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Modelling of various natural and technical processes often results in systems that
comprise ordinary differential equations and algebraic equations This paper studies systems
of quasi-linear integral-differential equations with a singular matrix multiplying the higher
derivative of the desired vector-function. Such systems can be treated as differential
algebraic equations perturbed by the Volterra operators. We obtained solvability conditions
for such systems and their initial problems and consider possible ways of linearization for
them on the basis of the Newton method. Applications that arise in the area of thermal
engineering are discussed and as an example we consider a hydraulic circuit presented
as a system comprising an interconnected set of discrete components that transport
liquid. Numerical experiments that employed the implicit Euler scheme showed that the
mathematical model of the straight-through boiler with a turbine and a regeneration system
has a solution and this solution tends to the stationary mode preset by regulators.

Keywords: differential algebraic equations; Fredholm operator; Volterra operator; initial
problem; consistency problem; index.

1. Problem Statement and Auxiliary Information

Modelling of natural and technical processes often yields systems that comprise
ordinary differential equations (ODEs) of various order and algebraic equations (cf. [1-6]).
Their combination can be written in a form of quasi-linear vector ODEs with a singular
matrix multiplying the higher derivative of the desired vector-function

Ap(u)u = A(u(k_l), s u st Nu® é(u(k_l), s uM ut \) =0, (1)
k=12, -,
where fl(gk_l, cer g1, 90, t A, E(gk_l, -+, q1,90,t,\) are given (v X n)-matrix and an v-
dimensional vector-function, correspondingly, gx_1, - ,91,90 € R", t € T = |, B] C
R', u = u(t) is n-dimensional vector-function u®(t) = (d/dt)"u(t), i = 1,2,---, uO(t) =
u(t), A is a scalar parameter, and matrix A is such that

rank A < min (n, v) (2)

for all values of arguments from the domain. For the case of closed systems (v = n), this
condition takes the form det A = 0. Such systems are commonly referred to differential
algebraic equations (DAEs). If the process under study has a so-called aftereffect, then
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the system may include integral equations. Therefore, in this work we focus our attention
on the systems with Volterra and Fredholm operators

Je(wu = Aw® Y o Wt Vu, Ku, Nu4B Y o u® st Vu, Ku, \) =0, (3)

where A(gr_1, "+, 91, 90,71, %0, t, A)s B(ge—1," ", 91,90, 71,0, L, A) are given (v Xn)-matrix
and an r-dimensional vector-function, correspondingly, 71,70, € R",

Vu = /tK(t,s,u(s))ds, Ku = /ﬁKl(t,s,u(s))ds

are the Volterra and Fredholm operator, K, K; : T x T x R® — R", and matrix A is such
that
rank A < min(n, v) (4)

for all values of arguments from the domain. Linear DAEs (1), (3) for n = v have the
following form

Apz =Y A(t)aV(t) = f(t), t€ T, (5)

where A;(t) are (n X n)-matrices, x(t) and f(t) are the desired and the given vector-
functions, correspondingly, () = (d/dt)'z(t), zO(t) = z(t),

k t B

(Ap + AV 4+ p®)z = > Ai(t)20 (1) + )\/IC(t, s)z(s)ds + M/K(t, s)z(s)ds = f(t), (6)
where A\, p are scalar parameters (possibly, complex cones), K(t,s), K(t,s) are (n x n)-
matrices define in 7' x T, z(t) is the desired vector-function. As follows we assume that all

entries are smooth enough and that the following condition is satisfied

det A(t) =0Vt € T. (7)

DAEs with £ = 1 have been fairly well studied (see the monographs [6-8] and the
bibliography listed therein). Any equation (5) can be reduced a first order DAE using
a change of variables. However, if £ > 1, DAEs possess a number of interesting properties
that disappear after such reduction.

It is assumed that for each system (5), (6), a set of initial data is given

19 (a) = a;, 29(a) = b, (®)

where a;, b; are the given vectors from R".

By the solution to systems (5), (6) we understand any k—times differentiable on T
vector-functions x(t). z(t) that turn the systems under study into identity on 7. If these
vector-functions are solutions and satisfy (8), then they are solutions to the corresponding
initial problems.

At present, there are available only a few works addressing higher order DAEs (cf. [9-
11]). To study (5), we will employ the tools and results that had been previously developed
for the first order DAEs.
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For the sake of simplicity, the dependence on ¢ sometimes will be omitted, if does not
cause misunderstanding. Inclusions V(t) € CY(T), ¢ > 1, where V(¢) is a matrix or a
vector-function, mean that all its elements are differentiable on 7" up to the order i. The
continuity will be denoted as V(t) € C(T); symbol C*(T) stands for the space of real
analytical matrices. Below, we will also employ denotation r[V (t)] = max{rank V (¢), ¢t €
T}.

Here we also use the norms of g-dimensional vector ¢ = (¢1,(s,...,¢)" € RY, and
vector-function ((t) = (¢i(t), G(t),..., (1)), t € T, which are found by the following
rules

Il = ZCJQ, Il = max 1G], IS Wz /IIC M ds, IOl oy = max|I<H)];

where T stands for transposition.

Definition 1. [7] The (n x m)-matriz M (t) is said to be the pseudoinverse to (m x n)-
matriz M(t) if Vvt € T

ME)MT()M(t) = M(t), MT(E)M(E)M™(t) = M*(t),

(MF()M ()" = M (M), (MEMT(1)" = M(E)M*(1).

The pseudoinverse matrix is defined for any ¢t € T and for any (m x n)-matrix M (t)
and is unique. If M(t) is square and nonsigular, then M~'(t) = M™(t). Accodring to
[7], there exists MT(t) € CUT), it M € CYT) and rank M(t) = r = const Vt € T.
If rank M(t) # const, t € T, then at least one element of M7 (¢) has a second kind
discontinuity on 7.

Below we will use the following operators

M CIM 0 e 0
CopM CI M ... 0
dl[M] — (d/dt)M 7 MZ[M] _ 1 : 1. . : ’ (9)
(d/dt)"M COM®  CIMGED ... CiM

where M = M (t) is some matrix from C(T'), C? = j!(i—j)!/i! are the binomial coefficients.
The operators are related by formula

MM F(t)] = MM ()] [F (1)), (10)

where F'(t) is some matrix of the appropriate size from C*(T'). Formula (10) follows from
the Leibniz general rule.

2. Properties of Linear Systems

In this section we modify concepts that were introduced earlier in [10]. We single out

a class of DAESs, which solution properties are very much similar to those of normal form
ODEs.
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Definition 2. FEquation (5) has a Cauchy type solution if it is solvable for any f(t) €
CHY(T) and its solutions can be represented as a linear combination

x(t, c) = Xa(t)c + (1), (11)

where Xq(t) is an (n x d)-matriz from CE(T), with the property rank dy_1[X4(t)] = d Vt €
T, di_1[.] is the operator from the formulas (9), ¢ is an arbitrary constant vector, () is the
vector-function with the property Agip(t) = f(t), t € T. Additionally, on any subsegment
[ag, Po] € T there is no solution different to x(t,c).

Solution x(t) that passes through point 2 (y) = a;, i = 0,k — 1, v € T, is unique if
there exists ¢ such that dg_;[X4(7)]c = @ — dg_1[t(7)], where @ = (a] ag ... a}_;)". The
vector ¢ always exists for normal form ODEs, because

d =nk, det dk_l[Xd(t)] 75 OovteT.

I
Definition 3. If there exists operator Q = > L;(t)(d/d), where L;(t) are (n x n)
j=0

koo , 3
matrices from C(T), such that o Ayy = > Aj(t)yW(t) Vy(t) € CHH(T), where A;(t)
i=0

are some (n x n)-matrices from C(T), i = 0,q, det A,(t) # 0 Vt € T, then operator Q is
said to be the left regularizing operator (LRO) for the system (5). The smallest possible
s said to be the index of the system.

Definition 4. The combination of (5) and its i derivatives d;[Ayx — f] =0, t € T, where
d;[.] is the operator defined by (9), is called i-extended system (5).

Using (10), i-extended system can be written as

Di[A))digxla] = Z (05 Mi[4;(1)] O;) disila] = dil£(2)], (12)
where A = (A, Ay_1 ... Ao), Di[A(t)] is a [(i + 1)n x (i + k + 1)n]-matrix, O;, O; are

zero blocks of dimension [(i+ 1)n x jn] and [(i+1)n x (k—j)n], j = 0, k, correspondingly.
In what follows, we will use splitting

DA = (Bi(t) TJAW))., (13)

where I';[A(t)] is a block-triangular matrix with Ag(t) standing on the diagonal.

The concept of index is quite complex and can be approached in several ways (see,
for example, monographs [6-8] and references listed there). Here we employ the definition
that was introduced in [13] for index one DAEs and modify it for DAE (5).

Definition 5. Assume that set of solutions X = {x = x(t) : Apyx — f =0, t € T} to DAE
(5) is non-empty, and, starting with some natural number 1, for any vector-function x. =
2e(t) ¢ |[dima[Akze = [l 1,y < € there exists solution x(t) € X : [[x(t) — x(D)| ) < ke
where K is some constant. Then, we say that DAFE (5) isindez [.

The similar notion but defined in C(T) instead of Lo(T) is called perturbation index
[6,8]. Below we give some results from [12].
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Theorem 1. Let

1) DAE Ayx = f, t € T, be index l;

2) Ai(t) € C™(T), i =0,k, m=max{(k— Dn+r+1,21}, r=r[At)].
Then,

1) there exists the Cauchy type solution and ¢(t) from (11) has form

t
:/K(t,s ds—i—ZC’ L L=k, (t) /Kts s)ds, I <k, (14)

where K(t,s), C;(t) are some (n x n)-matrices, t € T, (t,s) € T x T}

2) ifu=0andl <k, K(t,s) € C(T xT), system (6) is solvable for any \ and its
general solution has form
At ) = Yalt)e + g(t), tET, (15)
where Yy(t) = (E, + AV)Xq4(t), g(t) = (E, +AV)y(t), V is some Voletrra operator,
E,, 1s n-dimensional identity matrix;

3) if homogeneous DAE (5) has only zero solution (d = 0), then
I~k
v(t) =v(t) = (En 0 ... 0) D7 A@®)]dik[f(t)] = Z%]Cj(t)f(j)(t),-
J:

4) starting with 1 =, the following equalities hold

rank T;[A(1)] = const, T [A(£)]Ti[A ()] = (EO” Z;j( t)) teT,

where Zys(t) is some block of the appropriate dimension, and first n rows of matriz
[ [A(t)], split into (n X n)-blocks, can be taken as LRO coefficients.

Lemma 1. Let

1) the Cauchy type solution x(t,c) € C™(T') to the DAE (5) be defined on T';

2) Ar(t), Ag_1(t),..., Ao(t) € C™(T), where my = (k— )n+r +2, mg = 2((k —
)n+r)+3. Then, DAE (5) has an LRO on T.

Below we prove the following statement.

Theorem 2. Let

1) system (5) satisfy Theorem 1;

2) X\ =0 and K(t,s) € C{T x T) in (6).

Then, (6) is solvable for all p, except maybe countable set {p;, i = 0,1,2,---}, and
its general solution with pu # p; has the form

z(t,c) = Za(t)c+ o(t), t €T, (16)

where Z4(t) = (E, + pW)X4(t), o(t) = (E, + uW)(t), W is a Fredholm operator.
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k
Proof. Rewrite (6) for A = 0: Apz = —udz + f: > A;(t)20(t) = w(t), t € T, where

=0

B
w(t) = —p [ K(t, 8)z(s)ds + f(t). Using (14) and (11), write down the expression:

St ¢) = Xa(t)e + /K(t, syw(s)ds + Z C;(t teT (17)

Due to the fact that the product of the Volterra and Fredholm operators is a Fredholm
operator, we obtain a system of second kind Fredholm equations

B

z(t) = ,u/W(t, s)z(s)ds + v(t), (18)

«

where

i W (t, s)2(s)ds = j K(t,s) i K(s, 7)z(r)dr | ds +

-k B

/cj )OTK(t, 5)/0t)2(s)ds,

v(t) = Xq(t)c + /K(t, s)f(s)ds + Z C;(t) f9

For system (18), except maybe countable set {u;, ¢ =0,1,2,---}, we can use the known
inversion formula [14]:

2(t) = (En + pW)r(t) = v(t) + ,u/W(t, s, p)v(s)ds, (19)

where W (t, s, ) is the resolvent kernel for (18). The validity of the statement follow from
(19).
(I

Corollary 1. Let

1) Theorem 1 be satisfied;

2) \u#0, 1<k and K(t,s), K(t,s) € C(T x T) in (6).

Then, (6) is solvable for all u, except maybe a countable set {u;, i =0,1,2,---}, its
general solution has the following form for pu # u;:

2(t,¢) = Zg(t)e + o(t), t €T, (20)
where Zy(t) = (B, + pW)Xy(t), o(t) = (E, + uW)U(t), W is some Fredholm operator.

Lemma 2. Let Theorem 1, Theorem 2 and Corollary 1 be satisfied . Then, initial problems
(5), (6), (8), have solution xz(t), y(t), z(t) € C¥(T), if and only if systems

Ay [Xa(@)]e = dpa[P()] —a, dea[Za(@)le = dpa[@()]=b, dx1[Za(a)]e = dxa[d(t)] b
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are solvable with respect to ¢, these solutions are unique, if the matrices that multiply c
have full rank. Here b= (b] by ... bl )7,

It is well-known that in practice we usually address not with ideal problem (6), (8),
but its perturbed version:

A+ AV +pud)z=f teT, (21)
29(a) =b;, j =0k —1, (22)

where I;j are the given vectors from R".

Theorem 3. Let
1) Corollary 1 be satisfied;
2) problems (6), (8), and (21), (22) satisfy Lemma 2.
Then, the following estimates hold

IVOlleery < rellel; + ks lle@llom s IV z,m < B2 llels + Rsllo@z,my . (23)
where v(t) = 2(t) = 2(t), ¢ = ([bo = bo] " by = b7 -+ [bps - bea] ) () = f(t) -
f(t), kj, K; are some positive constants, j = 2,3.

Proof. Using (6), (8), (21), (22), we can write down the following initial problem
(Mg + AV 4+ u®)v = o(t), t €T, v (a) =b; —b;, j =0k — 1, (24)

where v = y(t) = z(t) — Z(t). By integrating the system from (24) k times, we obtain the
system of integral equations

k-1
(Ag+O© + AV + ud®)v =h(t)+ Y (t—a)c, teT, (25)
=0
where
t o
Ap = Ap(t), Vv = /wkl(t—a)kl /IC(U, s)v(s)dsldo | ,
t t B
@V:/Q(t,s)v(s)ds, dy = /wk_l(t—a)k_l /K(a, s)v(s)ds|do | ,
k-1 ¢
Qt,s) = 3wy alt — sYWy(s), hit) = / T (t— )" p(s)ds, s € T,
j=0 .
W;(s) are linear combinations of matrices Ay (t), Ax—_1(%), ..., Ao(t) and their k derivaties,

¢; are constant vectors in the form the linear combinations of initial data v/(«a), j =
0,k —1,w; =1/4!, j > 1. For example, if k = 2, then Wy (s) = A;(s) —QAS)(S), Wi(s) =
Ao(s) = A1 (5) + 47(s), ¢ = Ax(@)v(a), 1 = As(a)vD(a) + [Ai(a) — 4y (a)]v(a).
Substitute &; — &; into (25) instead of v\ (a). We get

(Ap + O + AV + u®)v = h(t) + H(t)e, t € T, (26)
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where H(t) is (n x kn)-matrix with the polynomial elements depending on t. The
solution to (26) coincides with the solution to initial problem (24). Since the operations
of differentiation and integration are interchangeable, there exists operator ) =

L ‘ N
> Li(t)(d/d)’, | <k, where L;(t) are (n x n)-matrices from C(T"), with the property
=0

V(A + O + AV + pud)v] = (27)

_ A (v(t) + / (1, $)v(s)ds + MY 0 Dy = Oylh(t) + H(D)c], LT,

where det A, (t) # 0Vt € T. In other words, € is a version of LRO for operator A + ©:
Q0 (A +0) = A, +06. System (27) is the system of the second kind Fredholm equations
with a continuous kernel and a continuous free term. According to [14], there exists the
Fredholm operator ®x with a continuous kernel, such that v(t) = [E, + ®x][h(t) +
H(t)c|, t € T. Trivial estimates and computations yield inequalities (23).

([
We should note that if [ > k, the solution to (24) includes the derivatives of o(t).

Therefore, there is always exists such vector-function f(¢), that for the fixed initial data
le@lls <& [lz(t) = ()]« = 00, & =0,

where * stands for one of the spaces: Ly(T) or C(T).

3. Linearizartion of Nonlinear System

Models from applications are usually described by nonlinear DAEs and singular
systems quasi-linear integral differential equations. Consider some closed (n = v) nonlinear
systems of form(3). Let there be given problem

Je(wu = AV - u® st Viu Nu® B - a® ot Vou N =0, t e T, (28)

u(j)(oz) =a;, j=0k—1, (29)
where V;, i = 1,2 are some sets of Volterra operators: V; = {V;;, j =1,2,--- ¢}, matrix
A(.) and vector-function B(.) are defined on sets

ul :{f:gk—lf" » 915 90 ERnale ERﬁlvtETv)\G [7?5] CRl},

u2 = {§ S 0k—1," 7917907727t7 )‘}a Y2 S Rﬁ27

Vi :w = (t,s,90) € T x T x R". Tt is assumed that entries of (28) are sufficiently
smooth. There exist several approaches to the study of nonlinear DAEs. They are based
on the analysis of the matrix pencils structures, extended systems and application of the
techiniques from algebraic geometry (see, for example, [6-8,15,17,18]).

Definition 6. The combination of (28) and its derivatives up to order i: d;[Jy(u)u] =
0, t € T, where d;[.] is operator from (9), is said to be the i-extended system (28).
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Definition 7. Let there exist operator
!
=Y Li(t,v, 0", - 0™, Vo, A)(d/dy,
7=0

where L;(&) are some (n x n) smooth matrices from the domain, Vs is a set of Volterra
Operators7 51 = (t7 .gO? Tt 7917 gm? 73’ >\)7 with property

Q(v) o Je(v)v = A(*V oo w® vt Yo, Nu®)

+B* Y o 0@ wt, Vou, N) Yo = u(t, ) € CRabmiFRO (T o [y 6]),

where A(€) is (nxn)-matriz, B(s) is some vector-function, both continuous in the domain,

5 = (gk’—la e 79179075/17‘@7)\)7 6 = (gk’—lv e 7917907j27t7 >\)7 Vl are some Sets Of Volterra
operators in initial point & = (ag_1,- - , a1, 00,0, a, A),

det A(€) # 0.

Then, operator Q(v) is said to be the left reqularizing operator (LRO) for the system (29).
The smallest possible integer number max{l, m} is said to be index of (29).

Example 1. Let there be given two systems

o (SO O () (s ()
L@m:(gf)GD+($):mten (31)

t t
where Viu = [(1 0)u(s)ds, Vou = [(0 1)u(s)ds. It is easy to verify that systems (30),

[e% (03
(31) have only a zero solution on an arbitrary subset 7' C R!. Trivial computations show

that quasi-linear operators

(0 —cos(Viu)ugtiy — sin(Vyu)iiy 1 —sin(Vyu)iy\ d

A o 0 —'U/Q 1 —'1.1,2 d
KMW_Q 0)*@ 1)%
are the LROs for the systems (30), (31), respectively, and

QmmoLWM:<
QmmNLMMu—(i)vuec%ﬂ.

Uy + ug Voue2"
Us ’

Therefore, according to Definition 7, systems (30), (31) have index 2.

It is worth noting that it is common to differentiate algebraic relations when
solving applied problems. Id we do that to (30), we obtain a system with a matrix
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diag{us sin(Vyu), 1} singular at initial point u(a) = 0. However, we can build an LRO
for (31). Here

d 1 0 . 2
A — 0 1 —U9 0 —Uo d 0 —Ug d
o= (g ) ) o 2)- 0 a6 ) (@)
(0 1/ \0 1 0 o 0 1 Jat 0 0 dt
Define the following neighbourhoods:

Zi={¢:lE-¢€l<m },
Zy={s:|ls=<| <p b,
Zy={w:|lw—@| <p2},

where £ = (ag_1, - ,a1,a0,0,,\), ¢ = (ax_1,---,a1,0a0,0,a,\), @ = (a, ,a9) are the
initial points.

Theorem 4. Let the following conditions be satisfied:

1. A(€) € C™TY(Z)), B(S) € C™TY(Z,), the kernels of the operators Vi, Vs, belong to
the class C™(23), m > 1;

2. rank A(¢) = max {rank A(§), £ € Z1};
3. rank A(€) = rank (A(§)| — B(S)): initial data (29) should be chosen so that linear

system A(&)y = —B(S) would fulfill the Kronecker-Capelli criterion;

4. rank A(§) = deg det[AA(E) + B] [17], where

B=C(£<), C(&5) = [B(<) +A(§)y], y = —AT(E)B(S).

Ogk—1
Then, there exists segment Ty = [a,a+¢] C T, € > 0, with a unique solution to (28), (29)
u=u(t,\) € C™(1p).

The proof is based on the switching to a first order system by the change of variables
and application of corresponding theorem from [19].

Theorem 5. Let problem
A(t)u + B(u, Vou,t) =0, u(a) = ag, t €T, (32)

satisfy Theorem 4. Consider iterative process

A@)%H@HC@@)%H@)+/ Qo(t, s)ujr1(s)ds = G(t,u;(t)), t € To, ujri(a) = ag, (33)

t

where j =0,1,2,--+, G(t,u;(t)) = =B(u;(t), Vauy, t) + Co(t)u;(t) + [ Qo(t, s)u;(s)ds,

«

Co(t) = C(0(t),V20,1), C(s) = aigoB(g), Qo(t,s) = C(O(t), Vo, 1) Ko 4(t, 5),
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. o . 0

C(C) = 8_B(g)7 KQ,Q(tv S) = K(t7 S, Q(t)), K(tv Svg()) = _K2(t7 Sag(])a
V2 990

Ky(t, s, go) is the kernel of operator Vs, 0(t) is some smooth vector-function C*(Ty), 0(a) =

ao, for a sufficiently small value of o = ||0(t) — u.(t)||c(m), u«(t) is a solution to (32). The

iterative process (33) fulfill estimate

|w; (1) — ue(t)|lcim) < ¢ K, ¢ = const, k= const < 1. (34)

Proof. Iterative process (33) was obtained by linearizing (32) at point 6(¢). Matrix pencil
AA(t)+Cy(t) satisfies the rank-degree criterion on Tj and the corresponding DAE has index
1 [7]. Equation (33) satisfies Theorem 1. Initial vector ag satisfies the Kronecker—Capelli
criterion for any j, whence it follows that (33) is solvable on Tj. Trivial computations and
estimates with the use of (23) justify relation z;11 < ri||G(t,u;(t)) — G(t, ue(t))|lcm) <
K1zj, 2i(t) = u;(t) — u.(t), K1 < 1, for a sufficient small value of parameter o = ||6(t) —
wOllcy (see 7).

O

4. Mathematical Models Based on the DAEs Perturbed
by Integral Operators

As was mentioned above, DAEs are widely used in mathematical modelling of various
dynamic processes [1-8]. We focus our research on the models for hydraulic circuits. A
hydraulic circuit is a system comprising an interconnected set of discrete components
that transport liquid. There are four types of hydraulic-circuit diagrams: block, cutaway,
pictorial and graphical. Block diagrams show the components of a circuit as blocks joined
by lines, which indicate connections and/or interactions, and can be interpreted as an
oriented graph. The liquid movement is directed by the following rule

AX =0, A P=v (35)

where A is an (m x n) adjacency matrix, which elements take values 0,1,—1, X =
(71, 29, ..., 7,) is the flow rate vectors for circuit branches, @ = (q1, g2, ..., ¢m) is the vector
of inflows in the circuit nodes. The vector of pressures P is split into the subvectors:
P = (p1,p2,....m) and Py, = (pj11,P/9s - P},) With the desired and known pressures,

correspondingly. In matrix A" the columns correspond to the splitting of the vector P.
Vector Y = (y1, Y2, ..., Yn) denotes heads (the pressure differences at the opposite of the
branch with the corresponding number). Equations (35) are nothing else but the first and
second Kirchhoff laws. Due to the first law, we have Z;”:O q; = 0.

Now make matrix A by omitting the last m — r rows from A and do the same with
the last m — r elements of vector Q to obtain Q. Write down the new system

T

AX =Q, ATP+ ATP: =Y, (ATAT)=A". (36)

Matrix A is full rank: rank A = r. In additional to the Kirchoff laws, we assume that the

flow rates on branch v € [1,2,--- ,n] are directed by the rule, which follows from Darcy’s
law [16]:

hv + Yy = hv + (pz(v) - pj(v)) = Sv(pi(v)apj(v)a Z’v)]f@’flf@’, (37)
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where i(v), j(v) are node numbers, h, € (hi,ve,--- ,h,)" = H are hydraulic heads at
branches, s,(pi(v), Pjw), Tv) are positive resistance function (below we assume that they
are constant: s, = const). In other words, the fluid moves from the node with a bigger
pressure to the node with a smaller pressure and the resistance functions are bounded for
any values of arguments.

Note that (37) is solvable with respect to x, for any signs of h,+y,. However, sometimes
it is assumed that the pressure drops are described the by formula [16]

Ly

Yo = Pi(v) — Pjw) = /bv(S,l'v(S),pv(S))dS, (38)
0

where L, is the length of the corresponding line, b,(s,z,(s),p,(s)) are some functions
derived from Darcy’s laws and resistance functions. Taking into account the integration
of the general motion equations with respect to the special variable, we can move from
equations (37), (38) to time-dependent equations

t

ho + Yo = 0uo(t) + S0,0Tu(t) + [s10 + Ko / (00 — o (s))ds]zy () ]2y ()], (39)
hv + Yo = Qv:tv(t) + SO,vwv(t) + /Bv(t7 S, xv(S),pU(S))dS, (40)

0
where 0., S04, S0 are the parameters that define the process inertia and resistances (the

laminar and turbulent flow components), 6, are the values of the automatic regulators,
K, are the regulators amplification coefficients, by(t, s, 2,(s), ps(s)) are some functions
obtained by integrating b,(s,z,(s), p,(s)). Taking into account (36), (39), (40), we get
DAEs with integral operators:

U(X,P) =
_ (? 8) @g) 4 (*jf "g) @Eg) N (F(t(,]X)) _ (A{ngzg H(t)) o
Uy (X, P) =

_ <§ 8) @((f))) 4 (if fg) ()]g ((:))) . (B(t7g(.P)> _ <A1TP;;gzt)+ H(t))’ (42)

where t € [a, ), R = diag{o1, 02, - .00}, So = diag{so1, 502, "+ -Son},
t

F(t,X) = <[5171 + Ky /((91 — x1(8))ds]x1 (t)|z1(8)], [s1.2 + Ko /(92 — xo(8))ds|xa(t)|xa(t)],

o t

. [51m + Fon /(en _ xn(s))ds]xn(zﬁ)]mn(t)DT,

«

B(t,X,P) =
L Lo Ly T
= /Bl(taSaxl(s)’pl(s))d’s7/62({:7873:2(5)7292(5))(137'" 7/Bn(ta87xn(8)7pn<s))d8
0 0 0
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Some properties of (40) were studied in |20]. It can be shown that (41) has index 2, at
least in the neighbourhood of the initial point.

The extended model includes components of vector P, = (p}1, D]} 9, -, P, ), Which are
found when solving (41) and the nonlinear system of differential equations describing mass
balance and enthalpy in heat exchange units

% [V}(t)p'(p;‘(t)) + (Vi = Vi(t))p" (p; (t))] = T pa(t) — T4 piz (), (43)
%[Wt)p’(pz‘(t))a’(p?(t)) + (Vi = Vi) p"(0r )" (p(6) + My, 7' (pE ()| = (44)

= T pe () L b (1) — Tiia ()0 (5 (1)) — 24,0 (E) L. (1),

where pi(t),V;(t) are the desired pressures and water values in heat exchange units,
T b (1), Tipiz (1), i pr(t) are the components of X = X (t) (water or steam flows entering
and leaving the node i), i € {{+1,14+2,--- ,m}, 7'(.), (L), p"(.) /(.),¢"(.) are the known
functions connecting parameters of heat exchange units, such as temperature, pressures,
water and steam densitities, V;, M;, ¢; are the given volume, mass and metal capacity of
heat exchanger units, ¢; ps, ti pr are the given enthalpy of the steam entering heat exchanger
unit and the enthapy of the heated water.

If we differentiate the second block equation of (41), we obtain a new system ¥ (X, P) =
0, (43), (44), which, for the condistent initial data, satisfies Theorem 4. Numerical
experiments that employed the implicit Fuler scheme showed that the mathematical model
of the straight-through boiler with a turbine and a regeneration system (see the hydraulic
circuit graph from [21]) has a solution and this solution tends to the stationary mode
preset by regulators.
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JINMHEAPUN3AIINA JTNOPEPEHIINAJIBHO-AJITEBPANTYECKUNX
YPABHEHUN C BO3MVIIIEHUSIMU B BUJE NHTET'PAJIBHBIX
OITEPATOPOB U IITPNJIOZ2KEHN A K MOAEJIAM
TEIIJIOSHEPI'ETUKN

E.B. Yucmaxosa', B.®. Yucmaxos', A.A. Jlesun?

"MucturyT qunaMuku cucreM n Teopun yupasiaenus uM. B.M. Marpocosa CO PAH,
r. Upkyrck, Poccuiickag @enepaiius

2NucturyT cucrem suepretuxn mM. JI.A. Meaentnesa CO PAH, r. UpkyTck,
Poccuitickag ®enepamust

MomenupoBanve pa3/InaHbIX €CTECTBEHHBIX U TEXHUYIECKUX MPOIECCOB YaCTO TPUBOINAT
K CHCTE€MaM, KOTOpPbIE BKIIOUAIOT B €O OOBIKHOBEHHBbIE mudhepeHinaabHble yPpaBHeHNA 1
CBSI33HHBIE C HUMHU aJaredpandecKne COOTHOIIeHnd. B mamHo# paboTe M3y<aioTcss CUCTEMBbI
KBa3MJINHEHHBIX WHTErpo-1ddhepeHInanbHbIX YPaBHEHUH ¢ BHIPOKIEHHO MaTpHIiei B 00-
JIACTHU OTIPEIESIEHUs] TIPU MTPOU3BOAHON UCKOMOI BeKTOp-yHKIMU. Takue cucTeMbl MOXKHO
paccMarpuBaTh Kak Jud depennuaipbHo-aaredpanieckie ypaBHeHUsT, BO3MYIIEHHbIE Ollepa-
ropamu Boabreppa. [lomgydensr yciaoBusi pa3pemnMOCTy BO3MYIIEHHBIX CHCTEM W HAYAIb-
HBIX 337a9 JJIs HUX, 00CYXKJAeTCs BINSAHNE MAJBIX BO3MYIIEHUH BXOJHBIX JAHHBIX HA Pe-
IIEHIe HAYAJIbHBIX 337a4. PacCMOTpPEHbl BAPDUAHTHI JIMHEAPU3AIAN TAKMX 33/1a9 HA OCHOBE
Merona Herorona. Obcyxmaores Moaenu u3 00MaCTH TEIJIOIHEPTETUKY, U KAK TIPUMED Pac-
CMaTpUBaeTCs THIPABJIMYECcKasl 1ellb, MTPeJCTaBIeHHAs B Bujie HAbOpa B3aMMOCBSI3aHHBIX
3JIEMEHTOB, MO KOTOPHIM TEYET KUJIKOCTh. UMCJIEHHBIE SKCIEPUMEHTHI HA OCHOBE HESBHOM
cxeMbl Diiepa MOKa3aar, 9TO MOIENb MPAMOTOYHOrO KOTIa ¢ TypOMHON W CHCTeMO# pe-
rEeHEPAIMN UMEET DEIleHne, KOTOPOe CTATMBAETCH K CTAIMOHAPHOMY PEXKHUMY, 33JaHHOMY
peryJIsITOpaMHu.

Karoueenie crosa: duddepenyuanrvho-anrzebpauneckue ypasuenus; onepamop Opedaonn-

Mma; onepamop Bosvmeppa; HOUAALHAA 300a4a; YCAOBUA COZAACOBAHUSA; UWHOEKC.
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