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We examine inverse problems of recovering coefficients in a linear pseudoparabolic
equation arising in the filtration theory. Boundary conditions of the Neumann type are
supplemented with the overtermination conditions which are the values of the solution
at some interior points of a domain. We expose existence and uniqueness theorems in
the Sobolev spaces. The solution is regular, i. e., it possesses all generalized derivatives
occurring in the equation containing in some Lebesgue space. The method of the proof is
constructive. The problem is reduced to a nonlinear operator equation with a contraction
operator whenever the time interval is sufficiently small. Involving the method of the proof,
we construct a numerical algorithm, the corresponding software bundle, and describe the
results of numerical experiments in the two-dimensional case in the space variables. The
unknowns are a solution to the equation and the piezo-conductivity coefficient of a fissured
rock. The main method of numerical solving the problem is the finite element method
together with a difference scheme for solving of the corresponding system of ordinary
differential equations. Finally, the problem is reduced to a system of nonlinear algebraic
equations which solution is found by the iteration procedure. The results show a good
convergence of the algorithms.

Keywords: inverse problem; pseudoparabolic equation; filtration; fissured rock;

numerical solution.

Introduction

In 1960, G.I. Barenblatt, Iu.P. Zheltov and I.N. Kochina (see [1|) proposed the basic
concept in the theory of seepage (filtration) of homogeneous liquids in fissured rocks. A
fissured rock is considered as a material consisting of pores and permeable blocks which
are generally separated from each other by a system of fissures. In contrast to to the
conventional arguments of filtration in a porous medium, the significant feature lies in the
fact that two liquid pressures, both in the pores and in the fissures, are introduced at any
point in a space and the transfer of liquids between the fissures and the pores is taken into
consideration. The corresponding model is written as

l/Aul —+ Oé(UQ — Ul) = O, M(modl + dQ)UQt + OZ(UQ — Ul) = 0, (1)

where u;(t, ), us(t, z) are the pressures of the liquid in the fissures and pores, respectively;
A is the Laplacian, d; and ds are the coefficients of compressibility of the liquid and the
blocks, mg stands for the magnitude of the porosity of the blocks at standard pressure; p is
the viscosity of the liquid, and v represents the permeability of fissures. The dimensionless
coefficient « characterizes the intensity of the liquid transfer between the blocks and
fissures. More general models can include the nonlinearities arising from fluid type (liquid
or gas), concentration (porosity, absorption or saturation) and the exchange rate [2].
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Eliminating wus from (1) we obtain for the pressure of the liquid in the fissures the
so-called fissured medium equation of pseudoparabolic type

Uit — UAUU — kAu1 = O, k= l//(mod1 + dg), n = l//Oé. (2)

The parameter k corresponds to the piezo-conductivity of fissured rock. The pressure of the
liquid in the pores uy satisfies a similar equation. Since the natural stratum is involved, the
parameters of fissured rock in (2) should be determined on the basis of the investigation of
their behavior under the natural nonsteady-state conditions. This leads to the interest in
studying the inverse problems for equation (2) and its analogues. More general equations
can be written in form

L(t,z, D)u; — M(t,x, D)u = f,(x,t) € Q =G x (0,7, (3)

where L, M are second order operators and G is a bounded domain in R". The equation
(3) is furnished with initial and boundary conditions of form

u(0,x) = up(x), Ruls=g(t,x) (4)

with Ru = uor Ru = Z vi(t, x)ug, +o(t, z)u (other boundary conditions are also possible).

Pseudoparabolic equatlons of form (3) with various differential operators L; and Lo of
the even order in spacial variables also arise in the mathematical models of the heat
conduction, wave processes quasistationary processes in semiconductors and magnetics, in
the models for filtration of the two-phase flow in porous media with the dynamic capillary
pressure (see [3,4, Sect. 0.1.4] and the bibliography therein). Detailed bibliography and
the results concerning the solvability of direct problems for pseudoparabolic equations
can be found, for instance, in [5,6|. The first results devoted to inverse problems for
pseudoparabolic equations were obtained in [7], where an inverse problems of recovering an
unknown source f of a special form in (3) is considered. Large number of results is exposed
in the monographs [8-10]. We mention also the article [11] devoted to some coefficients
inverse problems with lower order coefficients depending on spatial variables being the
unknowns. The problems of recovering coefficients, in particular, the coefficients k(¢) and n
are studied in [12,13], where integral overdetermination conditions are used. Closed results
with pointwise overdetermination conditions are presented in [14]. Exposition of numerical
methods for solving inverse problem can be found, for instance, in [15,16]. We can refer
also to articles [17-24] devoted to different numerical methods of solving boundary value
problems for pseudo-parabolic equations. At the same time, the number of articles devoted
to a numerical solution of inverse problems for pseudo-parabolic equations is rather limited
(see, for instance, [24,25|). Most of the articles are devoted to different model problems.
In the present article we generalize the results in [14] to the case of the oblique derivative
problem, describe numerical methods applicable to a wide class of inverse problems with
pointwise ovedetermination, and present the results of numerical experiments in the case
of recovering the piezo-conductivity coefficient of fissured rock in equation (2).
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1. Preliminaries

We consider a general inverse problem on recovering functions occurring into the right-
hand side and left-hand side of the equation. Let the right-hand in (3) be of form

T
F=Y ) filz,t) + folz,t), fi € Lu(0,T; L,y(G)), (5)
i=1
where functions f; are given. We assume that

L= aj(t.x)0., + Y _ ai(t,z)0s, + ao(t, )
i=1

1,7=1

and operator M is representable as

Mu = M, u + Z e (t) Myu,

k=ro+1

Myu= > bfj(x, ge; + ) bE(z, t)uy, + bE(x, t)u,
ij=1 i=1
where functions ¢;(t) are unknown. Our problem is stated as follows: find functions
{ci(t)};_, and solution u to the problem (3) — (4) such that

(i, t) = ay(t), (1=1,2,.,r), (6)

where x; are arbitrary points lying in G and «;(t) are given functions. Put (u,v) =
Jo u(z)v(z) de.

We employ the Sobolev spaces W3 (G) and Hélder spaces C*(G) (see the definitions in
[26]). Symbol L,(0,T; H) (H is a Banach space) stands for the space of strongly measurable
functions defined on [0, 7] with values in H. Given an interval J = (0,7") and domain
G eR", put Q@ = (0,T) x G and W*(Q) = W) (J; L,(G)) N L,(J; W (G)). Respectively,
W3 (S) = Wi(J; Ly(D)) N Ly (J; W3(I)) (S = (0,T) x 0G). Similarly, we can define the
Hoélder spaces C™%(Q).

Next, we describe the condition on the data of the problem. We assume that operator
L is elliptic, i. e., there exists constant > 0 such that

Z a;;&&5 > 0olé)?, VEER", VY (z,t) € Q. (7)

ij=1
Fix parameter p > n and assume that

b € Loo(Q), UE, 0 € Loo(0, T3 Ly(G)) (k =ro,...,7), ®)

a;; € C(Q), a;,a0 € C([0,T]; L,(Q)) (i,7=1,2,..,n). 9)
We also suppose that

ag(z,t) < 0 a.e. (almost everywhere) in @
in the case of the Dirichlet boundary conditions

. . . A
and aj <0 a.e. in Q and a) < 0 a.e. in some neighborhood about S (4)
in the case of the oblique derivative problem.
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We also assume that
%,%t,U,UtECI/M(F), 1=1,2,...,n, (10)

a;(0) = up(z4,t) (1=1,2,..,7), B(0,z, D)ug|r = g(0,x). (11)

Let so = 2 — 1/p in the case of the Dirichlet boundary condtions and sy = 1 —1/p
otherwise. We can determine function ® € C([0,T];W2(G)) (p > n) such that &, €
Ly (0, T;W2(G)), ®|i=o = uo(x), and RP|s = g. Construct matrix B with the rows

L7 iz t), oy L g (g, t), =L My 11 ®(2, 1), .., — L7 M, ® (5, 1),
where j = 1,2, ...,r and assume that the there exists constant d; > 0 such that
|det B| > 0o Vt € [0,T]. (12)

Here L' f; is solution U; to problem LU; = f;, U0 = 0, RUy|ls = 0. In this case, it
is easy to justify that locally in time conditions (12) does not depend on the choice of
function ®.

The following theorem is proven in [14] for the case of the Dirichlet boundary
conditions. Here we expose the claim in the general case.

Theorem 1. Let the conditions (7) — (12), (A) be fulfilled. Then there exists a constant
Yo > 0 such that on interval [0,7] problem (3) — (6) has unique solution (u,cy,...,c;)
such that

u € Wpl((),%; WpQ(G)), ci(t) € Ly(0,70) (i =1,2,...,7).

Proof. In the case of the oblique derivative problem the proof almost repeats that in the
case of the Dirichlet boundary conditions. So we present the proof omitting some details.
Let function ® € C([0,T]; W2(G)) such that ®, € L,([0, T]; W7(G)) be a solution to the
direct problem (see the existence theorem in [14])

Loy + M, ® = fo, ®lizo = ug, R®[s=g.

In this case function v = u — ® is a solution to equation
0 r

Lvg+Mv =3 (1) fi(z,t) — > a(t)M;® = F(0), (13)

=1 i=ro+1

satisfying homogeneous conditions (4). There exists 79 > 0 such that condition (12), with
do/2 rather than dg, holds on [0, vo]. In this case

o(t, r;) = a;(t) — O(t,z;) = a;(t). (14)

Function ® € W2(G;W,(0,T)) after a possible modification on a set of zero measure
possesses property ® € C*(G; W (0,T)) for v < 2 — 2 (see (5.4) in [28]).
In particular, ®(xz;,t) € W, (0,T), and thus

a;(t) e Wy(0,7) (j=1,2,..,7). (15)

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 85
u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2019. T. 12, Ne 1. C. 82-95



S.N. Shergin, E.I. Safonov, S.G. Pyatkov

Inverting L in (13), we have
vy + L' Mv — vo(v) = L1 F (@), (16)

where vy(v) = 0 in the case of the Dirichlet boundary conditions and is a solution to
problem Lvy = 0, Ruvg|s = —R;v otherwise.

Note that L™*M;®(t,z;) and L' M;®(t,x;) € Lo(0,T) for almost all ¢. Actually,
L' M;®(x,t) € W2(G; Ly(0,T)) and thereby L™'M;®(t, ;) € L,(0,T) (see 28, (5.4)]).
Let = x; in (16). We have

ve(t, z;) + L' Muo(t, z;) — vo(v) (¢, z;) = LTHF(E)(t, x;).
The overdetermination conditions yield

oo+ R 25) = L F@) (1, 37),
R(U) = L_eroU - UO(U) + Z Ci(t)L_lMiU.
i=ro+1

We can rewrite the last equations in form
ay + R(v)(t, 1)
Bc = o . (17)

& + R(v)(t, x,))
As a result, we infer
age + R(v)(t, z1)
¢=DB"" o = S(0). (18)

G + R(0)(t,,)

The right-hand side can be viewed as an operator S(¢) taking vector &(t) in solution v(z, t)
to equation (13) satisfying homogeneous conditions (4) and then taking v(z,t) into the
right-hand side of (18). System (18) is the desired system. The properties of this operator
S can be described as follows. Fix

RO - QHB_IO:;HL;)(O,T% O:é = (&lh ceey drt)Tv

where norm ||[B~'&|| 1,07 is just the sum of the norms of the coordinates of vector B~'&
in space L,(0,7"). We assume that

c(t) € Bryy = {c€ Ly(0,7) : [I€llL, 0 < Ro}, v <T.

We now can state that there exists constant ¢ > 0 and ~, > 0 such that operator S :
Bryn — Bry~y» 7 < 70 takes ball Bp, ., into itself and is a contraction. More exactly, we
have the estimate

HS(Cl) - S(EQ>HL;7(07’YO) < C’yl/qul - 5QHMD(O’YO) VEq? e BRO,’Y

and thus this operator is a contraction for all v < o with 07(1)/ ? = 1/2. The method of
successive approximations ¢ = S(¢" 1) (n = 1,2,...), ¢° = 0 converges to a solution to
equation (18). The proof of these facts is in line with that in [14]. So we omit it.

(I
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2. Description of the Algorithm

To simplify the presentation, we describe the idea of the algorithm in the model case
which in particular includes the filtration problems described in the introduction. We rely
on some integral identities. Consider problem

Lou, + k(t)Liu = f, (19)
=g, ul0) = (o). (20)
u(zo, 1) = vo(t), (21)

where
Lou = —div(&o(ilf, t)Vut) + bo(.ﬁl?, t) -Vu + Co(.ﬁl?, t)ua

Liu = —div(ai(z,t)Vu) 4 by (2, 1) - Vu + c1(z, t)u

and ag, ay, cg, ¢; are scalar functions and by, b; are vector-function of length n. Functions
uw and k(t) are unknown. We assume that all conditions of Theorem 1 for the data are
fulfilled. Function @ is a solution to problem (19), (20). Since the existence theorem is local
in time, we can replace condition (12) with the following condition: there exists ty > 0
such that

|Ly Li®(z0,t)| > 6o > 0Vt € [0, 1]

or in a simpler form
‘LalLl?LO(xo)‘ 2 (50 >0Vt e [0, to] (22)

Let ¢ € Ly(0,T; W/ (G)) (1/q+ 1/p = 1) be a test function and let a function u be a
solution to problem (19), (20) from the class pointed out in Theorem 1. Integrating by
parts in identity

(Loue, @) + k(t)(Liu, @) = (f,), ¢ € Ly(0,T; Wy (G)), (23)

we arrive at equality

a(ug, ) + k(£)b(u, 0) = I(p) + k()L (p), (24)
where a(uy, ) = (CLOVut, V(p) (bo- Vut+cout, ©), b(u, ) = (a1 Vu, V)4 (b1 - Vutciu, ),
Up) = (s 0) +1o(), () = [ aogepdl’, () = [ argedt.

Next, we look for solution 4,00(95 t) to problem
Lipo = 6(x — x0), aoa 0 +b- nwolr =0, (25)

where Lj is a formally adjoint to Ly and § is the Dirac delta-function. Inserting ¢ in (24),
we obtain that

Ye + k(1) (b(u, po) — li(p)) = l(go)- (26)

Hence, we conclude that
k() (b(u, o) = (o)) = Upo) — e (27)
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Note that definition of ¢y implies that b(u, o) — li(pe) = Lg'Liu(zo,t). Since
| Ly Liug(z0)| > 6o > 0 on some segment [0, ty] we can say that |(b(ug, o) —11(©0))| > 0 on
some segment of time. Integral identities (27) allows us to construct the iteration procedure
realized in the proof of Theorem 1. To avoid an excessive calculations, we can omit the
determination of ® in our case. Let k° = (lo(o) — 1)/ (b(uo, vo) — l1(¢0))]i=0. Given
function k%, we can construct u'™! as a solution to problem (19), (20) with k(t) = k'(t)
and to determine next iteration £ from one of the equalities

EH(E) = (Lpo) — o)/ (0(u™™*, o) — 11 (00)), (28)

K= (1(p0) = v = K'b(u™ — o, 0))/ (b(uo, po) — li (o). (29)
The latter formula almost corresponds to the iteration procedure in the proof of the fixed
point theorem for operator S constructed in Theorem 1. The peculiarity is that we have
replaced function ® with function ug. It can be easily clarified that all arguments remain
valid in this case. Denominator in (29) is different from zero on some segment [0, .
Former formula (28) corresponds an another operator S but the same arguments can be
used to prove that the iteration procedure corresponding to formula (28) converges as well
on some small time segment [0, ¢o].

3. Numerical Algorithm

The algorithm is iterative and relies on the finite element method. We define
triangulation of G, mesh nodes, 1, xs, ..., xx, and corresponding piecewise linear functions
{pi(x)} (thus, ¢;(z;) = d;;, where 0;; is the Kronecker symbol. Without loss of generality,
we can assume that observation point z, is mesh node z;,. Approximate solution to (19),

N

(20) is sought in form u™ = 3" ¢;(t)pi(x). To determine the functions ¢; we employ
i=1

integral identity (24). Vector-function C(t) = (¢1(t), ca(t), ..., en(t))? is a solution to system

of ordinary differential equations

AC, + k(t)BC = F, C(0) = (ug(x1), uo(x2), . .., uo(zn))?, (30)

where A, B are matrices with entries a;; = a(pj,¢i), bi; = b(gj,¢i), and F =
(Fi,...,Fy)", Ei(t) = lo(pi) + k(t)l1(¢:). To solve (30), we involve the finite difference
method (FDM) (the implicit scheme) and replace (30) with finite difference equation
Cp—Che
A"+ kB, Cyy = Fy o + by Fir iy Co = C(0), (31)
T

where n = 1,2,..., M, 7 = T/M, and Fy,, Fi,, An, B, are the values of the right-hand
side in (30), and matrices A, B at nT. We assume here that approximation k of k is a
piecewise constant function taking value k, on ((n — 1)7,n7]. Respectively, a piecewise
constant approximation of solution C(t) to (30) is a piecewise constant function equal to
vector C,, on set ((n—1)7, nT]. An analog of the overdetermination condition is as follows:

On - On—l
T

= Yo((n —1)7). (32)

Since our results are local in time, we employ the predictor-corrector arguments. Given
vector O, denote its j-th coordinate by (C);. Find quantity ks = ((Ay'Foo)jo —
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¥(0))/((Ag ' BoCo)jo — (Ag ' Fi0)j,). Put ki = ko. Let the approximation k% of quantity &
be known. Find solution Cf to equation (31) with n =1 and k; = ki, i.e.

4 CL=Co

- + kiBnCi == Fo,l + kiFl,l' (33)

The next approximation is defined as
ki = (AT Fon)je — ¢4(0) /(AT B1CY)jy — (AT Fi1)j0)- (34)

We repeat the arguments until |ki™' — k¢| < & with ¢ a prescribed small number. Next we
take ki 1= k’ﬁl. We have find quantity k; and corresponding vector C; := Cf“. Assume
that we have found ki,...,k, (m < M) and vectors C,...,C,,. Take k| := k,, and
calculate quantities k%, for all ¢ as follows. Assume that quantity &7, is known. Find
solution C!, ;| to equation (31) with n =m +1 and k,, = k|, iLe.

rin — O i i i
Appir =" —" 4 k1 But1 Oy = Fomit + Kl Fimsa (35)
Next, we calculate ‘ '
k1 = (An Fonr)jo — $e(m7)) /41, (36)
where I = (A4 Bmi1Chi1)jo — (Anh i Fimet)s,)- We repeat the arguments until

kAL — ki | < e. In this case we put ky,y1 := ki and Cpqq == CiF) . The arguments
are repeated until m = M. It is possible of course that the process stops at some iteration
(for instance, if the denominator in (36) becomes equal to zero). It is possible due to the

nonlinearity of the problem. Formula (36) corresponds to equality (28).

4. The Results of Numerical Experiments

In this section we analyze the results of numerical experiments. The characteristics
of the computer are as follows: processor Intel(R) Core(TM) i7-3517U CPU @ 1.90GHz
2.40GHz, 10.00 GB RAM, 64-digit operating system Windows 7 Enterprise.

As a result of calculations, we obtain approximate values of solution (u(z,y,t), k(t))
of problem (19) — (20) at points (t1,ts,...tx). Here point (z,y) belongs to the unit circle
centered at (0,0). We present the results of calculations only for function k.

To solve the problem numerically, we use three meshes for this domain with the number
of nodes Ny = 197, N, = 751 and N3 = 2933 (Fig. 1). Additional information (21) is given
at observation point z;, = (xo, yo) = (0,3, —0, 3).

All numerical experiments are divided into two groups in dependence on unknown
functions u, k, the boundary conditions, noise percentage ¢, error between iterations e,
coefficients ag, a1, bo 1, bo 2, b1 1, b1,2, co, c1, and right-hand sides f.

We will use the Neumann boundary conditions from (24) which are represented as

ou
—|r = (ue + uyy) = g.

on
The data of the first group are as follows:
— solution: u(z,y,t) = (x> +y>+1) - (1 +t);
— initial data: uli—o = 2% + y* + 1;

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 89
u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2019. T. 12, Ne 1. C. 82-95



S.N. Shergin, E.I. Safonov, S.G. Pyatkov

Graph with polnts x1 y1,

08 06 04 02 0
b3

a)

02 04 06 08

Graph with points x1 y1,

PYAYAVAV,
R

va¥a)
avay
1%
f:
ﬁ
N

S
AV% %
K
ﬁ'
V&)
Y,

X

A
WAV
0

%%

&

]

5

&

N

IYAVAYAW,
KK év
YAy, YAl
DA%

VLS
R
N

(7

LTS

i
TSR )
S A O GO O
AR 0070 KA
s
AN
OOOTARE]

NSRS
% '%' L

q
[
4
A
v’s %
KRR
S
RS
S
SLOAA
SRR
Hbe
o
v
X

A':‘
[

KA
5
N
N/

[

4‘ 4§
S
SRR
YavA¥)

08 06 04 02 0 02 04 06 08
b3

b)

08 06 04 02 0 02 04 06 08

Fig. 1. Meshes: a) N; = 197; b) Ny = 751; ¢) N3 = 2933

— Neumann boundary conditions: g = 2(2? + y?)(1 + ¢);
— additional information: ¥ (zj,, t) = (23 +y2 +1)- (1 +1);

— unknown function: k(t) = t%
— coeflicients: ag = O, 5, a; = 4/(1+t), b(),l = b072 = b171 = b1’2 = O7 Cop = 1/(1‘%4-117%4-1),

g =1/(1+1);

— right-hand side: f =?- (2? + y? — 15) — 1.
We compare the results of calculations for three meshes for the data without noise,
ie. § = 0. Take ¢ = 1072 (the error defined by the user). Denote by 7 the time of the
work of the algorithm in seconds. Introduce one more error of the algorithm by equality
go = max |k — k(mAt)|, where m = 1,2,..., N. Consider segment [0, 7], T = 1, and take

At =T/N, N = 100.

12

Fig. 2. Results of calculations for the meshes: Ni: 7 = 9,81, g5 = 0,0058; No: 7 = 131, 62,
go = 0,0015; N3: 7= 3820,1, g = 0,00035

The obtained plots of original functions k(¢) and their approximation for three different
meshes are almost identical, so we present only one of them for the first mesh. For the
following experiments, add 10, 20 and 40 percent random noise to the overdetermination
data: vy (z9,t) = (o, t)(14+ (20 — 1)), where ¢ is random function normally distributed
on interval [0, 1]. Due to the almost complete coincidence of the graphs of the original and
the approximated function, we give only the graphics with noise 40 percent and e = 1073,
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Fig. 3. Results of calculations for the meshes: a) Ny: 7 = 8,41, g = 0,0286; b) Ny:
T =110,5, 9 = 0,0231; ¢) N3: 7 =3983,1, g9 = 0,0232

Fig. 3 shows that, the obtained plots of original functions k() and their approximation
are almost identical and regardless of the level of input noise o, the results of the
calculations repeat the ones sought or are located next to them. Table 1 shows the results

for different input data.
Table 1

Results of numerical experiments (first group)

No exp. Grid ) €0 T
1 Ny 0 0,0058 8,41
2 Ny 0,1 0,0106 8,8
3 N, 0,2 0,0166 8,51
4 Ny 0,3 0,0187 8,3
5 Ny 0 0,0015 110,5
6 Ny 0,1 0,0066 1094
7 N, 0,2 0,0114 114,32
8 N, 0,3 0,018 118,57
9 N3 0 0,00035 3983,1
10 N3 0,1 0,0058 3773,3
11 N3 0,2 0,0117 3730,4
12 N3 0,3 0,0174 3821.,9

Based on the results of numerical experiments for the first group of data, we can
conclude that the increase in the number of nodes in 4 times leads to the increase in the
calculation time by an average of &~ 12 times for grids N; and N, and = 42 times for grids
Ny and N3, but does not lead to a significant increase in accuracy and with the increase
in the noise level.

Let us describe the data of the second group:

— solution: u(z,y,t) = (22 +1)- (y*+1)- (1 +1);

— initial data: u—o = (2% +1) - (y* + 1);

~ Neumann boundary conditions: g = 2(t + 1)(y(2* + 1) + z(y* + 1));

— additional information: ¢ (zj,, t) = (22 +1)- (y3+1)- (1 +1¢);

— unknown function: k(t) = (t — 0,5)3;

—coefficients: ag = (t+1)(2?+1), a1 = (P +y+4)/(x*+1), b1 = 2®xt, by = (x+y)*t,
b171 = yQ/(t + 1), b172 = l‘t/(y + 1), Co = ty/(l'2 + ].), Cl = (ZL’ + t)/(2 + y),
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~ right-hand side: f = (2(z* + 1)%)/(¢t + 1)
2y+2t2+8)/(t+1)—(21/)/(15+1) Ry + Dy + 12 +4)/((@* + )t + 1)) +
D/t +1)" + (427" + Dy + £+ 4)/ (2% + D*(E+ 1)) + @tay(a® +1)/(t +1
%)) 20+ D4 D)/ +1) + (42°(y 24+ 1))/(t+1) = 2Lt (y® + 1)) /(t+1)* = (

(v + 1)/ ((t+ 1*(2? +y° + 1)) — (2ty(2® + D(z +y))/(t+ 1)%
Since the results for different grids are similar, we present them for the grid N;. As in

the case of the first group, we vary parameters € and 9. Table 2

(t+1)°
2xy°(y?
(y

)
(2

+(t = 05)*(((«* + 1)(y* + 1))/ -
( + +
1 +
1 T+
1

Results of numerical experiments for the second group of data

No exp. Grid ) € €0 T
1 N 0 1074 0,0035 7,1
2 N, 0 107° 0,0035 6,35
3 N, 0 10°° 0,0035 6,59
4 N 0 1077 0,0035 7,02
5 N, 0,2 1071 0,0156 6,2
6 N, 0,2 107° 0,0126 5,85
7 N, 0,2 10°° 0,0151 6
8 N, 0,2 1077 0,0137 6,6
9 N, 0,4 1074 0,0291 6,38
10 N 0,4 107° 0,0246 6,94
11 N 0,4 107° 0,0262 8,08
12 N 0,4 1077 0,0273 8,2

As we can see the decrease in variable £ does not lead to a significant increase in the
accuracy and decreasing the time of calculations. In the next two experiments we reduce
the ti tep i ti .

e time step in 5 times Table 3
Results of numerical experiments for the second group of data,
time step 0,002

No exp. Grid ) € €0 T
1 Ny 0 1074 0,0031 36,41
2 N, 0 107° 0,0031 32,69
3 N 0 1076 0,0031 32,41
4 N, 0 1077 0,0031 35,56
5 N 0,2 10~* 0,0147 47,44
6 Ny 0,2 107° 0,0146 37,77
7 N 0,2 107° 0,0142 36,28
8 Ny 0,2 1077 0,0153 42,46
9 Ny 0,4 10~ 0,0263 4527
10 N, 0,4 107° 0,0269 56,34
11 N, 0,4 107° 0,0273 56,35
12 Ny 0,4 1077 0,0272 54,81

Summing up, we can say that the use of a grid with a large number of nodes shows
better accuracy, but the time of the calculation increases by an amount equal to the ratio
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of the number of nodes of the three grids. Decreasing the variable € leads to an increase in
the computation time 7, but does not lead to a significant increase in accuracy. We also see
that the dependence of the time of a calculation on the time step is inversely proportional.

Conclusions

We establish the existence and uniqueness theorems in inverse problems of recovering
the coefficients of a pseudoparabolic equation with pointwise overdetermination conditions.
Actually, we have proven that the problems in questions are well-posed in the usual sense
at least locally in time. The problem is reduced to an operator equation of Volterra type.
This allows to construct a numerical algorithms based on the conventional methods (in
our case FEM and difference schemes) with a sufficiently good convergence to a solution.
The results of numerical experiments are presented.
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YK 517.956 DOI: 10.14529 /mmp190107

O HEKOTOPBIX KOS®OPUIIMEHTHBIX OBPATHBIX 3A/TAYAX
C TOYEYHDBIM IIEPEOIIPEAEJIEHUEM /JJI4 MATEMATNYECKUNX
MOJIEJIEN ®UJIBTPAIIAN

C.H. Illepezun', E.1. Cagonos', C.I. Ilamxros'?,
'TOropcexkuit rocynapeTBeHHbI yHUBEpeuTeT, I. XanThl-MaHCHiicK,
Poccniickas @enepariust
2}Ozk10- Y pasIbCcKuil roCyIapCTBEHHbIH YHIBEPCHUTET, T. esIOnHCK,
Poccuiickas Peepartiust

PaccmaTpuBaiorcss obparHble 3a1a9u BOCCTAHOBJECHHS KOIMDDUIIMEHTOB JUHEHHOTO
[ICeB10IapaboIMIeCKOr0 ypaBHeHNsl, BO3HUKAMOIINE B Teopuu (uabTpanuu. | paHndHbie
ycsaoBust Tuiia HeliMaHa JOMOJIHSIIOTCS YCJIOBUSIMU IIEPEOIIPeIeJIeHUsI, KOTOPbIE eCTh 3Ha-
YeHUs PEIIeHNs B HEKOTOPOM HabOpe BHYTPEHHUX TOYeK obsactu. Mbl IPUBOIUM TEOPEMBI
CYIIECTBOBAHUS U €IMHCTBEHHOCTHU perienuit B mpocrpancTBax Cobosesa. [lomydaentoe pe-
IIIEHIE SIBJISeTCS PErYJISAPHBIM, TO €CTh 00J1a/1aeT BCeMU 0000IIEHHBIMY TPOU3BOIHBIMHI, BXO-
JISANIMY B ypaBHEHUE, IPUHAJIEXKAIUMY HEKOTOPOMY IIPOCTpaHCTBY Jlebera. Meros qoka-
3aTeIbCTBA SBJISIETCA KOHCTPYKTUBHBIM. 3aJa4a CBOIUTCS K HEJMHEHHOMY OIepaTOPHOMY
YPABHEHUIO C CXKUMAIOIIUM OIEPATOPOM, €CJIM BPEMEHHOW ITPOMEXKYTOK JIOCTATOYHO MAJI.
Ucnonp3yss meTon H0Ka3aTeIbCTBA, MBI CTPOUM YUCJIEHHBIH AJTOPUTM OIPEIEICHUS pe-
IIEHNSI, COOTBETCTBYIOIIII IIPOrPAMMHBIN KOMILJIEKC M OIUCHIBAEM PE3YIIbTATHI YNCICHHBIX
SKCIIEPUMEHTOB B JBYXMEPHOM CJIyYae 110 MPOCTPAHCTBEHHBIM ItepeMeHHbIM. OIpeie/ieHuto
[IOJIJIEZKAT CaMO PeIlleHre YPaBHEHUs U KO3 PUIIMEHT Tbe30IPOBOINMOCTH TPEIMHOBATON
cpeabl. OCHOBHOM MeTO[T JIJIsl YUCJIEHHOIO OIpEJIeJIeHs] PENIeHUs] — METOJ, KOHEYHbBIX dJIe-
MEHTOB, KOTODBII JOIOJHAECTCH PA3HOCTHOU CXEeMOM I pellleHnd COOTBETCTBYIOIIEH CUCTe-
MBI OOBIKHOBEHHBIX I depeHInaIbHbIX ypaBHeHuil. B KoHeaHOM cueTe 3ajatda CBOIUTCS
K PEIIeHNIO HEJUHEHHONW aJredOpamdecKoil CHCTEMBbI, PpelTeHrne KOTOPOil HAXOMUTCS MPU TI0-
MOIIY UTEPAIMOHHON MpoIenypbl. Pe3ysibTarsl MOKAa3bIBAIOT OYE€Hb XOPOIIYI0 CXOIUMOCTH
YUCJIEHHOTO aJITOPUTMA.

Karoueswie caosa: obpammas 3adava; ncesdonapabosuseckoe ypagnerue; Guibmparus;

YUCNEHHOE PEUEHUE.
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