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Modelling of various natural and technical processes often results in systems that

comprise ordinary di�erential equations and algebraic equations This paper studies systems

of quasi-linear integral-di�erential equations with a singular matrix multiplying the higher

derivative of the desired vector-function. Such systems can be treated as di�erential

algebraic equations perturbed by the Volterra operators. We obtained solvability conditions

for such systems and their initial problems and consider possible ways of linearization for

them on the basis of the Newton method. Applications that arise in the area of thermal

engineering are discussed and as an example we consider a hydraulic circuit presented

as a system comprising an interconnected set of discrete components that transport

liquid. Numerical experiments that employed the implicit Euler scheme showed that the

mathematical model of the straight-through boiler with a turbine and a regeneration system

has a solution and this solution tends to the stationary mode preset by regulators.

Keywords: di�erential algebraic equations; Fredholm operator; Volterra operator; initial

problem; consistency problem; index.

1. Problem Statement and Auxiliary Information

Modelling of natural and technical processes often yields systems that comprise
ordinary di�erential equations (ODEs) of various order and algebraic equations (cf. [1�6]).
Their combination can be written in a form of quasi-linear vector ODEs with a singular
matrix multiplying the higher derivative of the desired vector-function

Λk(u)u := Â(u(k−1), · · · , u(1), u, t, λ)u(k) + B̂(u(k−1), · · · , u(1), u, t, λ) = 0,
k = 1, 2, · · · , (1)

where Â(gk−1, · · · , g1, g0, t, λ), B̂(gk−1, · · · , g1, g0, t, λ) are given (ν × n)-matrix and an ν-
dimensional vector-function, correspondingly, gk−1, · · · , g1, g0 ∈ Rn, t ∈ T = [α, β] ⊂
R1, u ≡ u(t) is n-dimensional vector-function u(i)(t) = (d/dt)iu(t), i = 1, 2, · · · , u(0)(t) =
u(t), λ is a scalar parameter, and matrix Â is such that

rank Â < min (n, ν) (2)

for all values of arguments from the domain. For the case of closed systems (ν = n), this
condition takes the form det Â = 0. Such systems are commonly referred to di�erential
algebraic equations (DAEs). If the process under study has a so-called aftere�ect, then
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the system may include integral equations. Therefore, in this work we focus our attention
on the systems with Volterra and Fredholm operators

Jk(u)u := A(u(k−1), · · ·, u(1), u, t,Vu,Ku, λ)u(k)+B(u(k−1), · · ·, u(1), u, t,Vu,Ku, λ) = 0, (3)

where A(gk−1, · · · , g1, g0, γ1, γ0, t, λ), B(gk−1, · · · , g1, g0, γ1, γ0, t, λ) are given (ν×n)-matrix
and an ν-dimensional vector-function, correspondingly, γ1, γ0,∈ Rn,

Vu =

t∫
α

K(t, s, u(s))ds, Ku =

β∫
α

K1(t, s, u(s))ds

are the Volterra and Fredholm operator, K, K1 : T ×T ×Rn → Rñ, and matrix Â is such
that

rank A < min(n, ν) (4)

for all values of arguments from the domain. Linear DAEs (1), (3) for n = ν have the
following form

Λkx :=
k∑

i=0

Ai(t)x
(i)(t) = f(t), t ∈ T, (5)

where Ai(t) are (n × n)-matrices, x(t) and f(t) are the desired and the given vector-
functions, correspondingly, x(i)(t) = (d/dt)ix(t), x(0)(t) = x(t),

(Λk + λV + µΦ)z :=
k∑

i=0

Ai(t)z
(i)(t) + λ

t∫
α

K(t, s)z(s)ds+ µ

β∫
α

K(t, s)z(s)ds = f(t), (6)

where λ, µ are scalar parameters (possibly, complex cones), K(t, s), K(t, s) are (n × n)-
matrices de�ne in T ×T , z(t) is the desired vector-function. As follows we assume that all
entries are smooth enough and that the following condition is satis�ed

detAk(t) = 0 ∀t ∈ T. (7)

DAEs with k = 1 have been fairly well studied (see the monographs [6�8] and the
bibliography listed therein). Any equation (5) can be reduced a �rst order DAE using
a change of variables. However, if k > 1, DAEs possess a number of interesting properties
that disappear after such reduction.

It is assumed that for each system (5), (6), a set of initial data is given

x(j)(α) = aj, z
(j)(α) = bj, (8)

where aj, bj are the given vectors from Rn.
By the solution to systems (5), (6) we understand any k−times di�erentiable on T

vector-functions x(t). z(t) that turn the systems under study into identity on T . If these
vector-functions are solutions and satisfy (8), then they are solutions to the corresponding
initial problems.

At present, there are available only a few works addressing higher order DAEs (cf. [9�
11]). To study (5), we will employ the tools and results that had been previously developed
for the �rst order DAEs.
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For the sake of simplicity, the dependence on t sometimes will be omitted, if does not
cause misunderstanding. Inclusions V (t) ∈ Ci(T ), i ≥ 1, where V (t) is a matrix or a
vector-function, mean that all its elements are di�erentiable on T up to the order i. The
continuity will be denoted as V (t) ∈ C(T ); symbol CA(T ) stands for the space of real
analytical matrices. Below, we will also employ denotation r[V (t)] = max{rank V (t), t ∈
T}.

Here we also use the norms of q-dimensional vector ζ = (ζ1, ζ2, ..., ζq)
⊤ ∈ Rq, and

vector-function ζ(t) = (ζ1(t), ζ2(t), ..., ζq(t))
⊤, t ∈ T , which are found by the following

rules

∥ζ∥2E =

q∑
j=1

ζ2j , ∥ζ∥I = max
j∈[1,··· ,q]

|ζj| , ∥ζ(t)∥2L2(T ) =

β∫
α

∥ζ(s)∥2E ds, ∥ζ(t)∥C(T ) = max
t∈T

∥ζ(t)∥I ,

where ⊤ stands for transposition.

De�nition 1. [7] The (n×m)-matrix M+(t) is said to be the pseudoinverse to (m× n)-
matrix M(t) if ∀t ∈ T

M(t)M+(t)M(t) =M(t), M+(t)M(t)M+(t) =M+(t),

(M+(t)M(t))⊤ =M+(t)M(t), (M(t)M+(t))⊤ =M(t)M+(t).

The pseudoinverse matrix is de�ned for any t ∈ T and for any (m × n)-matrix M(t)
and is unique. If M(t) is square and nonsigular, then M−1(t) = M+(t). Accodring to
[7], there exists M+(t) ∈ Cq(T ), if M ∈ Cq(T ) and rank M(t) = r = const ∀t ∈ T .
If rank M(t) ̸= const, t ∈ T , then at least one element of M+(t) has a second kind
discontinuity on T .

Below we will use the following operators

di[M ] =


M

(d/dt)M
· · ·

(d/dt)iM

 , Mi[M ] =


C0

0M 0 · · · 0
C0

1M
(1) C1

1M · · · 0
...

...
. . .

...
C0

iM
(i) C1

iM
(i−1) · · · Ci

iM

 , (9)

whereM ≡M(t) is some matrix fromCi(T ), Cj
i = j!(i−j)!/i! are the binomial coe�cients.

The operators are related by formula

Mi[M(t)F (t)] = Mi[M(t)]di[F (t)], (10)

where F (t) is some matrix of the appropriate size from Ci(T ). Formula (10) follows from
the Leibniz general rule.

2. Properties of Linear Systems

In this section we modify concepts that were introduced earlier in [10]. We single out
a class of DAEs, which solution properties are very much similar to those of normal form
ODEs.
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De�nition 2. Equation (5) has a Cauchy type solution if it is solvable for any f(t) ∈
Ckn(T ) and its solutions can be represented as a linear combination

x(t, c) = Xd(t)c+ ψ(t), (11)

where Xd(t) is an (n×d)-matrix from Ck(T ), with the property rank dk−1[Xd(t)] = d ∀t ∈
T, dk−1[.] is the operator from the formulas (9), c is an arbitrary constant vector, ψ(t) is the
vector-function with the property Λkψ(t) = f(t), t ∈ T. Additionally, on any subsegment
[α0, β0] ⊆ T there is no solution di�erent to x(t, c).

Solution x(t) that passes through point x(i)(γ) = ai, i = 0, k − 1, γ ∈ T, is unique if
there exists c such that dk−1[Xd(γ)]c = ā− dk−1[ψ(γ)], where ā = (a⊤1 a⊤2 ... a⊤k−1)

⊤. The
vector c always exists for normal form ODEs, because

d = nk, det dk−1[Xd(t)] ̸= 0 ∀t ∈ T .

De�nition 3. If there exists operator Ωl =
l∑

j=0

Lj(t)(d/d)
j, where Lj(t) are (n × n)

matrices from C(T ), such that Ωl ◦ Λky =
k∑

i=0

Ãi(t)y
(i)(t) ∀y(t) ∈ Cl+k(T ), where Ãi(t)

are some (n× n)-matrices from C(T ), i = 0, q, det Ãk(t) ̸= 0 ∀t ∈ T, then operator Ωl is
said to be the left regularizing operator (LRO) for the system (5). The smallest possible l
is said to be the index of the system.

De�nition 4. The combination of (5) and its i derivatives di[Λkx− f ] = 0, t ∈ T, where
di[.] is the operator de�ned by (9), is called i-extended system (5).

Using (10), i-extended system can be written as

Di[A(t)]di+k[x] =
k∑

j=0

(
Oj Mi[Aj(t)] Õj

)
di+k[x] = di[f(t)], (12)

where A =
(
Ak Ak−1 . . . A0

)
, Di[A(t)] is a [(i+1)n× (i+ k+1)n]-matrix, Oj, Õj are

zero blocks of dimension [(i+1)n× jn] and [(i+1)n× (k− j)n], j = 0, k, correspondingly.
In what follows, we will use splitting

Di[A(t)] =
(
B̃i(t) Γi[A(t)]

)
, (13)

where Γi[A(t)] is a block-triangular matrix with Ak(t) standing on the diagonal.
The concept of index is quite complex and can be approached in several ways (see,

for example, monographs [6�8] and references listed there). Here we employ the de�nition
that was introduced in [13] for index one DAEs and modify it for DAE (5).

De�nition 5. Assume that set of solutions X = {x ≡ x(t) : Λkx−f = 0, t ∈ T} to DAE
(5) is non-empty, and, starting with some natural number l, for any vector-function xε ≡
xε(t) : ∥dl−1[Λkxε − f ]∥L2(T ) < ε there exists solution x(t) ∈ X : ∥x(t)− xε(t)∥L2(T ) ≤ κε
where κ is some constant. Then, we say that DAE (5) is index l.

The similar notion but de�ned in Ci(T ) instead of L2(T ) is called perturbation index
[6, 8]. Below we give some results from [12].
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Theorem 1. Let

1) DAE Λkx = f, t ∈ T , be index l;

2) Ai(t) ∈ Cm(T ), i = 0, k, m = max{(k − 1)n+ r + 1, 2l}, r = r[Ak(t)].

Then,

1) there exists the Cauchy type solution and ϕ(t) from (11) has form

ψ(t)=

t∫
α

K(t, s)f(s)ds+
l−k∑
j=0

Cj(t)f
(j)(t), l ≥ k, ψ(t)=

t∫
α

K(t, s)f(s)ds, l < k, (14)

where K(t, s), Cj(t) are some (n× n)-matrices, t ∈ T, (t, s) ∈ T × T ;

2) if µ = 0 and l ≤ k, K(t, s) ∈ Cl(T × T ), system (6) is solvable for any λ and its
general solution has form

z(t, c) = Yd(t)c+ g(t), t ∈ T, (15)

where Yd(t) = (En+λV)Xd(t), g(t) = (En+λV)ψ(t), V is some Voletrra operator,
En is n-dimensional identity matrix;

3) if homogeneous DAE (5) has only zero solution (d = 0), then

x(t) = ψ(t) =
(
En 0 . . . 0

)
D+

l−k[A(t)]dl−k[f(t)] =
l−k∑
j=0

Cj(t)f
(j)(t);

4) starting with i = l, the following equalities hold

rank Γi[A(t)] = const, Γ+
i [A(t)]Γi[A(t)] =

(
En 0
0 Z22(t)

)
, t ∈ T,

where Z22(t) is some block of the appropriate dimension, and �rst n rows of matrix
Γ+
l [A(t)], split into (n× n)-blocks, can be taken as LRO coe�cients.

Lemma 1. Let
1) the Cauchy type solution x(t, c) ∈ Cm1(T ) to the DAE (5) be de�ned on T ;
2) Ak(t), Ak−1(t), . . . , A0(t) ∈ Cm2(T ), where m1 = (k − 1)n + r + 2, m2 = 2((k −

1)n+ r) + 3. Then, DAE (5) has an LRO on T .

Below we prove the following statement.

Theorem 2. Let
1) system (5) satisfy Theorem 1;
2) λ = 0 and K(t, s) ∈ Cl(T × T ) in (6).
Then, (6) is solvable for all µ, except maybe countable set {µi, i = 0, 1, 2, · · · }, and

its general solution with µ ̸= µi has the form

z(t, c) = Zd(t)c+ ϕ(t), t ∈ T, (16)

where Zd(t) = (En + µW)Xd(t), ϕ(t) = (En + µW)ψ(t), W is a Fredholm operator.

98 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2018, vol. 11, no. 4, pp. 94�109



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

Proof. Rewrite (6) for λ = 0: Λkz = −µΦz + f :
k∑

i=0

Ai(t)z
(i)(t) = w(t), t ∈ T, where

w(t) = −µ
β∫
α

K(t, s)z(s)ds+ f(t). Using (14) and (11), write down the expression:

z(t, c) = Xd(t)c+

t∫
α

K(t, s)w(s)ds+
l−k∑
j=0

Cj(t)w
(j)(t), t ∈ T. (17)

Due to the fact that the product of the Volterra and Fredholm operators is a Fredholm
operator, we obtain a system of second kind Fredholm equations

z(t) = µ

β∫
α

W (t, s)z(s)ds+ ν(t), (18)

where

β∫
α

W (t, s)z(s)ds =

t∫
α

K(t, s)

β∫
α

K(s, τ)z(τ)dτ

 ds+ l−k∑
j=0

β∫
α

Cj(t)[∂
jK(t, s)/∂tj]z(s)ds,

ν(t) = Xd(t)c+

t∫
α

K(t, s)f(s)ds+
k−1∑
j=0

Cj(t)f
(j)(t).

For system (18), except maybe countable set {µi, i = 0, 1, 2, · · · }, we can use the known
inversion formula [14]:

z(t) = (En + µW)ν(t) = ν(t) + µ

β∫
α

W̃ (t, s, µ)ν(s)ds, (19)

where W̃ (t, s, µ) is the resolvent kernel for (18). The validity of the statement follow from
(19).

2
Corollary 1. Let

1) Theorem 1 be satis�ed;
2) λ, µ ̸= 0, l ≤ k and K(t, s), K(t, s) ∈ Cl(T × T ) in (6).
Then, (6) is solvable for all µ, except maybe a countable set {µi, i = 0, 1, 2, · · · }, its

general solution has the following form for µ ̸= µi:

z(t, c) = Z̃d(t)c+ ϕ̃(t), t ∈ T, (20)

where Z̃d(t) = (En + µW̃)Xd(t), ϕ̃(t) = (En + µW̃)ψ(t), W̃ is some Fredholm operator.

Lemma 2. Let Theorem 1, Theorem 2 and Corollary 1 be satis�ed . Then, initial problems
(5), (6), (8), have solution x(t), y(t), z(t) ∈ Ck(T ), if and only if systems

dk−1[Xd(α)]c = dk−1[ψ(t)]− ā, dk−1[Zd(α)]c = dk−1[ϕ(t)]− b̄, dk−1[Z̃d(α)]c = dk−1[ϕ̃(t)]− b̄
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are solvable with respect to c, these solutions are unique, if the matrices that multiply c
have full rank. Here b̄ = (b⊤1 b⊤2 ... b⊤k−1)

⊤.

It is well-known that in practice we usually address not with ideal problem (6), (8),
but its perturbed version:

(Λk + λV + µΦ)z̃ = f̃ , t ∈ T, (21)

z̃(j)(α) = b̃j, j = 0, k − 1, (22)

where b̃j are the given vectors from Rn.

Theorem 3. Let
1) Corollary 1 be satis�ed;
2) problems (6), (8), and (21), (22) satisfy Lemma 2.
Then, the following estimates hold

∥v(t)∥C(T ) ≤ κ2 ∥c∥I + κ3 ∥φ(t)∥C(T ) , ∥v(t)∥2L2(T ) ≤ κ̃2 ∥c∥2E + κ̃3 ∥φ(t)∥2L2(T ) , (23)

where v(t) = z(t)− z̃(t), c =
(
[b̃0 − b0]

⊤ [b̃1 − b1]
⊤ · · · [b̃k−1 − bk−1]

⊤
)⊤
, φ(t) = f(t)−

f̃(t), κj, κ̃j are some positive constants, j = 2, 3.

Proof. Using (6), (8), (21), (22), we can write down the following initial problem

(Λk + λV + µΦ)v = φ(t), t ∈ T, v(j)(α) = bj − b̃j, j = 0, k − 1, (24)

where v ≡ y(t) = z(t)− z̃(t). By integrating the system from (24) k times, we obtain the
system of integral equations

(Ak +Θ+ λṼ + µΦ̃)v = h(t) +
k−1∑
j=0

(t− α)jcj, t ∈ T, (25)

where

Ak = Ak(t), Ṽ v =

t∫
α

ϖk−1(t− σ)k−1

 σ∫
α

K(σ, s)v(s)ds]dσ

 ,
Θv =

t∫
α

Q(t, s)v(s)ds, Φ̃v =

t∫
α

ϖk−1(t− σ)k−1

 β∫
α

K(σ, s)v(s)ds]dσ

 ,
Q(t, s) =

k−1∑
j=0

ϖj−1(t− s)jWj(s), h(t) =

t∫
α

ϖk−1(t− s)k−1φ(s)ds, s ∈ T,

Wj(s) are linear combinations of matrices Ak(t), Ak−1(t), . . . , A0(t) and their k derivaties,
cj are constant vectors in the form the linear combinations of initial data vj(α), j =

0, k − 1, ϖj = 1/j!, j ≥ 1. For example, if k = 2, then W0(s) = A1(s)−2A
(1)
2 (s), W1(s) =

A0(s) − A
(1)
1 (s) + A

(2)
2 (s), c0 = A2(α)v(α), c1 = A2(α)v

(1)(α) + [A1(α) − A
(1)
2 (α)]v(α).

Substitute ξj − ξ̃j into (25) instead of v(j)(α). We get

(Ak +Θ+ λṼ + µΦ̃)v = h(t) +H(t)c, t ∈ T, (26)
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where H(t) is (n × kn)-matrix with the polynomial elements depending on t. The
solution to (26) coincides with the solution to initial problem (24). Since the operations
of di�erentiation and integration are interchangeable, there exists operator Ω̃l =
l∑

j=0

L̃j(t)(d/d)
j, l ≤ k, where L̃j(t) are (n× n)-matrices from C(T ), with the property

Ω̃l[(Ak +Θ+ λṼ + µΦ̃)v] = (27)

= Ãk(t)v(t) +

t∫
0

Q̃(t, s)v(s)ds+ λΩ̃l ◦ Φv = Ω̃l[h(t) +H(t)c], t ∈ T,

where det Ãk(t) ̸= 0 ∀t ∈ T . In other words, Ω̃l is a version of LRO for operator Ak +Θ:
Ω̃l ◦ (Ak +Θ) = Ãk +Θ̃. System (27) is the system of the second kind Fredholm equations
with a continuous kernel and a continuous free term. According to [14], there exists the
Fredholm operator ΦR with a continuous kernel, such that v(t) = [En + ΦR]Ω̃l[h(t) +
H(t)c], t ∈ T . Trivial estimates and computations yield inequalities (23).

2

We should note that if l > k, the solution to (24) includes the derivatives of φ(t).
Therefore, there is always exists such vector-function f̃(t), that for the �xed initial data

∥φ(t)∥∗ < ε, ∥x(t)− x̃(t)∥∗ → ∞, ε→ 0,

where ∗ stands for one of the spaces: L2(T ) or C(T ).

3. Linearizartion of Nonlinear System

Models from applications are usually described by nonlinear DAEs and singular
systems quasi-linear integral di�erential equations. Consider some closed (n = ν) nonlinear
systems of form(3). Let there be given problem

Jk(u)u := A(u(k−1),· · ·, u(1), u, t,V1u,λ)u
(k)+B(u(k−1),· · ·, u(1), u, t,V2u,λ)=0, t ∈ T, (28)

u(j)(α) = aj, j = 0, k − 1, (29)

where Vi, i = 1, 2 are some sets of Volterra operators: Vi = {Vi,j, j = 1, 2, · · · qi}, matrix
A(.) and vector-function B(.) are de�ned on sets

U1 = {ξ : gk−1, · · · , g1, g0 ∈ Rn, γ1 ∈ Rñ1 , t ∈ T, λ ∈ [γ, δ] ⊂ R1},

U2 = {ς : gk−1, · · · , g1, g0, γ2, t, λ}, γ2 ∈ Rñ2 ,

Vi : ϖ = (t, s, g0) ∈ T × T × Rn. It is assumed that entries of (28) are su�ciently
smooth. There exist several approaches to the study of nonlinear DAEs. They are based
on the analysis of the matrix pencils structures, extended systems and application of the
techiniques from algebraic geometry (see, for example, [6�8,15,17,18]).

De�nition 6. The combination of (28) and its derivatives up to order i: di[Jk(u)u] =
0, t ∈ T, where di[.] is operator from (9), is said to be the i-extended system (28).
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De�nition 7. Let there exist operator

Ωl(υ) :=
l∑

j=0

Lj(t, υ, υ
(1), · · · , υ(m), V3υ, λ)(d/d)

j,

where Lj(ξ1) are some (n × n) smooth matrices from the domain, V3 is a set of Volterra
operators, ξ1 = (t, g0, · · · , g1, gm, γ3, λ), with property

Ωl(υ) ◦ Jk(υ)υ = Ã(υ(k−1), · · · , υ(1), υ, t, Ṽ1υ, λ)u
(k)+

+B̃(υ(k−1), · · · , υ(1), υ, t, Ṽ2υ, λ) ∀υ = υ(t, λ) ∈ Cmax{l,m}+k,0(T × [γ, δ]),

where Ã(ξ̃) is (n×n)-matrix, B̃(ς) is some vector-function, both continuous in the domain,
ξ̃ = (gk−1, · · · , g1, g0, γ̃1, t, λ), ς̃ = (gk−1, · · · , g1, g0, γ̃2, t, λ), Ṽi are some sets of Volterra
operators in initial point ξ̄ = (ak−1, · · · , a1, a0, 0, α, λ̄),

det Ã(ξ̄) ̸= 0.

Then, operator Ωl(υ) is said to be the left regularizing operator (LRO) for the system (29).
The smallest possible integer number max{l,m} is said to be index of (29).

Example 1. Let there be given two systems

J1(u)u =

(
u2 sin(V1u) 0

0 0

)(
u̇1
u̇2

)
+

(
u1 + eV2u − 1

u2

)
= 0, u =

(
u1
u2

)
, (30)

Ĵ1(u)u =

(
0 u2
0 0

)(
u̇1
u̇2

)
+

(
u1
u2

)
= 0, t ∈ T, (31)

where V1u =
t∫
α

(1 0)u(s)ds, V2u =
t∫
α

(0 1)u(s)ds. It is easy to verify that systems (30),

(31) have only a zero solution on an arbitrary subset T ⊂ R1. Trivial computations show
that quasi-linear operators

Ω1(u) =

(
0 − cos(V1u)u2u̇1 − sin(V1u)ü1
0 0

)
+

(
1 − sin(V1u)u̇1
0 1

)
d

dt
,

Ω̂1(u) =

(
0 −ü2
0 0

)
+

(
1 −u̇2
0 1

)
d

dt

are the LROs for the systems (30), (31), respectively, and

Ω1(u)1 ◦ J1(u)u =

(
u̇1 + u2V2ue

V2u

u̇2

)
,

Ω̂1(u)1 ◦ Ĵ1(u)u =

(
u̇1
u̇2

)
∀u ∈ C2(T ).

Therefore, according to De�nition 7, systems (30), (31) have index 2.

It is worth noting that it is common to di�erentiate algebraic relations when
solving applied problems. Id we do that to (30), we obtain a system with a matrix
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diag{u2 sin(V1u), 1} singular at initial point u(α) = 0. However, we can build an LRO
for (31). Here

Ω̂2(u) =

(
d

dt
0

0 1

)(
1 −u2
0 1

)(1 0

0
d

dt

)
=

(
0 −u̇2
0 1

)
d

dt
+

(
0 −u2
0 0

)(
d

dt

)2

.

De�ne the following neighbourhoods:

Z1 = {ξ : ∥ξ − ξ̄∥ ≤ ρ1 },
Z2 = {ς : ∥ς − ς̄∥ ≤ ρ1 },

Z3 = {ϖ : ∥ϖ − ϖ̄∥ ≤ ρ2 },

where ξ̄ = (ak−1, · · · , ā1, ā0, 0, α, λ̄), ς̄ = (ak−1, · · · , ā1, ā0, 0, α, λ̄), ϖ̄ = (α, α, a0) are the
initial points.

Theorem 4. Let the following conditions be satis�ed:

1. A(ξ) ∈ Cm+1(Z1), B(ς̄) ∈ Cm+1(Z2), the kernels of the operators V1, V2 belong to
the class Cm(Z3), m ≥ 1;

2. rank A(ξ̄) = max {rank A(ξ), ξ ∈ Z1};

3. rank A(ξ̄) = rank (A(ξ̄)| − B(ς̄)): initial data (29) should be chosen so that linear
system A(ξ̄)y = −B(ς̄) would ful�ll the Kronecker-Capelli criterion;

4. rank A(ξ̄) = deg det[λA(ξ̄) + B] [17], where

B = C(ξ̄, ς̄), C(ξ, ς) = ∂

∂gk−1

[B(ς) + A(ξ)y], y = −A+(ξ̄)B(ς̄).

Then, there exists segment T0 = [α, α+ε] ⊆ T, ε > 0, with a unique solution to (28), (29)
u ≡ u(t, λ̄) ∈ Cm(T0).

The proof is based on the switching to a �rst order system by the change of variables
and application of corresponding theorem from [19].

Theorem 5. Let problem

A(t)u̇+ B(u,V2u, t) = 0, u(α) = a0, t ∈ T, (32)

satisfy Theorem 4. Consider iterative process

A(t)u̇j+1(t)+Cθ(t)uj+1(t)+

t∫
α

Qθ(t, s)uj+1(s)ds = G(t, uj(t)), t ∈ T0, uj+1(α) = a0, (33)

where j = 0, 1, 2, · · · , G(t, uj(t)) = −B(uj(t),V2uj, t) + Cθ(t)uj(t) +
t∫
α

Qθ(t, s)uj(s)ds,

Cθ(t) = C(θ(t),V2θ, t), C(ς) =
∂

∂g0
B(ς), Qθ(t, s) = C̃(θ(t),V2θ, t)K̃2,θ(t, s),
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C̃(ς) =
∂

∂γ2
B(ς), K̃2,θ(t, s) = K(t, s, θ(t)), K(t, s, g0) =

∂

∂g0
K2(t, s, g0),

K2(t, s, g0) is the kernel of operator V2, θ(t) is some smooth vector-function C1(T0), θ(α) =
a0, for a su�ciently small value of ϱ = ∥θ(t)−u∗(t)∥C(T0), u∗(t) is a solution to (32). The
iterative process (33) ful�ll estimate

∥uj(t)− u∗(t)∥C(T0) ≤ c · κj, c = const, κ = const < 1. (34)

Proof. Iterative process (33) was obtained by linearizing (32) at point θ(t). Matrix pencil
λA(t)+Cθ(t) satis�es the rank-degree criterion on T0 and the corresponding DAE has index
1 [7]. Equation (33) satis�es Theorem 1. Initial vector a0 satis�es the Kronecker�Capelli
criterion for any j, whence it follows that (33) is solvable on T0. Trivial computations and
estimates with the use of (23) justify relation zj+1 ≤ κ1∥G(t, uj(t)) − G(t, u∗(t))∥C(T0) ≤
κ1zj, zj(t) = uj(t) − u∗(t), κ1 < 1, for a su�cient small value of parameter ϱ = ∥θ(t) −
u∗(t)∥C(T0) (see [7] ).

2

4. Mathematical Models Based on the DAEs Perturbed

by Integral Operators

As was mentioned above, DAEs are widely used in mathematical modelling of various
dynamic processes [1�8]. We focus our research on the models for hydraulic circuits. A
hydraulic circuit is a system comprising an interconnected set of discrete components
that transport liquid. There are four types of hydraulic-circuit diagrams: block, cutaway,
pictorial and graphical. Block diagrams show the components of a circuit as blocks joined
by lines, which indicate connections and/or interactions, and can be interpreted as an
oriented graph. The liquid movement is directed by the following rule

AX = Q, A
⊤
P = Y, (35)

where A is an (m × n) adjacency matrix, which elements take values 0, 1,−1, X =
(x1, x2, ..., xn) is the �ow rate vectors for circuit branches, Q = (q1, q2, ..., qm) is the vector
of in�ows in the circuit nodes. The vector of pressures P is split into the subvectors:
P = (p1, p2, ..., pl) and P ∗

m = (p∗l+1, p
∗
l+2, ..., p

∗
m) with the desired and known pressures,

correspondingly. In matrix A
⊤
the columns correspond to the splitting of the vector P .

Vector Y = (y1, y2, ..., yn) denotes heads (the pressure di�erences at the opposite of the
branch with the corresponding number). Equations (35) are nothing else but the �rst and
second Kirchho� laws. Due to the �rst law, we have

∑m
j=0 qj = 0.

Now make matrix A by omitting the last m − r rows from A and do the same with
the last m− r elements of vector Q to obtain Q. Write down the new system

AX = Q, ATP + AT
1 P

∗
m = Y, (ATAT

1 ) = A
T
. (36)

Matrix A is full rank: rank A = r. In additional to the Kircho� laws, we assume that the
�ow rates on branch v ∈ [1, 2, · · · , n] are directed by the rule, which follows from Darcy's
law [16]:

hv + yv = hv + (pi(v) − pj(v)) = sv(pi(v), pj(v), xv)xv|xv|, (37)
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where i(v), j(v) are node numbers, hv ∈ (h1, v2, · · · , hn)⊤ = H are hydraulic heads at
branches, sv(pi(v), pj(v), xv) are positive resistance function (below we assume that they
are constant: sv = const). In other words, the �uid moves from the node with a bigger
pressure to the node with a smaller pressure and the resistance functions are bounded for
any values of arguments.

Note that (37) is solvable with respect to xv for any signs of hv+yv. However, sometimes
it is assumed that the pressure drops are described the by formula [16]

yv = pi(v) − pj(v) =

Lv∫
0

bv(s, xv(s), pv(s))ds, (38)

where Lv is the length of the corresponding line, bv(s, xv(s), pv(s)) are some functions
derived from Darcy's laws and resistance functions. Taking into account the integration
of the general motion equations with respect to the special variable, we can move from
equations (37), (38) to time-dependent equations

hv + yv = ϱvẋv(t) + s0,vxv(t) + [s1,v + κv

t∫
α

(θv − xv(s))ds]xv(t)|xv(t)|, (39)

hv + yv = ϱvẋv(t) + s0,vxv(t) +

Lv∫
0

b̃v(t, s, xv(s), pv(s))ds, (40)

where ϱv, s0,v, s0,v are the parameters that de�ne the process inertia and resistances (the
laminar and turbulent �ow components), θv are the values of the automatic regulators,
κv are the regulators ampli�cation coe�cients, b̃v(t, s, xv(s), pv(s)) are some functions
obtained by integrating bv(s, xv(s), pv(s)). Taking into account (36), (39), (40), we get
DAEs with integral operators:

Ψ(X,P ) =

=

(
R 0
0 0

)(
Ẋ(t)

Ṗ (t)

)
+

(
S0 A⊤

A 0

)(
X(t)
P (t)

)
+

(
F (t,X)

0

)
=

(
AT

1 P
∗
m(t) +H(t)
Q(t)

)
, (41)

Ψ1(X,P ) =

=

(
R 0
0 0

)(
Ẋ(t)

Ṗ (t)

)
+

(
S0 A⊤

A 0

)(
X(t)
P (t)

)
+

(
B(t,X.P )

0

)
=

(
AT

1 P
∗
m(t) +H(t)
Q(t)

)
, (42)

where t ∈ [α, ∞), R = diag{ϱ1, ϱ2, · · · .ϱn}, S0 = diag{s0,1, s0,2, · · · .s0,n},

F (t,X) =
(
[s1,1 + κv

t∫
α

(θ1 − x1(s))ds]x1(t)|x1(t)|, [s1,2 + κ2

t∫
α

(θ2 − x2(s))ds]x2(t)|x2(t)|,

· · · , [s1,n + κn

t∫
α

(θn − xn(s))ds]xn(t)|xn(t)|
)⊤
,

B(t,X, P ) =

=

 L1∫
0

b̃1(t, s, x1(s), p1(s))ds,

L2∫
0

b̃2(t, s, x2(s), p2(s))ds, · · · ,
Ln∫
0

b̃n(t, s, xn(s), pn(s))ds

⊤

.
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Some properties of (40) were studied in [20]. It can be shown that (41) has index 2, at
least in the neighbourhood of the initial point.

The extended model includes components of vector P ∗
m = (p∗l+1, p

∗
l+2, ..., p

∗
m), which are

found when solving (41) and the nonlinear system of di�erential equations describing mass
balance and enthalpy in heat exchange units

d

dt

[
Vi(t)ρ

′(p∗i (t)) + (Vi − Vi(t))ρ
′′(p∗i (t))

]
= xi,bx(t)− xi,bix(t), (43)

d

dt

[
Vi(t)ρ

′(p∗i (t))ι
′(p∗i (t)) + (Vi − Vi(t))ρ

′′(p∗i (t))ι
′′(p∗i (t)) +Miciτ

′(p∗i (t))
]
= (44)

= xi,bx(t)ιi,bx(t)− xi,bix(t)ι
′(p∗i (t))− xi,pr(t)ιi,pr(t),

where p∗i (t), Vi(t) are the desired pressures and water values in heat exchange units,
xi,bx(t), xi,bix(t), xi,pr(t) are the components of X = X(t) (water or steam �ows entering
and leaving the node i), i ∈ {l+ 1, l+ 2, · · · ,m}, τ ′(.), ρ′(.), ρ′′(.) ι′(.), ι′′(.) are the known
functions connecting parameters of heat exchange units, such as temperature, pressures,
water and steam densitities, Vi,Mi, ci are the given volume, mass and metal capacity of
heat exchanger units, ιi,bx, ιi,pr are the given enthalpy of the steam entering heat exchanger
unit and the enthapy of the heated water.

If we di�erentiate the second block equation of (41), we obtain a new system Ψ̃(X,P ) =
0, (43), (44), which, for the condistent initial data, satis�es Theorem 4. Numerical
experiments that employed the implicit Euler scheme showed that the mathematical model
of the straight-through boiler with a turbine and a regeneration system (see the hydraulic
circuit graph from [21]) has a solution and this solution tends to the stationary mode
preset by regulators.
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ËÈÍÅÀÐÈÇÀÖÈß ÄÈÔÔÅÐÅÍÖÈÀËÜÍÎ-ÀËÃÅÁÐÀÈ×ÅÑÊÈÕ
ÓÐÀÂÍÅÍÈÉ Ñ ÂÎÇÌÓÙÅÍÈßÌÈ Â ÂÈÄÅ ÈÍÒÅÃÐÀËÜÍÛÕ
ÎÏÅÐÀÒÎÐÎÂ È ÏÐÈËÎÆÅÍÈß Ê ÌÎÄÅËßÌ
ÒÅÏËÎÝÍÅÐÃÅÒÈÊÈ

Å.Â. ×èñòÿêîâà1, Â.Ô. ×èñòÿêîâ1, À.À. Ëåâèí2

1Èíñòèòóò äèíàìèêè ñèñòåì è òåîðèè óïðàâëåíèÿ èì. Â.Ì. Ìàòðîñîâà ÑÎ ÐÀÍ,
ã. Èðêóòñê, Ðîññèéñêàÿ Ôåäåðàöèÿ
2Èíñòèòóò ñèñòåì ýíåðãåòèêè èì. Ë.À. Ìåëåíòüåâà ÑÎ ÐÀÍ, ã. Èðêóòñê,
Ðîññèéñêàÿ Ôåäåðàöèÿ

Ìîäåëèðîâàíèå ðàçëè÷íûõ åñòåñòâåííûõ è òåõíè÷åñêèõ ïðîöåññîâ ÷àñòî ïðèâîäèò

ê ñèñòåìàì, êîòîðûå âêëþ÷àþò â ñåáÿ îáûêíîâåííûå äèôôåðåíöèàëüíûå óðàâíåíèÿ è

ñâÿçàííûå ñ íèìè àëãåáðàè÷åñêèå ñîîòíîøåíèÿ. Â äàííîé ðàáîòå èçó÷àþòñÿ ñèñòåìû

êâàçèëèíåéíûõ èíòåãðî-äèôôåðåíöèàëüíûõ óðàâíåíèé ñ âûðîæäåííîé ìàòðèöåé â îá-

ëàñòè îïðåäåëåíèÿ ïðè ïðîèçâîäíîé èñêîìîé âåêòîð-ôóíêöèè. Òàêèå ñèñòåìû ìîæíî

ðàññìàòðèâàòü êàê äèôôåðåíöèàëüíî-àëãåáðàè÷åñêèå óðàâíåíèÿ, âîçìóùåííûå îïåðà-

òîðàìè Âîëüòåððà. Ïîëó÷åíû óñëîâèÿ ðàçðåøèìîñòè âîçìóùåííûõ ñèñòåì è íà÷àëü-

íûõ çàäà÷ äëÿ íèõ, îáñóæäàåòñÿ âëèÿíèå ìàëûõ âîçìóùåíèé âõîäíûõ äàííûõ íà ðå-

øåíèå íà÷àëüíûõ çàäà÷. Ðàññìîòðåíû âàðèàíòû ëèíåàðèçàöèè òàêèõ çàäà÷ íà îñíîâå

ìåòîäà Íüþòîíà. Îáñóæäàþòñÿ ìîäåëè èç îáëàñòè òåïëîýíåðãåòèêè, è êàê ïðèìåð ðàñ-

ñìàòðèâàåòñÿ ãèäðàâëè÷åñêàÿ öåïü, ïðåäñòàâëåííàÿ â âèäå íàáîðà âçàèìîñâÿçàííûõ

ýëåìåíòîâ, ïî êîòîðûì òå÷åò æèäêîñòü. ×èñëåííûå ýêñïåðèìåíòû íà îñíîâå íåÿâíîé

ñõåìû Ýéëåðà ïîêàçàëè, ÷òî ìîäåëü ïðÿìîòî÷íîãî êîòëà ñ òóðáèíîé è ñèñòåìîé ðå-

ãåíåðàöèè èìååò ðåøåíèå, êîòîðîå ñòÿãèâàåòñÿ ê ñòàöèîíàðíîìó ðåæèìó, çàäàííîìó

ðåãóëÿòîðàìè.

Êëþ÷åâûå ñëîâà: äèôôåðåíöèàëüíî-àëãåáðàè÷åñêèå óðàâíåíèÿ; îïåðàòîð Ôðåäãîëü-

ìà; îïåðàòîð Âîëüòåððà; íà÷àëüíàÿ çàäà÷à; óñëîâèÿ ñîãëàñîâàíèÿ; èíäåêñ.
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