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When we consider the control design of practical systems (chemical engineering
systems, lossless transmission lines, large-scale electric network control, aircraft attitude
control, flexible arm control of robots, etc.), time-delay often appears in many situations.
Singular time delayed systems are the dynamic systems described by a mixture of algebraic
and differential equations with retarded argument. This paper investigates the geometric
description of initial conditions that generate smooth solutions to such problems and
the construction of the Lyapunov stability theory to bound the rates of decay of such
solutions. The new delay dependent conditions for asymptotic stability for the class of
systems under consideration were derived. Moreover, the result is expressed in terms of
only systems matrices that naturally occur in the model, therefore avoiding the need to
introduce algebraic transformations into the statement of the main theorem.

Keywords: singular time delayed systems; stability in the sense of Lyapunov; consistent
initial conditions.
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Introduction

It is well-known that in some systems we should consider their dynamics and statics
simultaneously. Singular systems (also referred to degenerate, descriptor, generalized,
differential-algebraic or semi-state systems) are systems which dynamic is governed by
the complexity of algebraic and differential equations. Recently, many researchers have
paid much attention to singular systems so they have accomplished numerous interesting
conclusions. The complex nature of singular systems generates many difficulties in their
analytical and numerical solution, particularly, when we deal with control problems.
Recently, time delay singular systems have been one of the major research fields of
the control theory. During the past three decades singular systems have attracted much
attention due to the comprehensive applications in economics (e.g. the Leontief dynamic
model), in electrical applications using the theory described in [1], in mechanical models [2],
ete. Singular systems in control theory were initially discussed in [3] and [4]. Such systems
are represented by the combination of the differential and algebraic equations using the
state-space formalism. Due to the existence of the algebraic equations (constraints to
the system), the investigation of singular systems is more complicated than the study
of regular systems. The survey of updated results for singular systems and the broad
bibliography can be found in [1,5-11] and in the two special issues Circuits, Systems and
Signal Procesing [12,13].
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A specific nature of singular systems is well documented in the figure. Models in this
form have some important advantages in comparison with the models in the normal form,
e.g. when E = I. These models preserve the sparsity of the system matrices (many entries
of system matrices are equal to zero). There is a tight connection between the system
physical variables and the variables in the model. The structure of the physical system is
well reflected in the model. These equations are easily derived and it is not required to
eliminate the unwanted (redundant) variables, as there is no need for the formulation of
the state variables. By now, the scientific community have comprehensively investigated
time delay systems. The engineering practice required some practical solutions, including
stability investigations in various technical systems, such as the electric, pneumatic and
hydro-electrical complex systems, processes in chemical industries, complex transmission
systems, etc. Time delays present in the system state variables or in the control signals can
be the cause of undesirable system performances including inadequate transient response
or instability. Consequently, stability analysis of such systems became one of the major
topics in many research studies. Generally speaking, the existence of time lag and its
corresponding components makes the investigations more demanding in adopting the
adequate mathematical tools.

Investigation of the systems with time delay includes mainly two approaches. The
first one implies finding the condition for the system stability that does not incorporate
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any knowledge related to the time delay. The second method utilizes the system delay
(lag, latency) that is incorporated in the conditions for system stability. The first group
of mathematical equations is usually referred as the delay-independent criteria, and
it generally provides algebraic conditions that can be applied in calculations without
additional complications. When we consider the control design of practical systems
(chemical engineering systems, lossless transmission lines, large-scale electric network
control, aircraft attitude control, flexible arm control of robots, etc.), time-delay often
appears in many situations. When time delay is small, it can be ignored. If it is large,
however, it may cause instability in the system. We should emphasize that many systems
have the phenomena of time delay and singularity simultaneously. We call such systems
singular time delay differential systems. Such systems have many special characteristics,
and their investigation is not a trivial task. In this paper we will discuss the recent advances
in this area and present some new results.

1. Nomenclature and Preliminaries

Many research papers have addressed the Lyapunov stability of particular classes of
linear singular time delay systems. They usually employ the LMI approach [14-16].

In this paper, our results are based on the second Lyapunov method and the geometric
approach. In that sense, these results can be treated as the further extension of the
papers [17-22] providing contributions in the form of the weak Lyapunov algebraic matrix
equation with some additional constraints. We suggest a new approach to the stability of
singular time delay systems. The results are directly expressed in terms of matrices F,
Ag and A; naturally occurring in the system model. In this approach there is no need to
introduce any canonical form in the statement of theorems. The geometric consistency
theory provides a natural class of positive definite quadratic forms on the subspace
containing all solutions. This fact makes the construction of the Lyapunov stability
theory possible even for the linear continuous singular time-delay systems. Moreover, the
attractive property is equivalent to the existence of symmetric positive definite solutions
of a weak form to the Lyapunov matrix equation, incorporating conditions which refer to
the boundedness of solutions.

The following denotations are used in this study: R"™ denotes the n-dimensional
Euclidean space, C" is a complex vector space and R™*™ is the set of all real matrices of
dimension (n x m). Superscript T stands for the matrix transposition. X > 0 means that
X is a real symmetric and positive definite. I stands for the identity matrix. If dimensions
of matrices are not explicitly stated, they are assumed to be appropriate for algebraic
operations.

Consider the generalized equation for the time delay singular control systems in its
differential form:

(1)

where z (t) € R™ is a state vector, u (t) € R™ is a control vector, F (t) € R™ ™ is a singular
matrix, ¢ € C ([—7,0], R") is an admissible initial state functional, C' ([—,0], R") is the
Banach space of continuous functions mapping the interval [—7,0] into R™ with topology
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of uniform convergence. The state vector function satisfies:
f():ITxR"xR" x R™ — R", (2)

and it is assumed to be smooth to guarantee the existence and uniqueness of solutions
over an infinite time interval.

The same vector function has the continuous dependence of the solutions denoted by
x (t,t9,Xo) with respect to ¢ and the initial data. R™ is the state space of system (1) and
| - || is the Euclidean norm. V' : J x R™ — R™ is the tentative aggregate function, so that
V (t,x(t)) is limited and for which || x (¢) || is limited as well.

The Eulerian derivative of V (¢,x (t)) along with the trajectory of (1) is defined as:

. OV (t,x (1))

V(t,x(t)) 5 + [grad V (t,x ()] T W E (), (3)

where matrix W is the solution of following matrix equation [23]:
[grad V (¢, x (1))]" = [grad V (t,x (t))]" ¥ E. (4)

In this study we focus our attention on the linear continuous time delay singular
systems:

Ex(t)=Ax(t)+ Ax(t—1), (5)

where the compatible vector valued function of the initial conditions is known and has the
form

x(t)=o¢(t), —7<t<0, (6)

matrices Ay and A; are constant matrices of adequate dimensions. It is assumed that
rank £ =r < n.

In the further analysis we consider the case when the subspace of consistent initial
conditions for a singular time delay system coincides with that of the singular non-delay
system.

Remark 1. The singularity of matrix F ensures that solutions to (5) exist only for special
values of ¢ (t) e W, Vt € [-T,0].

cont

It was shown in [24] for the singular system (5) without delay that the subspace of
consistent initial conditions W is the limit of the nested subspace algorithm:

Wio=R"
' (7)
* -1 * .
k1) = Ao (EWk,(j))AFO’ 320
Moreover, if ¢ (t) € W, Vt € [—7,0] then x (t) € W} Vit > 7 and (AE — Ap) is invertible

for some A € C (condition for uniqueness), then W; N R (E) = {0}.
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2. Necessary Definitions and Lemmas

Definition 1. [26] The matriz pair (E, Ao) is said to be regular if det (sE — Ag) is not
tdentically zero.

Definition 2. [26] The matriz pair (E, Ao) is said to be impulse free if
deg (det (sEE — Ap)) = rank E.

Definition 3. The linear continuous singular time delay system (5) is said to be reqular
and impulse free, if the matriz pair (E, Ao) is reqular and impulse free.

The linear continuous singular time delay system (5) may have an impulsive solution,
however, the regularity and the absence of impulses of the matrix pair (E, Ap) ensure the
existence and uniqueness of an impulse free solution to the system under consideration,
which is defined in the following Lemma.

Lemma 1. [26] Suppose that the matriz pair (E, Ag) is reqular and impulse free and
unique on [0, cof.

In the next section, we use stability definitions to derive the main result of this study.

3. Stability Definitions and Main Results

Stability plays a central role in the theory of systems and control engineering. There
are different kinds of stability problems that arise in the study of dynamic systems, such
as Lyapunov stability, finite time stability, practical stability, technical stability and BIBO
stability. The first part of this section deals with the asymptotic stability of the equilibrium
points of linear continuous singular systems. Since we consider linear systems, the latter
one is equivalent to the study of the stability of systems.

The Lyapunov direct method (LDM) is widely covered in a number of very well-known
references. Here we present some different and interesting approaches to this problem,
mostly based on the contributions of the authors of this paper.

Definition 4. The linear continuous singular time delay system (5) is said to be stable,
if for any € > 0 there exists a scalar § (¢) > 0, such that for any compatible initial

conditions ¢ (t), satisfying sup ||o(t)|| < d(e), solution x(t) to the system under
—7<t<0

consideration fulfills |x (t)|| < eVt > 0. Moreover if tlim Ix ()| — 0, system (5) is said
—00
to be asymptotically stable |26].

Due to the system structure and complicated solution, the regularity of the systems
is the condition to make the solution to singular control systems exist and be unique.
Moreover, if the consistent initial conditions are applied, then the closed form of solutions
can be established.

The new result presented here is based mostly on the result given in [24] and [35]. For
some other important details, used in paper, [31-35].

Lemma 2. Let there be given control system (5). Scalar aggregate function V (y (t)) is

defined as:
Viy@) =V @)=y t)Pyt)=y" (t)ETPEy*(t), (8)
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where vector y (t) has the form:

y (1) = Ey* ()
y* (t) zx(t)+g‘H(9) x (t — 6)df,
y(t) = Ey* () = Ex(t)+ E [ H(0) x(t — 0) df = (9)

where
1) H(0) is a continuous and differentiable (n X n)-matriz over time interval [0, 7]
satisfying following differential matriz equation

EH®W)=(Ag+EH(0)H(®), 9€l0, ] (10)

with initial condition
EH(T)=Ay; (11)

2) P is a symmetric positive definite matriz, eg. P = PT > 0.
Then, the Euler derivatives of V (y* (t)) along the trajectories of (5) are given as:

Vy (1) =y (O)y (¢, (12)

where
I1=E'P (A, + PEH (0)) + (Ay+ PEH (0))' PE. (13)

Proof. Based on the definition of V' (y (¢)), it follows that its derivative with respect to ¢
has the form:

V(y®))=y" )Py t)+y' (t)Py(t)=

T T T
d
= | Ex(t) + %E/H(H)X(t—ﬁ)dﬁ P Ex(t)+E/H(n)X(t—n)dn +
0 0
T T T
d
+ | Ex (1) —i—E/H(@)X(t—G)dH p Ek(t)+£E/H(n)x(t—77)dn =
0 0
. T
. (14)
| Ex+E /H(@)x(t—@)d@—H(r)x(t—T) FHOx®) ]| *
0
xP|Ex(t)+E[H (n)x(t—n)dn| + |x"(t) ET+ /xT (t—60)H" (§)do| ET] x
xP | Ex(t)+E /H(n)x(t—n)dn—H(T)x(t—T)+H(O)X(t) ,
0
whence it immediately follows that
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V(y(t)= ()’(T (t)ET + (} x" (t—0)H' (0) d6> ET—x"(t—7)H" (1) E™+

—i—xT(t)HT(O)ET)xP (EX —i—EfH (t—n)dn)—|—

+<£WQET+(!xTﬁ—ﬂ)HTwﬁw)E¢>x 1

X P (E}'{(t)JrE<{H(n)x(t—n)dn—H(T)x(t—T)+H(O)x(t))).

Since B (t) = Apx (t) + Ax (t — 1),
x"WET =x" () A] +x" (t—7)A],
EH )= (Aj+ EH (0))H(9), 9€]0, ], (16)
(Bfr() = HTET )= H (9) (A + EH (0))"
EH(r)=A, H (1)E" = A/,
we have:

V (y (t) GTt

) = ()ET+</XT(t9)HT(6‘)d9)ETXT(tT)HT(T)ET+
x (¢ HT (O)ET) Ex(t)+E

/H(n)X(tn)dn)+

X P x (t
+ (XT ) ET + <0fT x' (t—0) HOT (9) d9> ET) X

x P (Ei((t)—l—E (/H(n)x(tn)dnH(T)X(tT)—l—H(O)X(t)))

V(y (1) =

(( (v) Ay +x" (t—T7)A]) —i—(

—x' (t—-7)H' (E"+x" (t)H" (0)E") x P (Ex(t)+E/H(n)x(tn)dn) +

x"(t—0)H" (9) (Ao + EH (0))" d | —

o\ﬂ

+ <XT () ET + (/XT (t—0)H' () d@) ET) X P ((Aox (1) + Arx (t — 7)) +

+ /(AO—I—EH(O))H(n)X(tn)dnAlx(tT)+EH(O)x(t))) :

If we introduce:

Viy(®)=Vily(®)+Valy (1), (17)
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then, to make it easier to calculate, one can get

Valy(t)) = (xT(t)ETP+ (f x' (t — e)QT(e)de) ETP) X (on(t)+

T (18)
+A1x(t —71) (E! (Ao + EH(0))H(n)x(t —n)dn — Ayx(t — 7) + EH(O)X(t))) :
x' (t)AJ PEx(t) +x" (t —7) Al PEx(t) +
G @)= | +[xT 000 @) A0+ BHO) PEx(Od— |+
T (t—7)H ( )ETP Ex( )+ xT (£) H (0) BT PEx (1)
x' (t)Aj P x EfH x (t —n)dn+
+xT(t— 1) ATP x EOfH(n)x(t—n)dn X EOfH(n)x(t—n)dnJr (19)
|+ TxT (¢ —0)HT (0) (Ao + EH (0))T Pdb x E [ H (n)x (t — ) dy—
X (t—7)HT (1) ETP x Eofﬁm)x<t—n)dn+
+xT () HT (0) ETP x EOfTH () x (t — ) dn
After some rearrangement it leads to:
V(y* (0)=y" ()11 y* (t) = 20
—yT () ETP (Ao + PEH (0)) + (4o + PEH (0))7) PEY" (1) (20)
O

Now, we are in the position to present our main result. The theorem below presents
the stability result for the singular time delayed system, described by (1), and is the result
of application of the second Lyapunov method.

Theorem 1. Let the reqular singular time delay system be described as in (1):
(a) Ex(t)=Ax(t)+ Ax(t—71),
(b) x(t)=9¢(t), —7<t<0, (21)
(c) xg € Wi\ {0}.
Under the assumption that algebraic system of equations in (21a) is purely algebraic,

e.g. without delays, the system, given by (21.a) and accompanied by (21b, 21c), is
asymptotically stable, if and only if:

1) Ay is an invertible matriz;

2) there exists a symmetric positive definite matriz P, such that

ETP ((Ag+ PEH (0))) + (40 + PEH (0)) ) PE = —Q, (22)
where Q) is symmetric, positive definite in the sense that
Yy () Q vy (t) >0 for all x(t) € Wi\ {0}, (23)
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and for t € [0 7] the matriz H (T) satisfies

EH V)= (Ao+ EH (0))H(9), Y€, ] (24)
with initial condition: EH(r) = A, (25)
d
o H(r) =0 (26)
elsewhere. H (0) is the solution to the following equation:
<EDE - ]> H(0)=0, E=\E—Ay)", for some \ € R. (27)
Proof. To prove sufficiency, note that [24]
Wi NN(E) = {0}, (28)
S0
V(' )=y" (t)ETPEy"(t) (29)

is a positive definite quadratic form on W;.

Under the condition given by (28), X( is a consistent initial condition, iff xo € W.
Moreover, X, generates a unique solution x (t) € W« (t > 0), which is real analytical on
(t, t > 0), |24]. Therefore, all smooth solutions x (t) belong to W+, and V (y* (t)) can be
used as the Lypunov function.

To prove necessity, note that

x(t) € Wi (t > 0), (30)
if
(EYEy—1)x0 =0, (31)

where the superscript "D" denotes the Drazin inverse and by applying the results of [1],
we get ~

yT(H)Q vy (t) >0
for all x (t) € Wi\ {0}, because @ is positive definite and satisfies

ETP+PE =, (32)
where -
E=Ey+e(EPE,— 1),
e >0, (33)
EO = AilEa

and P is a symmetric positive definite solution to the above equation.

Remark 2. If we have a time delay system only (cf. [25]), we have to solve a very
complicated nonlinear transcendental matrix equation:

eAotHONTF (0) = A4 (34)

with respect to H (0) in order to check asymptotic stability of system under consideration.
In original paper [25], a crucial mistake was made when solving (3) and using no
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representative matrix for system stability testing in the corresponding Lyapunov matrix
equation. The paper [20] gave an adequate counterexample the basic theorem and it was
demonstrated that their statement is incorrect. To eliminate this error, we was proposed
a new theorem formulation and showed how to correct the example given there.

Remark 3. The equation can be addressed using the fact that H (0) in (10) must satisfy
demand for consistent initial conditions to avoid impulsive solutions:

EPE—T)H(0)=0, (35)
(8°8-1)

where

E=(\E— Ay) ", for some A € R. (36)

Therefore, there is no need to solve a nonlinear transcendental matrix algebraic equation.

Conclusion

Generally, this paper extends some of the basic results in the area of the Lyapunov
stability to linear continuous singular time delay systems. A part of these results is hence a
geometric counterpart of algebraic theory of [1] enhanced with the appropriate criteria to
cover the need for asymptotic system stability under the presence of the actual time delay
term. We consider the geometric description of consistent initial conditions that generate
tractable and smooth solutions to such problems and analyze the construction of Lyapunov
stability for this class of systems. Testing the definiteness of the particular quadratic form
on subspace of consistent initial conditions can be a very complicated numerical task, but
it can be addressed by the approach based on the controllability and observability test
of systems matrices, first time presented in [2]. Some other aspects of singular time delay
systems, including different stability concepts, can be found in [27-31].
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174001: "Dynamics of hybrid systems with complex structures — Mechanics of materials”
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[MTPOTPAMMUWPOBAHUE

YAK 517.962.2 DOI1:10.14529 /mmp180409

COBMECTHOCTbH 11 YCTOMUYUBOCTD I10 JIAIIYHOBY

JINMHEMHBIX BBIPOXKJIEHHBIX CICTEM C 3AIIA3JBIBAHUEM:

TEOMETPUYECKUII ITOIXO0/1

J1.JI. JTebeavrosuy', H.M. Bysyposuw’, IB. Cumeyrnosu

3

YYuusepcurer Merarpenn, r. Bearpan, Cepbus
TapBapackas MeIuInuHCKas MKoaa, r. Bocron, Coeqmrennnie [TItaTer AMepukn
3Ynusepcurer Bearpana, r. Bearpaa, Cepbus

Ha npakruke npu paccMOTPEHUE PA3JIMYHBIX CUCTEM C YIIPABJICHUEM (XUMUYECKHEe WH-
2KEHEPHbBIE CHCTEMbI, JUHUU [1epejadn 0e3 morepb, KPyIHOMACIITaDHOE YIPABJIEHUE 3JIEK-
TPUYIECKOH CeThIo, yIIpaBeHne OpueHTaIell caMosiera, THOKoe yrnpasjieHune pykamu pobo-
TOB U T.JI.) 9aCTO BO MHOI'MX CUTYAIMSX Mbl MOKEM HAGII01aTh HATMYHE BPEMEHHOrO 3ala3-
JbIBaHus. BRIPOKIEHHBIE CUCTEMBI ¢ 3aMa3/bIBAHUEM SBISIOTCSI TUHAMUYIECKAME CHCTEMA-
MU, OIACBIBAEMBIMY B3aMMOCBI3aHHBIMU aareOpandeckumu u auddepeHnagIbHbIMU yPaB-
nenngamMu. B nanHoi paboTe ucciie 1y 0TCs reOMeTPUYECKHEe [IPEICTABIEHNS HA9AIbHBIX JTaH-
HBIX, KOTOPbIe 00ECTIEUNBAIOT TJIQIKOCTh PEIEHUH PACCMATPUBAEMBIX 3a1a4. TakxKe u3yda-
€TCsl TOCTPOEHNE TEOPUHU YCTONIUBOCTH JIAMyHOBA [ OrPAHUYEHUsT CKOPOCTH yObIBAHUS
pemrennit. JI7s1 0qHOTO KJAacca M3YyIaeMbIX CHCTEM TOJIYYE€HBI HOBBIE YCJIOBUS aCUMIITOTH-
9eCcKOll yCTOWYMBOCTH, 3ABUCAIINE OT 3aMa3IbIBaHUA. Bojee TOro, pe3ysibTaT BhIPAKAETCI
B TEPMUHAX MATPUIL, KOTOPBIE 33]AI0T CHCTEMY M €CTECTBEHHBIM OOPA30M BO3HUKAIOT IIPHU
MO/IEJIUPDOBAHUH, OJHAKO IIPU ITOM OTCYyTCTBYET HEOOXOAMMOCTH BBEJEHUS AJIIeOPANIECKUX
npeoOpa30BaHNil B yTBEPKIEHNE OCHOBHOI TEOPEMBI.

Karoueswie caosa: evipostcdenmpie cucmemss ¢ 3anasduéanuem; yemotwugocms no Ja-
NYHOEY,; COBMECTNHBIE HAYAALHBLE YCAOBUS.
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