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The article introduces new finite algebras attractive as carriers of the discrete logarithm
problem in a hidden group. In particular new 4-dimensional and 6-dimensional finite
non-commutative algebras with associative multiplication operation and their properties
are described. It is also proposed a general method for defining finite non-commutative
associative algebras of arbitrary even dimension m ≥ 2. Some of the considered algebras
contain a global unit, but the other ones include no global unit element. In the last case
the elements of the algebra are invertible locally relatively local bi-side units that act in the
frame of some subsets of elements of algebra. For algebras of the last type there have been
derived formulas describing the sets of the (right-side, left-side, and bi-side) local units.
Algebras containing a large set of the global single-side (left-side and right-side) units and
no global bi-side unit are also introduced. Since the known form of defining the hidden
discrete logarithm problem uses invertibility of the elements of algebra relatively global
unit, there are introduced new forms of defining this computationally difficult problem.
The results of the article can be applied for designing public-key cryptographic algorithms
and protocols, including the post-quantum ones. For the first time it is proposed a digital
signature scheme based on the hidden discrete logarithm problem.
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Introduction

The public-key cryptographic algorithms and protocols are widely used for solving
different security problems of information and telecommunication technologies [1, 2].
A large part of such cryptoschemes is based on the following two computationally
difficult problems: factorization and finding discrete logarithm [3]. However each of
these two problems can be solved on a quantum computer in polynomial time [5]. Since
quantum computing develops towards efficient practical implementations [4], one of actual
challenges in the area of cryptography is development of public-key cryptoschemes based
on other computationally difficult problems solution of which will remain infeasible even
while solving them on a quantum computer. The response to this challenge was the
announcement (December 20, 2016) by the National Institute of Standards and Technology
(NIST) of the competition of the post-quantum public-key cryptograms development and
the appearance of regularly held thematic conferences [6, 7]. The current results of the
NIST competition have shown the following:

– no difficult computational problem suitable as single primitive for desgning the post-
quantum cryptoschemes of the main types (algorithms and protocols for public encryption,
public key distribution, commutative encryption, and digital signature) had been proposed;
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– the hidden discrete logarithm problem (HDLP) defined in the finite non-commutative
associative algebras (FNAAs), which are promising as a universal primitive of the post-
quantum cryptoschemes of different types, have remained outside the scope of attention
of participants of the NIST competition.

The purpose of this article is to attract the attention of researchers and developers of
cryptographic schemes to the HDLP as to a universal cryptographic primitive, providing
the possibility of building the post-quantum cryptographic algorithms and protocols of
various types, which are convenient for practical application.
To achieve this goal, the following scientific tasks are considered in the article:

– construction of new FNAAs as potential carriers of the HDLP;
– studying of the properties of the proposed algebras;
– setting new forms of the HDLP;
– designing the digital signature scheme based on the HDLP.

1. Non-Commutative Finite Groups and Associative Algebras

for Post-Quantum Cryptography

In a number of articles the cojugacy-search problem defined over the braid groups
was considered as the base of post-quantum cryptoschemes [8] and was used to design
digital signature protocols [9]. Unfortunately it had been shown possibility to reduce the
cojugacy-search problem to solving a system of linear equations [10]. Such reduction means
existance of principal problems with providing high security of the cryptoschemes based
on the mentioned computational problem.

Another proposal for post-quantum primitives is the discrete logarithm problem in a
hidden group, which is defined over finite non-commutative associative algebras [11, 12]
and can be called HDLP. The HDLP is described as follows.

Suppose a finite non-commutative group Γ contains element Q having large prime order
q and we have a method for an easy selection of the elements from commutative subgroup
Γ′ ⊂ Γ. To construct a public key-agreement cryptoscheme in [12] it is proposed to select a
private key composed of two parts, random invertible element W ∈ Γ′ satisfying condition
W ◦ Q 6= Q ◦W and random number x < q. Then the public key Y can be computed as
follows

Y =W ◦Qx ◦W−1. (1)

Finding pair (W,x) (where W ∈ Γ′) from the last equation, while there are known
values Q and Y , is a computationally difficult problem that can be called the HDLP.
The HDLP represents interest as the base primitive for constructing the public-key
post-quantum cryptoschemes. The HDLP suits also well for designing post-quantum
commutative encryption algorithms.

Public key-agreement scheme [13] is decribed as follows. Suppose the elements G ∈ Γ
and Q ∈ Γ having sufficiently large prime order are specified and two remote users have
intensions to generate a shared secret key using a public channel. The first user selects his
private key as pair of random numbers (w1, x1), computes his public key Y1 = Gw1 ◦Qx1 ◦
G−w1 and sends Y1 to the second user. The last selects his private key (w2, x2), computes
his public key Y2 = Gw2 ◦ Qx2 ◦ G−w2 and sends Y2 to the first user. Then the first user
computes value

K12 = Gw1 ◦ (Y2)
x1 ◦G−w1 = Gw1+w2 ◦Qx2x1 ◦G−w1−w2.
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The second user computes value

K21 = Gw2 ◦ (Y1)
x2 ◦G−w2 = Gw2+w1 ◦Qx1x2 ◦G−w2−w1 .

Thus, K21 = K12 = K, i.e., the users have generated securely common secret key K

interacting via a public channel.
Suppose a user has published his public-key Y = Gw ◦Qx ◦ G−w, where pair (w, x) is

his private key, and a symmetric encryption algorithm FK with key K is specified. Using a
public communication channel and public key Y any person can send securely confidential
message M to the user as follows [13]:

1. Sender generates two random numbers r and u, then computes elements R = Gr ◦
Qu ◦G−r and K = Gr ◦ Y u ◦G−r = Gr+w ◦Qxu ◦G−r−w.

2. Using element K as encryption key and encryption algorithm FK the sender encrypts
message M into cryptogram C = FK(M) and sends group elements C and R to the user.

3. Using value R the user computes key K as follows K = Gw ◦Rx ◦G−w = Gr+wQux ◦
G−r−w and discloses source message M from ciphertext C : M = F−1

K (C), where F−1
K

is the decryption function corresponding to encryption function FK . The commutative-
encryption algorithm is described as follows [14].

1. Represent a message as element M ∈ Γ.
2. Encrypt M with first encryption key (w1, e1, d1) (where integers e1 and d1 satisfy

condition e1d1 = 1 mod Ω; Ω is the order of group Γ), as follows: C1 = Gw1 ◦Me1 ◦G−w1.

3. Encrypt ciphertext C1 with second encryption key (w2, e2, d2) (where integers e2
and d2 satisfy condition e2d2 = 1 mod Ω; Ω is the order of group Γ) as follows:

C2 = Gw2 ◦ Ce2
1 ◦G−w2 = Gw2+w1 ◦Me1e2 ◦G−w1−w2.

It is easy to show the encryption of message M with second key (w2, e2, d2) and
then with first key (w1, e1, d1) outputs the same ciphertext C21 = C12, i.e. the described
encryption algorithm is commutative (note key elements d1 and d2 are required to perform
the decryption procedure).

Currently in literature no digital signature scheme is proposed. In the next sections of
the paper we introduce new forms of the defining the HDLP and one of the last is used to
propose a post-quantum digital signature scheme.

Proposed in literature post-quantum cryptoschemes are based on the HDLP defined
over finite quaternion algebra [11] multiplicative group of which is used as non-
commutative group Γ. Detailed study of the HDLP in finite quaternion algebra defined
over ground field GF (p) [15] had shown that the HDLP can be reduced to the problem of
finding discrete logarithm in finite field GF (p2). To design post-quantum cryptoschemes
on the base of the HDLP, in paper [15] it had been proposed to look for other finite non-
commutative associative algebras (FNAAs) as carriers of the HDLP. However currently in
literature there are considered only very few other FNAAs. The HDLP in 2-dimensional
and 3-dimensional FNAAs over GF (p), which are considered in [16,17], can be reduced to
discrete logarithm in GF (p).

In the present article there are introduced new 6-dimensional FNAAs possessing
various properties and a general method for constructing FNAAs of arbitrary fixed even
dimension m ≥ 2. Some of the introduced algebras contain only local unit elements
therefore there are proposed new forms of defining the HDLP which are different from
the form considered in [13, 15 − 17]. The paper also proposes a digital signature scheme
based on a new form of the HDLP. The paper is organized as follows. Section 1 describes the
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HDLP as cryptographic primitive and several cryptoschemes based on the HDLP. Section 2
consideres general construction of the FNAAs. Section 3 introduces new 6-dimensional
FNAAs and considers some of their properties. In one of the introduced FNAAs there is a
large set of the global left-sided units and no global right-sided unite contained. In Section 4
it is proposed a unified method for constructing the FNAAs for the case of arbitrary even
dimension. In Section 5 there are proposed new forms of defining the HDLP, including the
case of using the global left-sided unites, and a new post-quantum signature scheme.

2. Finite Non-Commutative Associative Algebras

Let us consider finite m-dimensional vector space elements of which are vectors A =
(a0, a1, . . . am−1) defined over some finite field, for example, over ground field GF (p), i.e.
a0, a1, . . . am−1 ∈ GF (p), where p is a prime number having sufficiently large size (256
to 512 bits). Suppose "+" is the addition operation in the vector space and the sum of
vectors A and B = (b0, b1, . . . bm−1) is defined as follows:

A+B = (a0 + b0, a1 + b1, . . . am−1 + bm−1) ,

where sign "+" designates both the addition in vector space and the addition in field
GF (p). Multiplying vector A by some scalar µ ∈ GF (p) is defined as follows

µA = (µa0, µa1, . . . µam−1) .

The finite m-dimensional vector space becomes the finite m-dimensional algebra with
defining the second binary operation that is distributive relatively the addition operation
and is called multiplication. For defining the multiplication operation it is reasonable to use
the notion of formal basis vectors denoted as e0 = (1, 0, 0 . . . , 0, 0), e1 = (0, 1, 0 . . . , 0, 0),

... em−1 = (0, 0, 0 . . . , 0, 1) and representation of vectors A and B as follows: A =
m−1
∑

i=0

aiei

and B =
∑m−1

j=0 bjej, where terms aiei and bjej are called components of vectors A and B
correspondingly.

The multiplication operation "◦" of m-dimensional vectors A and B is defined by the
following formula

A ◦B =

(

m−1
∑

i=0

aiei

)

◦

(

m−1
∑

j=0

bjej

)

=

m−1
∑

j=0

m−1
∑

i=0

aibj (ei ◦ ej) , (2)

where product ei ◦ ej for all possible pairs of values i and j is to be replaced by some one-
component vector in accordance with some basis vector multiplication table (BVMT) in
every cell of which it is contained some one-component vector. The coordinate of the last
is called structural coefficien. On definition it is assumed the following (where λ ∈ GF (p)):

(µei) ◦ (λej) = µλ (ei ◦ ej) = µλei ◦ ej.

In (2) it is assumed that the intersection of ith row and jth column of the BVMT defines
the cell in which it is given the value of product ei ◦ ej.

If the used BVMT defines associative multiplication, then the algebra is called
associative. If the multiplication operation is non-commutative (commutative), then the
algebra is called non-commutative (commutative). In case m|p − 1 the BVMT can be
composed so that algebra represents itself finite field GF (pm) [18].

Suppose number ω is the minimum one from the set natural numbers γ that for some
invertible vector A, contained in a FNAA with global bi-side unit E, it holds Aγ = E.
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Then the value ω is called order of vector A. If vector B is contained in a subset of algebra
elements, which contains local bi-side unit E ′ 6= E, and for some minimum integer ω′ we
have Bω′

= E ′, then value ω′ is called local order of vector B and the last is called locally
invertible.

In the next section there are introduced several 6-dimensional FNAAs containing no
global bi-side unit:

i) algebras with large set of the global single-side units,
ii) algebra with compressing multiplication operation.
The proposed 6-dimensional FNAAs are attractive for application as carriers of the

HDLP, however one should introduce new forms of the HDLP.

3. New Carriers of the Hidden Discrete Logarithm Problem

3.1. The 6-Dimension FNAA with Set of Global Right-Side Unites

Table 1
The BVMT defining the 6-dimensional FNAA

with local invertibility of its elements

◦ e0 e1 e2 e3 e4 e5

e0 e0 τe3 e0 e3 τe0 e3

e1 e1 τµe4 e1 µe4 τe1 µe4
e2 e2 τe5 e2 e5 τe2 e5

e3 e3 τµe0 e3 µe0 τe3 µe0
e4 e4 τe1 e4 e1 τe4 e1

e5 e5 τµe2 e5 µe2 τe5 µe2

For case m = 6 the associative
multiplication operation can be defined
with the BVMT presented as Table 1.
The associativity of the multiplication can
be easily proved using formula (2) and
considering fulfillment of the following
condition for arbitrary three vectors A, B,

and C =
m−1
∑

k=0

ckek : (A ◦B) ◦ C = A ◦

(B ◦ C) .
From vector equation A◦X = A, where

X =
m−1
∑

k=0

xjej is the unknown vector, with using Table 1 one can get the following system

of six linear equations with unknown values xj ∈ GF (p), j = 0, 1, . . . , m− 1 :







































a0x0 + τµa3x1 + a0x2 + µa3x3 + τa0x4 + µa3x5 = a0;

a1x0 + τa4x1 + a1x2 + a4x3 + τa1x4 + a4x5 = a1;

a2x0 + τµa5x1 + a2x2 + µa5x3 + τa2x4 + µa5x5 = a2;

a3x0 + τa0x1 + a3x2 + a0x3 + τa3x4 + a0x5 = a3;

a4x0 + τµa1x1 + a4x2 + µa1x3 + τa4x4 + µa1x5 = a4;

a5x0 + τa2x1 + a5x2 + a2x3 + τa5x4 + a2x5 = a5.

(3)

The system of equations (3) can be represented in the following form:







































a0 (x0 + x2 + τx4) + µa3 (τx1 + x3 + x5) = a0;

a1 (x0 + x2 + τx4) + a4 (τx1 + x3 + x5) = a1;

a2 (x0 + x2 + τx4) + µa5 (τx1 + x3 + x5) = a2;

a3 (x0 + x2 + τx4) + a0 (τx1 + x3 + x5) = a3;

a4 (x0 + x2 + τx4) + µa1 (τx1 + x3 + x5) = a4;

a5 (x0 + x2 + τx4) + a2 (τx1 + x3 + x5) = a5.

(4)
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It is easy to see the solutions of the last system satisfy the following two equations:
{

x0 + x2 + τx4 = 1;

τx1 + x3 + x5 = 0.
(5)

From (5) one can write the following formula describing the set of local right-side units
Er relating to vector A:

Er =

(

i, k, j, h,
1− i− j

τ
, −τk − h

)

. (6)

it is esy to see that each vector from set (6) is the global right-side unit, since it acts as
the right unit on all elements of the considered FNAA.

To get the formula for the left-side units corresponding to vector A one should consider
the following vector equation

X ◦ A = A

that can be rewritten in the form of the following system of six linear equations with
unknowns x0, x1, x2, x3, x4, x5:







































Φx0 + µΨx3 = a0;

Φx1 +Ψx4 = a1;

Φx2 + µΨx5 = a2;

Ψx0 + Φx3 = a3;

µΨx1 + Φx4 = a4;

Ψx2 + Φx5 = a5,

(7)

where Φ = a0 + a2 + τa4 and Ψ = τa1 + a3 + a5.

There exists the single solution of system (7) that defines the following formula for the
left-side local unit corresponding to vector A:

El =

(

Φa0 − µΨa3
Φ2 − µΨ2

,
Φa1 −Ψa4
Φ2 − µΨ2

,
Φa2 − µΨa5
Φ2 − µΨ2

,
Φa3 −Ψa0
Φ2 − µΨ2

,
Φa4 − µΨa1
Φ2 − µΨ2

,
Φa5 −Ψa2
Φ2 − µΨ2

)

. (8)

It is easy to see that value El is included in set (6). Thus, to vector A such that

(a0 + a2 + τa4)
2 6= µ (τa1 + a3 + a5)

2 (9)

it correspons the single bi-side local unit, i.e. every of such vectors is locally invertible.

3.2. The 6-Dimension FNAA with Compressing Multiplication Operation

Table 2 defines the multiplication operation possessing property of the compressing
map of the 6-dimensional FNAA into some subset of the algebra elements, which can be
described with the following formula

A ◦ V = H, (10)

where operands A and V =
m−1
∑

j=0

vjej take on all possible values of the considered FNAA

and vector H =
m−1
∑

k=0

hkek is an element from some subset representing all possible results
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Table 2
The BVMT for Defining FNAA

with Compressing Multiplication Operation

◦ e0 e1 e2 e3 e4 e5

e0 µe0 e0 µe2 e2 µe4 e4

e1 µe1 e1 µe3 e3 µe5 e5

e2 µe0 e0 µe2 e2 µe4 e4

e3 µe1 e1 µe3 e3 µe5 e5

e4 µe0 e0 µe2 e2 µe4 e4

e5 µe1 e1 µe3 e3 µe5 e5

of the multiplication operation. Such
property is sufficiently specific and
illustrates that constructing different
types of the BVMTs one can define
FNAAs possessing significantly different
properties.

Using Table 2 one can represent vector
equation (10) in the form of the system
of six linear equations with coordinates
of the right operand v0, v1, . . . , v5 as the
unknown values. It is easy to show that
the last system contains the following three
independent systems of two linear equations:

{

µv0 (a0 + a2 + a4) + v1 (a0 + a2 + a4) = h0;

µv0 (a1 + a3 + a5) + v1 (a1 + a3 + a5) = h1;
(11)

{

µv2 (a0 + a2 + a4) + v3 (a0 + a2 + a4) = h2;

µv2 (a1 + a3 + a5) + v3 (a1 + a3 + a5) = h3;
(12)

{

µv4 (a0 + a2 + a4) + v5 (a0 + a2 + a4) = h4;

µv4 (a1 + a3 + a5) + v5 (a1 + a3 + a5) = h5.
(13)

From systems (11), (12), and (13) we get

h0

h1
=
h2

h3
=
h4

h5
=
a0 + a2 + a4

a1 + a3 + a5
= ρ, (14)

where ρ (1 ≤ ρ ≤ p − 1) depends only on the left operand in the left part of (10). It is
easy to estimate the number #{H} of possible different values at output of multiplication
operation: #{H} < p4.

3.3. The FNAA Containing a Set of Global Left-Side Units

Table 3
The BVMT defining FNAA

with set of the global left-side units (µ 6= 1)

◦ e0 e1 e2 e3 e4 e5

e0 e0 e4 e2 e2 e4 e0

e1 e5 e1 e3 e3 e1 e5

e2 µe0 e4 µe2 e2 µe4 e0

e3 µe5 e1 µe3 e3 µe1 e5

e4 e0 e4 e2 e2 e4 e0

e5 e5 e1 e3 e3 e1 e5

Another example of the 6-dimensional
FNAAs possessing interesting properties
is defined by Table 3. If structural
coefficient µ is equal to 1, then the
defined multiplication operation possesses
compressing property, like in the FNAA
described in previous subsection. If µ 6=
1, then the algebra defined with Table 3
contains a large set of the left-side units
acting on each element of the algebra
(such units can be called the global left-
side units). At the same time, the algebra
contains no global bi-side unit and no global right-side unit. The single local bi-side unit
corresponds to each locally invertible element of the considered FNAA. Let us consider
case µ 6= 1.
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For some left-side unit X acting on vector A it holds the vector equation

X ◦ A = A. (15)

Using Table 3 one can represent (15) in the form of the following system of six linear
equations with coordinates of the left operand x0, x1, . . . , x5 as unknown values:







































a0 (x0 + µx2 + x4) + a5 (x0 + x2 + x4) = a0;

a1 (x1 + x3 + x5) + a4 (x1 + µx3 + x5) = a1;

a2 (x0 + µx2 + x4) + a3 (x0 + x2 + x4) = a2;

a2 (x1 + µx3 + x5) + a3 (x1 + x3 + x5) = a3;

a1 (x0 + x2 + x4) + a4 (x0 + µx2 + x4) = a4;

a0 (x1 + µx3 + x5) + a5 (x1 + x3 + x5) = a5.

(16)

System (16) has the same solutions as the following system of four linear equations
with six unknowns:



















x0 + x2 + x4 = 0;

x0 + µx2 + x4 = 1;

x1 + x3 + x5 = 1;

x1 + µx3 + x5 = 0.

(17)

The solution of system (17) does not depend on value A and describes the following set of
global left-side units:

El = (x0, x1, x2, x3, x4, x5) =

(

d, h,
1

µ− 1
,

1

1− µ
,

1

1− µ
− d,

µ

µ− 1
− h

)

, (18)

where d, h = 0, 1, . . . , p− 1.
Finding the right-side units acting on vector A is connected with solving the following

vector equation:
A ◦X = A. (19)

Using Table 3 one can represent (19) in the form of the following three independent systems
each of which contains two linear equations:

{

x0 (a0 + µa2 + a4) + x5 (a0 + a2 + a4) = a0;

x0 (a1 + µa3 + a5) + x5 (a1 + a3 + a5) = a5;
(20)

{

x1 (a1 + a3 + a5) + x4 (a1 + µa3 + a5) = a1;

x1 (a0 + a2 + a4) + x4 (a0 + µa2 + a4) = a4;
(21)

{

x2 (a0 + µa2 + a4) + x3 (a0 + a2 + a4) = a2;

x2 (a1 + µa3 + a5) + x3 (a1 + a3 + a5) = a3.
(22)

Each of systems (20), (21), and (22) has the single solution, therefore for vector A there
exists single right-side unit

Er = (x0, x1, x2, x3, x4, x5) ,
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where:

x0 =
a0 (a1 + a3)− a5 (a2 + a4)

(µ− 1) (a1a2 + a2a5 − a0a3 − a3a4)
; x1 =

a0a1 + µa1a2 − µa3a4 − a4a5

(µ− 1) (a1a2 + a2a5 − a0a3 − a3a4)
;

x2 =
1

µ− 1
; x3 =

1

1− µ
;

x4 =
a3a4 + a4a5 − a0a1 − a1a2

(µ− 1) (a1a2 + a2a5 − a0a3 − a3a4)
; x5 =

µa2a5 + a4a5 − a0a1 − µa0a3

(µ− 1) (a1a2 + a2a5 − a0a3 − a3a4)
.

It is easy to show that the right-side unit related to an arbitrary vector A is contained
in the set of global left-side units (18). The last means the right-side local units are
simultaneously the bi-side local units.

4. Unified Method for Defining FNAAs for Arbitrary

Even Dimension

For the case of even dimension m of the finite vector space the FNAAs can be defined
by the following general method that consists in defining the multiplication of formal basis
vectors ei and ej for i, j = 0, 1, . . . , m− 1 with formula

ei ◦ ej =

{

ei, if the value i+ j is even,

em−1−i, if the value i+ j is odd,
(23)

where addition and subtraction are performed modulo m.

Proposition 1. Formulas (2) and (23) define the associative multiplication operation for
arbitrary even value of dimension m.

Proof. Suppose i, j, k denote even integers and i′, j′, k′ denote odd integers. While
multiplying three formal basis vectors we have the following cases:

(ei ◦ ej) ◦ ek = ei ◦ ek = ei, ei ◦ (ej ◦ ek) = ei ◦ ej = ei;

(ei ◦ ej) ◦ ek′ = ei ◦ ek′ = em−1−i, ei ◦ (ej ◦ ek′) = ei ◦ em−1−j = em−1−i;

(ei ◦ ej′) ◦ ek = em−1−i ◦ ek = em−1−(m−1−i) = ei, ei ◦ (ej′ ◦ ek) = ei ◦ em−1−j′ = ei;

(ei′ ◦ ej) ◦ ek = em−1−i′ ◦ ek = em−1−i′ , ei′ ◦ (ej ◦ ek) = ei′ ◦ ej = em−1−i′ ;

(ei′ ◦ ej) ◦ ek′ = em−1−i′ ◦ ek′ = ei′ , ei′ ◦ (ej ◦ ek′) = ei′ ◦ em−1−j = ei′;

(ei′ ◦ ej′) ◦ ek = ei′ ◦ ek = em−1−i′ , ei′ ◦ (ej′ ◦ ek) = ei′ ◦ em−1−j′ = em−1−i′ ;

(ei′ ◦ ej′) ◦ ek′ = ei′ ◦ ek′ = ei′, ei′ ◦ (ej′ ◦ ek′) = ei′ ◦ ej′ = ei′;

(ei ◦ ej′) ◦ ek′ = em−1−i ◦ ek′ = em−1−i, ei ◦ (ej′ ◦ ek′) = ei ◦ ej′ = em−1−i.

Thus, for multiplying all possible ordered triples of the basis vectors it holds the property
of associativity.

✷
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Table 4
The BVMT for the case m = 2

◦ e0 e1

e0 µe0 µe1
e1 τe0 τe1

Formula (23) defines structure of the BVMT for
arbitrary fixed even dimension m ≥ 2. After the
BVMT will have been constructed one can add one
or several structural coefficients in some of the cells
of the table so that the property of associativity will
be saved. Tables 4, 5, and 6 presents some examples
of the BVMT constructed in line with such unified
method for cases m = 2, 4 and 6 respectively.

Table 5

The BVMT for the case m = 4
◦ e0 e1 e2 e3

e0 e0 µe3 µe0 e3

e1 τe2 e1 e2 τe1
e2 e2 µe1 µe2 e1

e3 τe0 e3 e0 τe3

The 4-dimensional FNAA defined by Table 5,
where µτ 6= 1, represents itself a ring with global
bi-side unit

E =

(

1

1− µτ
,

1

1− µτ
,

τ

µτ − 1
,

µ

µτ − 1

)

such that for arbitrary 4-dimensional vector A the
following equations V ◦ E = E ◦ V = V hold true.
In this ring 4-dimension vectors A = (a0, a1, a2, a3)
such that a0a1 6= a2a3 are invertible. All invertible
4-dimensional vectors compose a finite group order of which is equal to p(p− 1) (p2 − 1) .
If a0a1 = a2a3 vector A is non-invertible. In the ring there exist p3 + p2 − p different
non-invertible vectors. In the subset of the non-invertible vectors there exists the single
local bi-side unit E ′ corresponding to some fixed non-invertible vector A. The local bi-side
unit E ′ depends on the coordinates of vector A as follows:

E ′ =

(

x0,
a3

a0µ+ a3
−
a0 + a3τ

a0µ+ a3
·
a3

a0
x0,

a3

a0µ+ a3
−
a0 + a3

aµ+ d
x0,

a3

a0
x0

)

,

where x0 = a0 (a0 + a1 + µa2 + τa3)
−1
.

Table 6
The BVMT defining the 6-dimensional FNAA

with p2 different global right-side units

◦ e0 e1 e2 e3 e4 e5

e0 e0 e5 τe0 τe5 e0 e5

e1 λe4 e1 µe4 µe1 e4 λe1
e2 e2 e3 τe2 τe3 e2 e3

e3 λe2 e3 µe2 µe3 e2 λe3
e4 e4 e1 τe4 τe1 e4 e1

e5 λe0 e5 µe0 µe5 e0 λe5

In case m = 6 we found
a variety of options for embedding
structural coefficients. For example,
in Table 6 three different structural
coefficients are included, which are
distributed in such a way that
the associativity property of the
multiplication operation is preserved.
The FNAA defined by Table 6 contains
a set of p2 different global right-side
units Er described by the following
formula:

Er =

(

i, j,
1 + (λ− 1)i

τ − µ
,
1 + (λ− 1)j

µ− λτ
,
(µ− λτ)i− µ

τ − µ
,
(τ − µ)j − τ

µ− λτ

)

,

where i, j = 0, 1, . . . , p− 1.

5. New Forms of Defining the Hidden Discrete Logarithm Problem

Using different types of the BVMTs for defining the associative multiplication
operation one can define different types of m-dimensional FNAAs, including algebras

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (Вестник ЮУрГУ ММП). 2019. Т. 12, № 1. С. 66–81

75



N.A. Moldovyan, A.A. Moldovyan

containing only locally invertible elements. The last does not suit to define the HDLP
while using the known form of the formulation of the HDLP. To use such type of finite
algebras as carriers of the HDLP it needs to propose another form for formulating the
HDLP.

Suppose N be some locally invertible vector such that for some prime number ω
we have Nω = E ′, where E ′ is the local bi-side unit relating to N. Then the sequence
{N,N2, ..., Nω} contains ω different elements of the considered FNAA and represents
a cyclic finite group with the group operation ◦, therefore ω can be called local order
of the element N. Using the local bi-side unit element E ′ one can define the following
homomorphism ϕN,t over the set of locally invertible elements VE′ computed as

VE′ = V ◦ E ′,

where V takes on all values in the considered FNAA (note the element E ′ acts in the
frame of the set of elements VE′ as the right-side unit).

Like standard automorphisms ψW in the finite non-commutative group described by
the formula ψW (V ) = W−1 ◦ V ◦ W, where W is an invertible element of the ring, the
homomorphism ϕN,t is defined as follows:

ϕN,t (VE′) = Nω−t ◦ VE′ ◦N t.

Actually, the last formula defines homomorphism since with evidence the following holds
true:

ϕN,t (V
′

E′ ◦ V ′′

E′) = ϕN,t (V
′

E′) ◦ ϕt (V
′′

E′) ,

ϕN,t (V
′

E′ + V ′′

E′) = ϕN,t (V
′

E′) + ϕN,t (V
′′

E′) .

To define public-key cryptoschemes, like that described in [13, 15], one can select some
locally invertible vector G having sufficiently large prime order g, which satisfies condition
G ◦N 6= N ◦G, compute vector GE′ = G ◦ E ′ and use the formula

Y = Nω−t ◦Gx
E′ ◦N t, (24)

where Y is a public key and the pair of numbers (t, x) is a private key (the integers t < ω

and x < g is to be selected at random). Finding values (t, x) from equation (24) represents
a novel form of the HDLP. The FNAAs with local invertibility of all elements (except
zero), like that described in subsection 3.2 (see case with structural coefficient equal to a
quadratic non-residue) are especially attractive as carriers of the HDLP while the last is
defined by formula (24).

The second proposed new form of defining the HDLP relates to using the 6-dimensional
FNAA containing the set of the global left-side units {Li : Li ◦ V = V } , where i is an
integer and V is an arbitrary 6-dimensional vector. For arbitrary left-side unit Li and
arbitrary integer w it holds Lw

i = Li. Suppose N is a vector having sufficiently large prime
order relatively its local bi-side unit and vectors U and D satisfy the condition D◦U = L1,

where L1 is some global left-side unit. Then the public key Y can be computed as follows

Y = Uw ◦Nx ◦Dw = (Uw ◦N ◦Dw)x , (25)

where the pair of integers (w, x) is the private key. Finding values w and x from the
equation (25) represents a kind of the HDLP. The last equation can be used to define the
public key agreement protocol and public encryption algorithm.
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To provide possibility to construct the digital signature scheme we propose the
following form of the HDLP in which there is used a double masking mechanism as follows.
Suppose the private key represents the set of values x, N, U, U ′, D, and T, where x is
a random integer and the following two conditions are met D ◦ U = L1, D ◦ U ′ = L2,

and T ◦ U ′ = L3 for some left-side units L1, L2, and L3. Besides vector N has a local
order equal to sufficiently large prime q. The required triple of vectors U, D, and T can
be computed as follows:

1. Select values D, L1 and L2.

2. Compute vector U from vector equation D ◦ U = L1.

3. Compute vector U ′ from vector equation T ◦ U ′ = L2.

4. Compute vectors T and L3 from vector equation T ◦ U ′ = L3.

The public key represents the pair of the 6-dimensional vectors Y and Q that can be
computed using the following two formulas:

Y = U ◦Nx ◦D; Q = U ′ ◦N ◦ T. (26)

The signature generation procedure includes the following steps:
1. Generate random value k and compute vector R = U ◦Nk ◦ T.
2. Using specified hash function Fh compute first signature element e = Fh(M,R),

where M is some signed document.
3. Considering bit string e as a binary number compute second signature element

s = k − xe mod q.
Verification of signature (e, s) (representing a pair of integers) to document M is

executed as follows:
1. Compute vector R? : R? = Y e ◦Qs.

2. Compute bit string e? = Fh(M,R?).
3. Compare values e? and e. If e? = e, then the signature is valid. Otherwise the

signature is rejected as false one.
Corrctness proof of the proposed signature scheme is evident:

R? = (U ◦Nx ◦D)e ◦ (U ′ ◦N ◦ T )
k−xe

= U ◦Nxe ◦D ◦ U ′ ◦Nk−xe ◦ T =

= U ◦Nxe ◦ L2 ◦N
k−xe ◦ T = U ◦Nxe+k−xe ◦ T = U ◦Nk ◦ T = R ⇒

⇒ e? = Fh(M,R?) = Fh(M,R) = e.

Like in the case of the Schnorr digital signature protocol [19] in the described signature
scheme there is use some cyclic group of the prime order. The difference consists in the
hiding this cyclic group. The public part of the proposed signature scheme is the used
FNAA and two its elements Y and Q that are connected with the hidden cyclic group
generated by powers of vector N that is an element of a private key. Connection between
vectors Y and Q can be represented as

Y = Zl ◦Q
x ◦ Zr,

where integer x and vectors Zl and Zr are unknowns. The last formula shows vectors Y
and Q belong to different cyclic groups contained in the used FNAA with set of the global
left-side units. Therefore, the potential forgery of a signature should find a representation
of public key elements Y and Q in a form like (26) and to solve the discrete logarithm
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problem in a finite cyclic group contained in the FNAA. There exists many different
variants of mentioned representation, however finding at least one of them appears to be
a computationally difficult problem.

Estimation of the security of the propose signature scheme to attacks with using
hypothetic quantum computer is connected with estimation of the computational difficulty
of the reduction of the used HDLP to the discrete logarithm problem in some cyclic group.
Consideration of this item represents an individual problem.

Conclusion

Several 6-dimensional FNAA have been introduced as novel carriers of the HDLP that
is attractive as post-quantum primitive of the public-key cryptoschemes. Some properties
of algebras, which relate to defining the HDLP, have been investigated. It also introduced
a general method for constructing FNAAs of arbitrary even dimensions. Some of the
introduced FNAA contain only vectors that are locally invertible. For the last case there
are proposed new forms of the definition of the HDLP. One of the proposed novel forms of
the HDLP has been used to design a digital signature scheme. The proposed new forms of
the HDLP represent an interest as independent primitives of post-quantum cryptography.
Comparing with the signature schemes proposed in frame of NIST project PQCrypto the
introduced signature scheme based on the HDLP has the following significant advantages:
a higher perfomance and smaller signature size. One can hope that due to the last merits
the proposed signature scheme will attract attention of the researchers to the task of the
estimating its security.
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КОНЕЧНЫЕ НЕКОММУТАТИВНЫЕ АССОЦИАТИВНЫЕ АЛГЕБРЫ
КАК НОСИТЕЛИ СКРЫТОЙ ЗАДАЧИ ДИСКРЕТНОГО
ЛОГАРИФМИРОВАНИЯ

Н.А. Молдовян1, А.А. Молдовян1

1Санкт-Петербургский институт информатики и автоматизации РАН,
г. Санкт-Петербург, Российская Федерация

Статья рассматривает новые конечные алгебры, представляющие интерес в каче-

стве носителей задачи дискретного логарифмирования в скрытой группе. В частности,

предложены новые 4-мерные и 6-мерные конечные некоммутативные алгебры с ассоци-

ативной операцией умножения и описаны их свойства. Также предложен общий метод
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задания конечных некоммутативных ассоциативных алгебр произвольной четной раз-
мерности m ≥ 2. Некоторые из рассмотренных алгебр содержат глобальную двухсто-
роннюю единицу, а другие не содержат такой единицы. В последнем случае элементы
алгебры обратимы локально относительно некоторой локальной двухсторонней едини-
цы, действующей в рамках некоторого подмножества элементов алгебры. Для алгебр
последнего типа выведены формулы, описывающие множества правосторонних, лево-
сторонних и двухсторонних локальных единиц. Также представлены алгебры, содер-
жащие большое множество глобальных левосторонних (правосторонних) единиц при
отсутствии в них глобальной двухсторонней единицы. Поскольку известные формы
задания крытой задачи дискретного логарифмирования используют обратимость эле-
ментов алгебры относительно глобальной двухсторонней единицы, были предложены
новые формы задания этой вычислительно трудной задачи. Результаты статьи могут
быть использованы для разработки криптографических алгоритмов и протоколов с
открытым ключом, включая постквантовые криптосхемы. Впервые предложена схема
цифровой подписи, основанная на скрытой задаче дискретного логарифмирования.

Ключевые слова: конечная ассоциативная алгебра; некоммутативная алгебра;

глобальная единица; левосторонняя единица; локальная единица; локальная обрати-

мость; задача дискретного логарифмирования; криптосхема с открытым ключом;

цифровая подпись; постквантовая криптография.
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