—1 my<i<mj+k—s—1 (40)
+ K max  ||&/h||+ L max  ||6;|| = O(h?)
my+k<i<myq my+k<i<my

for all m; +k < n < myyq, where C,D, K, L are constants independent of h. From [15,
Theorem 4], it follows that

|z(t,) — Znl| = O(R?)  for all m; +k < n < my4;.
By combining the above estimates, we have
[2(tn) = @nll < [J@(tn) = Znll + |20 — 2n]| = O(A) (41)

for all m; + k < n < myy,. Therefore, we conclude that the global error of z on interval
[I7, (14 1)7] is O(h9). The analysis is repeated on successive interval [(I + 1)1, (I + 2)7]
in the same way. Finally, by induction, we obtain the global convergence of scheme (31)

on interval [0, 7. -
Remark 1. The implementation of LM methods is more complicated than in the non-

delay case because we must calculate starting values on each subinterval [I7, (I+1)7]. This
extra cost can be reduced when the solution of IVP (3), (4) is sufficiently smooth globally
on [0, T']. Then, LM scheme (31) is applied right from n = 1.

Furthermore, if we use a uniform mesh 7* with stepsize h = {; for some integer M > 1,
then retarded values x(t, —7) and x(t,_s —7) are taken by x,,_»; and x,_ s, respectively.
Therefore, LM scheme (31) is rewritten as

k
1
tn—sa Tn—sy Tn—M—s5 7, aiEn—ixn A - Eln—sxn—s) = O’
at MR, z; Z (42)

1= s+1
g(tnwxnwxn—]\l) =0.

We do not need to call any explicit interpolation at each step of the computation. It is
easy to verify that in this case LM method is convergent of order ¢ = min(p, k,,).

Remark 2. For more general DDAEs of form

f(t,z(t),z(t —7),2'(t) =0,
g(t,l’(t),.’lf(t - 7_)) =0,

direct discretization by LM methods can be realized analogously to the non-delay case that
is proposed and analyzed in [14]. However, for the stability of this direct discretization, an
extra condition is required, namely the second characteristic polynomial associated with
underlying LM method must be strictly stable, i.e. all their roots must lie inside the unit
complex disk. For example, among the popular classes of LM methods, Adams-Moulton
methods do not fulfill this condition.

(43)
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3. Numerical Experiments

We consider again Example 1 with time-delay 7 = 1. We first check the convergence of
the half-explicit two-step Adams—Bashforth (HEAB2) method that has already been used
in Section 1. System (21) is reformulated as follows

(z1(t) — wtxg(t))’ = Az (t) — dwtzy(t) + axo(t — 1) — etV

z1(t) — (1 + wt)ze(t) = bzy(t — 1) + (¢ + bw — bwt)zo(t — 1) — (b + ) L. (44)

Discretizing (44) by HEAB2 method on a uniform mesh and using 4-node forward Newton
interpolation, numerical results of two well-conditioned problems are displayed in Tables
1 and 2. Here, we compute actual errors e;(h) = max|z;(t,) — x;,|, ¢ = 1,2 for various

step-sizes. The numerical convergence order is also estimated by rate = log, <ef(,(j})2)>
The computations are implemented in Matlab. The second-order convergence of HEAB2
method is confirmed in the case of well-conditioned IVPs. However, Figs. 2 and 4 in
Section 1 show that it is not the case with ill-conditioned problems, for which the errors

may grow very fast as time ¢ is increasing.

Table 1
Numerical results for (21) on interval [0,20] with A = —1,5,w = 10,a =0,5,b=1,¢ = 0,8

HEAB2 method
h = 0,03 | Error in z; | Rate in 27 | Error in x5 | Rate in x5
h 6,9380e-03 — 3,4484e-04 —

h/2 1,7201e-03 2,0120 8,5222e-05 2,0166
h/4 4,2736e-04 2,0090 2,1173e-05 2,0090
h/8 1,0650e-04 2,0047 5,2760e-06 2,0047
h/16 2,6580e-05 2,0024 1,3168e-06 2,0024
h/32 6,6394e-06 2,0012 3,2893e-07 2,0012

Table 2
Numerical results for (21) on interval [0,5] with A = —2,w =1,a = —=2,b=—1,5,c¢=1,5

HEAB2 method
h = 0,03 | Error in z; | Rate in x; | Error in x5 | Rate in x5
h 9,7882e-04 — 5,7463e-04 —

h/2 2,4387e-04 2,0050 1,4062e-04 2,0308
h/4 6,0642e-05 2,0077 3,4811e-05 2,0142
h/8 1,5107e-05 2,0051 8,6617e-06 2,0068
h/16 3,7692e-06 2,0029 2,1604e-06 2,0033
h/32 9,4129e-07 2,0015 5,3949e-07 2,0016

We perform two other experiments with first well-conditioned problem (21). The
numerical results are obtained by 3-step HELM (HELM3) method and they are compared
with those by the standard HELM3 method (i.e. the direct discretization) in Table 3.
Here, the coefficients of underlying 3-step explicit LM method are given by g = 1,1 =
—l,as=a3=0,6y =0, = %, By = %, B3 = —1. This method is of the second order and
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zero-stable. However, its second characteristic polynomial is not stable. Finally, we carry
out a similar experiment with well-known 2-step Adams-Moulton (AM2) method, which is
of the third order and whose second characteristic polynomial is not stable. The numerical
results are presented in Table 4. If it is necessary, for the approximation of retarded values,
4- and 5-node forward Newton interpolations can be used, respectively. It is clearly seen
that HELM3 method and AM2 method for (6) are convergent of the second order and third
order, respectively, but the direct discretizations based on the same underlying methods

fail, which verifies the discussion in Remark 2.
Table 3

Numerical results for (21) on interval [0,20] with A = —1,5,w =10,a =0,5,b=1,c¢=0,8

HELM3 method Standard HELM3 method
h = 0,1 | Error in z; | Rate in x; | Error in x; Rate in x;
h 4,6970e-01 - 6,6845e+145 -
h/2 7,7009e-02 2,6086e 1,3742e+270
h/4 1,6818e-02 2,1950 7,2704e+305 Not
h/8 4,1021e-03 2,0356 1,9288e+305 | convergent
h/16 1,0138e-03 2,0165 2,9598e+304
h/32 2,5205e-04 2,0080 9,1235e+303
h = 0,1 | Error in x5 | Rate in x5 | Error in x5 | Rate in 9
h 1,4985e-02 - 3,3256e+143
h/2 3,4649e-03 2,1126 6,8368e+267
h/4 8,3080e-04 2,0603 5,9109e+303 Not
h/8 2,0322¢-04 2,0314 2,9392e+303 | convergent
h/16 5,0236e-05 2,0163 8,5637e+302
h/32 1,2487e-05 2,0082 5,0164e+302

Table 4
Numerical results for (21) on interval [0,20] with A = —1,5,w =10,a =0,5,b=1,¢= 0,8

AM2 method Standard AM2 method
h = 0,1 | Error in x; | Rate in 1 | Error in x; | Rate in x;
h 1,2114e-03 - 1,7141e+125 —

h/2 1,4609e-04 3,0518 1,2302e+172
h/4 1,7941e-05 3,0256 3,5469e+266 Not
h/8 2,2271e-06 3,0100 1,1341e+305 | convergent

h/16 2,7735e-07 3,0054 Inf
h/32 3,4612e-08 3,0024 Inf
h = 0,1 | Error in x5 | Rate in x5 | Error in x5 | Rate in x5
h 5,9310e-05 - 8,5280e+122 —

h/2 7,2103e-06 3,0402 6,1205e+169
h/4 8,8852¢-07 3,0206 1,7646e+264 Not
h/8 1,1031e-07 3,0098 8,3234e+302 | convergent

h/16 1,3741e-08 3,0050 Inf
h/32 1,7147e-09 3,0025 Inf
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Conclusion

In this work, we have analyzed the conditioning of IVPs for a class of structured
strangeness-free DDAEs with constant delay (3). Then, we have proposed LM methods
combined with interpolation for solving this class of DDAEs. Convergence of the numerical
methods have been established. The numerical experiments have confirmed the theoretical
results.

There are numerous difficulties that arise in solving general DDAESs. From the analysis
and results of this paper, it seems that there are many interesting works in the future. First,
we should analyze the use of Runge-Kutta methods with continuous extension for DDAESs.
Secondly, we could extend the analysis of numerical methods for general strangeness-free
DDAEs with non-constant (time-varying, state-dependent) delay, which are much more
difficult than the constant-delay case and would require more efforts.
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AHAJIN3 CXOAMMOCTHU JIMHEMHBIX MHOT'OIITATOBBIX
METOA0B AJId PEITEHNA OOAHOTI'O KJIACCA
JIN®DOEPEHITNAJILBHO-AJITEBPANYECKUX YPABHEHUI

By Xoane Jlunv', Heyen Tyt Tpyone®’, M.B. Byaamos®

'Hamuonanpaslii yauBepcuTeT BheTnama, T. XaHoil, BreTHaM

2Vuusepcurer Tpan Yok Tyan, r. Xanoit, Boernam

SUnCTATYT IUHAMEKH CHCTeM U Teopmu ympasiaenus mM. B.M. Marpocosa CO PAT,
r. Upkyrck, Poccuiickas @egepaiius

Huddepenmmansro-anrebpandeckue ypasuenus (JIAY) ¢ 3ana3apBaHIsSIME UCTIOIB3Y-
0TCST JJI9 MOJETUPOBAHUS PEANBbHBIX SIBICHUM, B KOTOPBIX MOTYT OJHOBPEMEHHO MPUCYT-
CTBOBATH OTPAHUYEHUsT U 3ana3abiBanus. 3secTro Takxke, uro pernenue JTAY ¢ 3amasmbr-
BaHMAMU sABJIAeTCA Gojee CIOXKHON 3amaqeit, yem perienne JJAY Ge3 3anmazapiBaHuil, T.K.
B CJIyYae C 3aNa3bIBAHUSAME OOBIYHO TpeOyeTcs MPUO/IMKEHNe DENeHri HA MPeIbIIy X
BPEMEHHBIX OTPE3KAX M YaCTO MOXKHO HaOIIOMATh Pa3pbiB y CTAPIIUX MTPOU3BOMHBIX pe-
menunit. B mocsenree BpeMs HaMu ObLIM TIPEJIOYKEHBI JTHHEHHBIE MHOTOIIATOBBIE METOJIbI
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perenus s JIAY Hu3koro wHaekca 6e3 3amasapiBanus. B marnaoit paboTe Mbl pacuiupuin
npuMeHenne pa3paboTaHHBIX METO/OB M HCIOJIb3yeM ux Jyid peiienus JJAY BbICOKOro nn-
JIEKCa C MOCTOSTHHBIM 3amna3gbiBanueM. JIJIs anmpoKcuMaliuy permennii Tpyu 3ama3IbIBAHUN
WCIIONB3YeTCs TIOJIMHOMUAJIbHAST HHTEepNOAsdius. [IpeacTapiern aHagn3 CXOOUMOCTH JIMHEH-
HBIX MHOTOIIIATOBBIX MeTOM0B. [IoKa3aHo, 9To, KAK U B CIyYae OTCYTCTBUS 3aMa3/bIBAHNS,
ecsm BMecTo ucxomauoro JIAY ¢ 3anasapiBaHueM MbI IUCKPETH3UPyeM 0cobbiM 06pasoM mepe-
dopmynuposartoe JJAY, 10O 1j1d CXOIUMOCTH METOIOB He TPeOyeTcs cTporas yCToiYHBOCTDb
BTOPOTO XapaKTEPUCTUIECKOTO MHOTOUJIEHA, TOCTABIEHHOTO B COOTBETCTBUE UCTIOIB3YEMbIM
MeronaMm. Teoperndeckne BBIKIAIKN TPOULTIOCTPUPOBAHBI YACTEHHBIMU PACIETAMHY.
Karoweswe caosa: dupdepernyuarvro-aszebpoudeckue ypashenus ¢ 3ana3ovsanuem;

AUHEUHBLE MHO20UIG2068DLE Memodu; ycmoﬂ%ueocmb; CTOOUMOCTNID.
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