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In the work we propose an algorithm for a Wiener—Hopf factorization of scalar
polynomials. The algorithm based on notions of indices and essential polynomials allows to
find the factorization factors of the polynomial with the guaranteed accuracy. The method
uses computations with finite Toeplitz matrices and permits to obtain coeflicients of both
factorization factors simultaneously. Computation aspects of the algorithm are considered.
An a priory estimate for the condition number of the used Toeplitz matrices is found.
Formulas for computation of the Laurent coefficients with the given accuracy for functions
that analytical and non-vanishing in an annular neighborhood of the unit circle are obtained.
Stability of the factorization factors is studied. Upper bounds for the accuracy of the
factorization factors are established. All estimates are effective. The proposed algorithm is
implemented in Maple computer system as module "PolynomialFactorization". Numerical
experiments with the module show a good agreement with the theoretical studies.
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Introduction

Mathematical modelling of wave diffraction, problems of dynamic elasticity and
fracture mechanics, and geophysical problems is reduced to so-called Wiener—Hopf
factorization problem for matrix functions [1-3|. The factorization of matrix functions is
also a powerful tool used in various areas of mathematics [4,5|. However for the matrix case
there is no constrictive solution of the factorization problem in a general setting. Moreover,
it is difficult to develop approximate methods for the problem since the matrix factorization
is unstable. For this reason it is very important to find cases when the problem can be
effectively or explicitly solved. The current state of this problem is presented in [6]. The
first stage of an explicit method for solving of the factorization problem is the factorization
of scalar functions. In turn, this problem can be reduced to the polynomial factorization |7].

Let p(z) = po + p1z + -+ + p,2¥ be a complex polynomial of degree v > 1 and
po # 0,p, = 1. Assume p(z) # 0 on the unit circle T, hence p(z) # 0 on a closed circular
annulus K = {z € C:r <|z| < R} for some 0 < r < 1 < R < oo. By » denote the
number of zeros of p(z) inside the unit circle. Let &;, 7 = 1,..., v, be the zeros of p(z) and

0<|&] <... <] <r<l<R<|&qq| <o <&
Here the zeros are counted according to their multiplicity. Denote
pl(z) = (Z - 51) T (Z - 5%)7 pZ(Z) = (Z - §%+1) T (Z - £Z/> (1)

The representation
p(2) = p-(2)z"p1(2), |2[ =1, (2)
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_ pi(2)
===

p+(2) = pa(z), is called the Wiener—Hopf factorization, and
p(2) = p(2)p2(2) (3)

is the corresponding polynomial factorization of p(z).

We consider coefficients of a polynomial p(z) as initial data and coefficients of its
factors as output data of the problem. The naive method of the polynomial factorization
is to use formulas (1). However it is well known that roots of a polynomial are in general not
well-condition functions of its coefficients (see, e.g., [8]), and coefficients of a polynomial
are also not well-condition functions of its roots [9]. The latter means that, in general, we
can not solve numerically the polynomial factorization problem by the naive way.

Nevertheless there exist numerical methods for solving of the problem. The basic works
in this direction are cited in [10].

In this work we propose approach that is close to Algorithm 3 of D.A. Bini and
A. Bottcher [10] but our algorithm permits to obtain coefficients of the factor p;(z),
pa(z) simultaneously. In addition, we find effective upper bounds for the accuracy of the
factorization factors. Note that our technique can be extended to the factorization problem
for analytic functions. In this case we can obtain all coefficients of the polynomial factor
and a required number of Taylor coefficients of the analytic factor.

where p_(z)

1. Preliminaries

Throughout this paper, ||| means the Holder 1-norm ||z|| = |z1| + - - - + |2x|, where
= (z1,...,71)" € CF. For a matrix A € C** we always use the induced norm ||A| =
maxi<j<p gy | Ayl

Respectively, the norm of a polynomial p(z) = py + p1z + -+ + p,2” is the norm
of the vector (po,p1,--.,p,)". For p(z) we will also apply the maximum norm |[[p|lc =
max,er |p(2)| on the unit circle T.

The norms ||-|| and || ||¢ are equivalent. Clearly, ||p||c¢ < ||p]|. Since for p(z) it is fulfilled

v

2
LN 1 i
the equality Y |pef* = 5 [ Ip(e) i, we have ol < VETTlpla < VI Tlple
k=0 0

Thus,
Iplle < llpll < Vv +1]plc. (4)

In order to study stability of the factorization problem, we will need estimates for
the norm of inverses of some Toeplitz matrices. Such estimates will be obtain in terms
of ||p1]| - |[p2ll, where pi(z), p2(2) are the factorization factors of p(z). To get effective
estimates, it will be required to estimate ||p|| |[p2| via ||p]|-

Let ¢(2) = q1(2)q2(2), where ¢1(2), g2(2) are arbitrary monic complex polynomials and
v = deggq. It is obvious that ||q|| < [|¢1]| lg2]|.- In the work [11], D.W. Boyd proved the
following inequality ||q1/|c ||g2llc < 6”|lqllc, where 6 = €2¢/™ = 1,7916228120695934247 . . .
and G is Catalan’s constant. The inequality is asymptoticaly sharp as v — oo.

Taking into account (4), in our case we obtain

lpll < llpall lp:ll < 6"/ (3¢ + 1) (v = 5 + 1) |Ipll. (5)

However, the exponential factor §” can overestimate the upper bound. In some special
cases we can obtain more precise estimates. For example, this can be done for a so-called
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spectral factorization of polynomials. In order to take into account a specific character of
a given polynomial p(z), we will use the inequalities

Il < llp [l lp2ll < dollpll, (6)

instead of (5). Here 1 < 8y < §"\/(3¢+ 1)(v — s+ 1).

2. Basic Tools

Let M, N be integers, M < N, and ci} = (car,cars1,---,Cn) a nonzero sequence of
complex numbers. In this section we introduce notions of indices and essential polynomials
for the sequence cjj. These notions were given in more general setting in the paper [12].
Here we will consider the scalar case only. The proofs of all statements of this section can
be found in [12].

Let us form the family of Toeplitz matrices Ty(cly) = (¢i—j)imkpt1,..n, M < k < N,
5=0,1,....i— M

and study the sequence of the spaces ker Ty(cjY). Further it is more convenient to deal
not with vectors Q = (qo, q1,---,qu_ar)? € ker T}, but with their generating polynomials
Q(2) = qo+q 2+ -+ qr_n 2", We will use the spaces N, of the generating polynomials
instead of the spaces ker T).. The generating function Z;V:M 2" of the sequence cj} will
be denoted by ci¥(z).

Let us introduce a linear functional o by the formula: 6{2’} = c_;, —N < j < —M.
The functional is defined on the space of rational functions of the form Q(z) = Z;zjvﬁ N GA
Besides this algebraic definition of o we will use the following analytic definition

7QE) = 5 [1eia dr ©

Here I' is any closed contour around the point z = 0.
Denote by N (M < k < N) the space of polynomials Q(z) with the formal degree
k — M satistying the orthogonality conditions:

o{z7'Q(2)} =0, i=k,k+1,...,N. (8)

It is easily seen that N is the space of generating polynomials of vectors in ker Tj.
For convenience, we put Ny, _; = 0 and denote by My the (N — M + 2)-dimensional
space of all polynomials with the formal degree N — M + 1. If necessary, the more detailed
notation N (ciy) instead of Ny is used.

Let dj, be the dimension of the space NV}, and Ay = dy —dp_1 (M <k < N +1). The
following inequalities are crucial for the further considerations: 0 = Ay < Apyyg < ... <
Ay <Any =2

It follows from the inequalities that there exist integers p; < po such that

Ay = ... = A, =0
Apsr = ... = Ay, = 1, (9)
AH2+1 == .. = AN+1 - 2

If the second row in these relations is absent, we assume p; = po.
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Definition 1. The integers uy, po will be called indices of the sequence cpy.

It is easily seen that N} and 2N, are subspaces of Nj 1, M —1 < k < N. Let hpyy
be the dimension of any complement H;; of the subspace N} + zN; in the whole space
Nt

From (9) we see that hy1 #0iff k= p; (j =1,2), hppr = 1if g < po, and hyyq =2
for p1 = pio. Therefore, Njy1 = N + 2Ny, for k # pj, and Niyq = (N + 2Ny) @ Hyyq for
k= p,

Definition 2. Let uy = ps. Any polynomials Q1(z), Qa(z) that form a basis for the
two-dimensional space N, 11 are called the essential polynomials of the sequence ey
corresponding to the index py = ps.

If uy < po, then any polynomial Q;(2) that is a basis for an one-dimensional
complement H, 1 is said to be the essential polynomial of the sequence corresponding
to the index pj, j =1,2.

3. Main Results

In this section we propose a method for solving the problem of the polynomial
factorization in terms of indices and essential polynomials of some sequence. The proofs
of the theorems of the section can be found in preprint [13].

Let p(z) = po + p12 + - - + p,2” be a polynomial of degree v > 1, py # 0, p(2) # 0 on
the unit circle T, hence p(z) # 0 on a closed annulus K := {z € C: r <|z| < R} for some
0<r<1<R<oo. Let > =indyp(z) be the number of zeros of the polynomial inside
the unit circle. We can assume that 0 < » < v, otherwise the factorizations are trivial.
Put ng = max{s, v — x}.

We will find the factorization of p(z) in the form (3): p(z) = p1(2)p2(z), where deg p; =
2, deg ps = v — 7, the polynomial p;(z) is monic, and all zeros of p;(2) (respectively pa(2))
lie in the domain {z € C: |z| < r} (respectively in {z € C: |z| > R}). This means that

p(z) = p—(2) 2"p(2), z€T,
is the Wiener—Hopf factorization of p(¢) normalized by the condition p_(oco) = 1. Here

p_(z) = Plzﬂf), p+(2) = pa(2). Let p~1(2) = Y72 ck2" be the Laurent series for analytic

function p~!(z) in the annulus K,

1
Cr = = t Nt dt, k€ Z, r<p<R. (10)
271
|z|=p
Form the sequence ¢}, %, = (c_p—sy .., Csey . . ., Cny,) for the given n > ng. It is easily

to verify that the sequence is non-zero.

Theorem 1. For any n > ng the integers —s,—x are the indices, and Q1(z) =

2" (2), Qa(2) = pa(2) are essential polynomials of the sequence ¢ %,

From the theorem it follows that there exist the essential polynomials Q1(2), Q2(2) of

n—x»

the sequence ¢}, % such that the following additional properties are fulfilled:
1. deg Ql(z) =n-+ 17 QI(O) = O; Ql,n+1 =1.
2. deg QQ(Z) <n-+ 17 QQ(O) 7& 07 O—{Z%QQ(Z)} =1
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Vice versa, if Q1(2),Q2(2) € N_,.+1 and satisfy conditions 1-2, then Q(z), Q2(z) are
the essential polynomials of the sequence ¢,

—n—ix*

Definition 3. Let n > ng. Polynomials Q1(2),Q2(z) € N_,.1(c %) satisfying
conditions 1-2 will be called the factorization essential polynomials of ¢} %,.
Theorem 2. The factorization essential polynomials are uniquely determined by
conditions 1-2. Let n > ng+ 1, suppose that Ry(z), Ro(2) are any essential polynomials of

the sequence ¢, %,. Then the factorization essential polynomials of ¢ %, can be found by
the formulas

R1 (Z) R2(Z)
Rip Rap

1

0o

Ri(z)  Ra(2)
Rl,n—i—l RQ,n+1 ‘

@(z):gil CQule) = (11)

Here R;o = R;j(0), Rj41 is the coefficient of 2" in the polynomial R;(2), j = 1,2, and

o

Now we can construct the Wiener—Hopf factorization of a polynomial with the help of
the factorization essential polynomials.

RLO R270
Rl,n+1 RQ,nJrl

Ri(z) Ra(2)

o1 —
Rl,nJrl R2,n+1

# 0, aoza{z”

Theorem 3. Let n > ng and let Q1(z), Q2(2) be the factorization essential polynomials

of the sequence c_,,”,. Then the Wiener—Hopf factorization of the polynomial p(z) can be
constructed by the formula p(z) = p_(2)z"p4(z), where

p-(2) =27"Qu1(2), ps(2) = Qa(2). (12)

The following theorem about explicit formulas for the factors of the Wiener-Hopf
factorization of a polynomial p(z) is the main result of the section.

n—x»

Theorem 4. The matrices T, (c_n_%) are invertible for all n > ny.
Let n > ng + 1. Denote by a = (g, . .. ,Ozn)T and 5 = (Bo, . .. ,5n)T the solutions of
the systems
T (e a=—(c2)", To. (e ) b=, (13)

respectively. Here e; = (1,0, ... ,O)T.
Then oy = ... =ay,_,, =0, 8o #0, By_,.s1 = ... = Bn =0, and the factors from the
Wiener—Hopf factorization of p(z) are found by the formulas

P-(2) = 2 (Qnsest + o F 02+ 27), palz) = Bo+ Brz o+ BT

4. Some Computational Aspects of the Factorization Problem

In this section we consider some computation problems that arise in a numerical
implementation of the results of Section 3.Our aim is to obtain the factors pi(z), pa(z)
with the guaranteed accuracy. The proofs of the statements of the section can be found in
preprint [13].
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4.1. An a Priori Estimate of the Condition Number
for the Factorization Problem

Theorem 4 shows that solving of the factorization problem is equivalent to solving of
linear systems with the invertible matrix 7°,,(¢",”.,), n > ng := max{s, v — s}.

Here we obtain an upper bound for the condition number k(7_,(c".”.)) =
T, ("2 )T ( c".7.)| in terms of the given polynomial p( ).

Denote mg = min.cx |p(2)|, m1 = min =1 [p(2)], p = max{r,1/R}. Then the

following estimate of the condition number is fulfilled.

Theorem 5. Forn > v

K(T_.(c"-%,)) < min { Tf;( (1 +p

—n—x

(2n—i—1)(50
“ [ Ip ||} (14)

4.2. Computation of the Laurent Coefficients of Analytic Functions

To realize the factorization method proposed in Section 3 we must calculate the
Laurent coefficients ¢, _,.,...,C_,,...,Ch_, of the function p~'(z) for n > ng =
max{ s, v — x}.

In general, the coefficients can be found only approximately. In order to do this, we will
apply the method suggested by D.A. Bini and A. Béttcher (see Theorem 3.3 in [10]). For
future applications we will consider more general situation than in this work. Moreover,
our proof differs from the proof in the above mentioned paper.

Let f(z) be a function that analytic in the annulus K = {z € C:r < |z| < R} 0<

r <1< R < oo. By fi denote the Laurent coefficients of f(2): fr = ﬁ f R f(t) dt,
[tI=p

r<p<R. Forl keZ l>2 define fp({) = Zj é f:fj), where w; = ¢“7'7 are the zeros

J

of the polynomial z¢ — 1.

Theorem 6. Let My = max |f(2)], p=max{r,1/R}, and € be an even positive integer.
zeE

Then
fi = fe(O)] < =——5p" 15
= o)
fork=—0/2,...,0,....0/2.
By the theorem, in order to compute every element of the sequence fyr, fare1, .- [

with the given accuracy, we have to select an appropriate number ¢.

4.3. Stability of the Factors pi(z), p2(2)

Now we study the behavior of the factors p;, p2 under small perturbations of p(z).

Let m; = \HIH—I} Ip(2)|. Tt is easily seen that p(z) # 0 on T and indrp(z) = indpp(z) if
lp — Pl < my. Let p(2) = p1(2)p2(2) be the factorization of p(z). By ¢; we denote the

Laurent coefficients of p~!(z). Estimate ||p1 — p1l, ||p2 — p2|| via |lp — P||.
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Theorem 7. Let n >no+ 1. If [[p—p|| < mln{ 5 ,#W}, then

~ 4(2n + 1)do||p|| | dollp]| 1+ p ~
I~ < 222 0l (RN gy (16)

m3 myg 1—p
" 20+ DRl
~ n -+ P ~
lp> — pal < e =PIl (17)
my

Now we consider perturbations of the polynomials p;(z ), pg( ) caused by the
approximation of the sequence c”,”, by ¢”,”, , where ¢, = 5 ZJ —0 55 0F et n(2),

P2(z) be polynomials that define by Eq. (13) for the sequence ¢, ”,

Theorem 8. Let n > ng+ 1, ¢ is an even integer such that ¢ > 2(n + ), and

0/2
r_ < M . (18)
1—p" = 2(4n+2)d | p|
Then 5 5 o2
- 2(4n — 2 200(1 +
oy o] < 260200l [20004 2l ]
mg (1 —p)mg 1—p
_ 2(4n + 2)62||p||> p*?
||p2_p2|| < ( )OH || .
Mg 1—p

From the theorem it is easy to find the estimate of ¢ in order to obtain the factors
p1(2), pa(2) with the given accuracy e.

Corollary 1. Let 0 <e <1 and

_o i d - Sollpll L+ )Y -y,
"3 l7] {<4 2>(” mK<1—p>)’<4 ”)50””'}'

If ¢ is an even integer such that
log <,/1+$+%)

| log p|

0> 2max { n+ s, , (19)

then ||p1 — pi|l <e, |lp2 — P2l <e.

5. Algorithm and Its Implementation
5.1. Algorithm

The above results can be summarized in the form of the following algorithm.

Algorithm. Polynomial factorization

INPUT. The polynomial p, the parameter par giving a variant of estimate of ||p1]| - [|p2||
via ||p|| (par = 1,2, 3), the integer n > degp, the accuracy A = 1077 for p: ||p — p|| < A.
OUTPUT. The polynomials p;, p» obtained with the guaranteed accuracy ¢, €.

COMPUTATION.
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1. Compute the index s of p.

2. Compute the radii r, R of the circular annulus K and p = max{r,1/R}, compute
my = minp, = [p(2)], mx = min.cx [p(2)].

3. Find accuracy €1, €5 for pi, po by formulas (16), (17). Compute the theoretically
guaranteed accuracy ¢ := max{ey,es}. Define d such that ¢ < 107%

4. To compensate the loss of accuracy under calculations with the Toeplitz matrix
T ,.(c””,) we must improve accuracy of Laurent coefficients c¢;. To do this we

estimate the condition number k of the matrix by formula (14), find d such that
k < 10% and put £ := 107974,

5. Find an even integer ¢ satisfying inequality (19) (in the inequality put ¢ = €).

6. Form the sequence ¢ *

—n—i-*

7. Form the Toeplitz matrix T, (¢, ”,) and find a basis { R, Ry} of its kernel. The
last operation can be done with the help of SVD.

8. Find the factorization essential polynomials Q1(2) = ayz+- - -+, 2"+ 2" Qq(2) =
Bo + Bz + -+ -+ Bnz™ by (11).

9. Verify that the absolute values of the coefficients aq, ..., an s, By—ss1,--., B are
less than ¢ and delete these coefficients (see Theorem 4).

10. pi(z) == 27" 7Q1(2), pa(2) = Qa(2), €.

11. end

5.2. Implementation in Maple

The algorithm was implemented in Maple as the module "PolynomialFactorization".
The module can work in Maple 17. To access "PolynomialFactorization", use the
commands

> read("PolynomialFactorization.mpl");
> with(PolynomialFactorization) ;

Then it is necessary to set the value of Digits taking into account initial data. If the user
needs the results of intermediate calculations, then to set

> PrintOn:= true;

The basic routines of "PolynomialFactorization" are indpoly, annulusn (annulus),
condnpoly, getellpoly, LaurentCoeff, factesspoly, SolverPF.

e indpoly returns the index s of the polynomial p found by formula (12.6) from [14].

e annulusn returns p, mg.
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condnpoly returns the estimate of the condition number k by formula (14).

getellpoly returns the integer ¢ required for calculation of the Laurent coefficients
with the given accuracy €.

LaurentCoeff returns the sequence c; of the Laurent coefficients of the function
1/p.

factesspoly returns the factorization essential polynomials.

SolverPF returns the factors pi, po, and the guaranteed accuracy ¢ of calculation.

The polynomial factorization is realized by routine SolverPF. The following input
data are passed to SolverPF:

a polynomial p in a variable z.

the parameter par taking the values 1,2, 3. A value of par gives a variant of estimate
of ||p1]| - [|p2|| via ||p||. If p = Z?ZO p;2’ be a real polynomial of degree 2m such that
Pam—j = p; for j =0,...,m, pp = 1, and all roots of p(z) have negative real parts,
then par = 1. If p = Z?:o p;z’ be a complex polynomial of degree 2m such that
Pam—j = p;j for j =0,...,m, pp = 1, then par = 2. If p is a polynomial of a general
kind, then par = 3.

an integer n > deg p, where 2n + 1 is the length of the used sequence ¢ ” .

the accuracy A = 1077 of calculation p.

Here is the example to call the program.

vV V V

Digits:= 15;
p:= 1+3iz/2+z"2;
pl, p2, epsilon := SolverPF(p, 2, 3, 10°(-10)):

"Calculation in progress ...."
"End of calculation"

> pl;

1.00000000000000%z-0.500000000000004*1
> p2;

1.00000000000001%z+1.99999999999999*1
> epsilon;

0.00000755534207942884

6. Numerical Examples

In the following examples we use module "PolynomialFactorization”. All computations
were performed on a desktop.

The polynomial p(z) in Example 1 satisfies the conditions of Proposition 2.2 from [13],
and its Wiener — Hopf factorization is actually the spectral factorization.
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Example 1. Let p(z) = (z+1/2)(z+1/3)--- (2+1/12)(2+2)(2+3) - - - (2 + 12). Taking
into account the values of the coefficients of p(z), we choose the precision Digits := 20.
Assume that the accuracy of the input data A is equal to 1071,

We have v = 22, » = 11, ||p|]| = 20237817600. Computations show that p := 0,51,
my = 3,326340 x 10°, my = 30,448076. Put n = v + 1 = 23. Here par := 1 and
dp = 1. Calculation of the theoretically guaranteed accuracy e gives the following result
e =0,695883 x 107°. By formula (14), we obtain the following estimate k(7_,.(c",,%,.)) <
2,859480 x 10°. Tt follows from this that £ = 10722 and we get ¢ = 136.

In this example the exact output is known

m(z)=(z+1/2)(z+1/3)--- (2 +1/12), po(2) =(z+2)(2+3)--- (2 + 12).

Table 1 shows the results of approximate computations of the factors pi(2), pa(z). It
contains coefficients pj, ps, absolute errors |p; — py|, |p2 — pi| for the coefficients pj., p3,
and ||py — p1l|, |p2 — p2||. For p}, p2 the number of decimal places obtained accurately is
shown.

Table 1
Coefficients p}, p2

k Pi P — il P [Pk — Dl
0 0 2,087675¢-9 | 479001600,00000 | 1,04000e-9
1 0 1,60751e-7 | 1007441280,00000 | 1,26000e-8
2 0 0,55114e-5 | 924118272,00000 | 3,78100e-8
3 0,00011 | 1,97436e-18 | 489896616,00000 | 5,78000e-8
4 0,00145 | 4,98731e-17 | 167310220,00000 | 5,46800e-8
5 0,01300 | 9,54140e-17 | 38759930,00000 | 3,62700e-8
6 0,08091 | 1,20571e-16 | 6230301,00000 | 2,20830e-8
7 0,34928 | 1,18000e-16 |  696333,00000 | 1,81875e-8
8 1,02274 | 8,87000e-17 | 53130,00000 | 1,72958¢-8
9 1,92925 | 4,76000e-17 2640,00000 1,24386¢-8
10 2,10321 | 1,40000e-17 77,00000 2,80480¢-9
11 1,00000 0 0,999999 9,23655¢-9

151 — ol 0,56743e-5

P2 — pal 2,82246e-7

Thus |[py — p1] = 0,56743 x 1075 < 0,695884 x 10~° = ¢, and ||js — ps|| = 2, 82246 x
1077 < 0,695884 x 107° = £. We obtain p;(2), p2(2) with the desired accuracy.

The following example was taken from [10]. Since p(z) has real coefficients p; and
Pu—j = pj, then the factorization of p(z) is also the spectral factorization.

Example 2. Let p(2) = >..0, 2" + 42°, Digits := 20, A = 1072, Now p = 0,83,
my = 1,542464, my — 0, 062855,

In this example v = 10, e =5, ||p|| = 15, n = v+1 =11, par := 2, §o = k+1 = 6. For
the accuracy € we obtain e = 0,536458 x 10~*. From formula (14) it follows the following
estimate k(T_,(c",,7.)) < 1342,008991. This yields £ = 1077 and ¢ = 418.

—Nn—x
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Table 2

Coefficients py., p2

k
Py
Pi

0
0,23193
4,31154

1
0,20715
0,46071

2
0,17674
0,61452

3
0,14253
0,76203

4
0,10685
0,89314

5
1,00000
1,00000

The computed coefficients of the factors pi(z), pa(z) are given by Table 2. We only
indicate 5 decimal places here.

In order to verify the computation correctness of ps(z), we can use the following relation
between the factors p1(z) and po(2) in the spectral factorization: pa(2) = 2*p1(1/2)/p1(0).
For our example we have ||ps — z”p1(1/2)/p1(0)]] = 7,36 x 1078, Moreover, the residual
error is ||p1p2 — p|| = 8,1 x 10718,

In the next example the random polynomial p(z) was generated with the help of
package Random Tools.

Example 3. Let

p=z"— T B, (% + %i) 25+ <—§ - %z) 2T+
30 10 60 135 15 135
+ (—g + @z> 25+ (ﬁ + Ez) 25+ (—E + ﬁz) 2+ (z — gz) 2+
60 135 60 135 6 135 3 3

n 1+814, 2 39+58_ . 61+16,
— —1 )z —+ =iz —— 4 —1
135 10 15 60 9 )’

Digits := 20, A = 1078, Calculations show that p = 0,943396, m; = 2,293009, myx =
0,66281.

Table 3

Coefficients py., pr

Pi P

—0,099841 — 0, 150475¢

—5,090491 — 10, 1339124

—0,236722 + 0,1185271

—14,129949 + 0, 5520431

—0, 385402 — 0, 732498¢

—4, 543939 + 4, 8384371

1,00000 —7,958489 + 1, 840704¢
—5,515909 + 9, 6453271
4,196252 + 7, 320240z
0, 930308 + 0, 031004«
—0,181264 + 0, 732498

1, 000000

O[T = | W N = O

For the polynomial we have v = 11, . =3, n = v + 1 = 12, ||p|| = 42, 442968. Since
p(z) is a polynomial of general type, par := 3, §y = 3663, 225630 is found by the formula
8o = 6"\/(s+ 1)(v — 2+ 1). By this reasons, we are forced to use more accurate input
data. Then the guaranteed accuracy in the output is € = 0, 254667 x 1074

From formulas (14) we obtain the estimate k(7_,(c",”..)) < 1342,00899. Hence € =
10726 and ¢ = 2096.
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The computed coefficients of the factors p1(z), pa(z) are given by Table 3. The residual

error is ||p1p2 — p|| = 4,354070 x 1077,

Let p1(2), p2(2) be the factorization factors of p(z) obtained by the naive method (via

the roots of p(z)). Then ||p1 — p1]| = 1.3 x 1071 |[p2 — p2|| = 5,239393 x 1075.

Acknowledgement. The program module "PolynomialFactorization” was designed in
collaboration with VI.M. Adukov. The author is grateful to him for his tnvaluable help
i Programming.
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AJITOPUTM IIOJIMHOMUAJIBHO ®AKTOPU3AIIIU U ETO
NMMIIJIEMEHTAIINA B MAPLE

B.M. Adyxos, HOxxHo-YpanbCcKuili Tocy1apcTBEHHBINH YHUBEPCHTET, T. e Ia0MHCK,
Poccuitickas ®exepamnust, adukovvm@susu.ru

B pabore mpeanoxken agroputM dakropusanuu Bunepa — Xornda cKaagapHBIX MHOTO-
YIeHOB. ANTOPUTM, OCHOBAHHBIN HA TOHATUAX WHIEKCOB U CYIIECTBEHHBIX MHOTOYJIEHOB,
MO3BOJIAET HAUTH (DAKTOPU3ANMOHHBIE MHOXKHUTEIH MHOTMOWIEHA € TapaHTHPOBAHHON TOY-
HOCTHIO. MeTon uCnosib3yer BhIMUCIEHHsT ¢ KOHEYHBIMU TEITUIEBbIMA MATPUIIAMHI U JIAeT
BO3MOYKHOCTH MOJYUATEH KOI(DDUIHMEHTH 000uX (haKTOPU3AIMOHHBIX (DAKTOPOB OTHOBPE-
MeHHO. PaccMOTpeHBI BEIYUCIUTETBHBIE ACITEKTHI aJiropuTMa. Halinena anpuopHas OIleHKa
qucjia 00yCIIOBIEHHOCTY KCIONIB3YEMOM TemuieBoii MaTpunbl. Ilogydenbr dopMmysbl mjis
BBIYUCJIEHHUS JIOPAHOBCKUX KOIGDDHUIMEHTOB € 3aJAHHON TOYHOCTHIO i (DYHKIHH aHATU-
TUYECKUX U HE 00PAIIAIONINXCS B HYJIb B KOJBIEBOH OKPECTHOCTH €IUHUIHON OKPYKHOCTH.
Nzydena yeroiianBoCTb (haKTOPUBAIUOHHBIX MHOKUTEEH. YCTAHOBIEHBI BEPXHIE IPAHUIIBI
TOYHOCTY BBIUHCIEHUS (DAKTOPUIANUOHHBIX MHOMKHUTemed. Bee onenkn spisitorest a¢ddex-
TuBHBIMEA. [IpeTocKeHHbII aaropuTM OBLT PEATM30BaH B KOMIBIOTEpHOI cucteme Maple B
Buae monyna <PolynomialFactorizations. YncaeHHbIE SKCIEPUMEHTHI ¢ MOIYIEM TOKA3AIN
XOpOITIee COTIIACHE C TEOPETHIECKHM HCCIICTOBAHUEM.

Karoueente caosa: axmopusavyus Bunepa — Xonda, nosuHoMuaibHas Gaxmopusayua;
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