
КРАТКИЕ СООБЩЕНИЯ

MSC 35G15 DOI: 10.14529/mmp190211

THE BARENBLATT–ZHELTOV–KOCHINA MODEL ON THE SEGMENT
WITH WENTZELL BOUNDARY CONDITIONS

N.S. Goncharov, South Ural State University, Chelyabinsk, Russian Federation,
Goncharov.NS.krm@yandex.ru

In terms of the theory of relative p-bounded operators, we study the Barenblatt–

Zheltov–Kochina model, which describes dynamics of pressure of a filtered fluid in a

fractured-porous medium with general Wentzell boundary conditions. In particular, we

consider spectrum of one-dimensional Laplace operator on the segment [0, 1] with general

Wentzell boundary conditions. We examine the relative spectrum in one-dimensional

Barenblatt–Zheltov–Kochina equation, and construct the resolving group in the Cauchy-

Wentzell problem with general Wentzell boundary conditions. In the paper, these problems

are solved under the assumption that the initial space is a contraction of the space L2(0, 1).
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Introduction

Let us consider the Cauchy–Wentzell problem

u(x, 0) = v0(x), x ∈ [0, 1],

uxx(0, t) + α0ux(0, t) + α1u(0, t) = 0,

uxx(1, t) + β0ux(1, t) + β1u(1, t) = 0

(1)

for the Barenblatt–Zheltov–Kochina equation on the segment [0, 1]

λut(x, t)− utxx(x, t) = αuxx(x, t) + f(x, t), (x, t) ∈ [0, 1]× R+, (2)

which describes dynamics of pressure of a filtered fluid in a fractured-porous medium.
Here α and λ are the material parameters characterizing the environment, the parameter
α ∈ R+, the function f = f(x, t) plays the role of external loading.

For the first time Wentzell boundary condition were considered in [1] in order to
find diffusive processes for Markov processes homogeneous in time on the segment.
Independently, these conditions were investigated in [2]. More general case were studied
later in [3]. Namely, the domain belongs to n-dimensional Euclidean space which is a circle
or a sphere, and semigroup is C0-contracting and invariant under rotations.

Further the results of [3] were developed and generalized in papers [4–7]. In particular,
the classification of general Wentzell boundary conditions for a fourth-order differential
operator in the one-dimensional case was established in [4], the role of Wentzell boundary
conditions in linear and nonlinear analysis was shown in [5], Wentzell boundary conditions
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for the Sturm–Liouville operator were studied in [6], the Laplace operator with general
Wentzell boundary condition in Sobolev space was considered in [7]. These papers formed
the basis of the new scientific direction, which endures a blossoming time in the present.

The purpose of this work is to research resolvability of problem (1) – (2) with Wentzell
boundary conditions. The article contains two sections except introduction, conclusion,
and references. The relative spectrum of the Laplace operator with Wentzell boundary
condition is found in the first section. The main results on resolvability of the Cauchy–
Wentzell problem in the Barenblatt–Zheltova–Kochina model are given in the second
section.

1. Relative Spectrum of the Laplace Operator with Wentzell

Boundary Condition

Let us consider the differential operator

Au(x) = u′′(x), x ∈ [0, 1] (3)

with general Wentzell boundary conditions

Au(0) + α0u
′(0) + α1u(0) = 0, (4)

Au(1) + β0u
′(1) + β1u(1) = 0. (5)

By formulas (3) – (5) we define the linear operator A : dom A ⊂ F → F. Here F is a space
(

L2[0, 1], dx

∣

∣

∣

∣

(0,1)

⊕ ηds

∣

∣

∣

∣

{0,1}

)

with the norm

‖u‖2F =

1
∫

0

|u(x)|2dx+ η0|u(0)|2 + η1|u(1)|,

where dx is a Lebesque measure on the segment (0, 1), ds is a point measure at the
boundary, η0 = 1

−α1

, η1 = 1
β1

, where α1 < 0 < β1, are positive weights. The

full construction of the space F is given in [8]. We consider also the linear manifold
dom A = {u ∈ C2[0, 1] : conditions (4), (5) are fulfilled} as the domain of the operator A.

Lemma 1. Let the operator A be defined by formulas (3)–(5). Then
(i) dom A = {u ∈ C2[0, 1] : conditions (4), (5) are fulfilled} is a Banach space with

regard to the norm ‖u‖C2[0,1];
(ii) dom A is densely embedded in F;
(iii) A ∈ L(dom A;F).

Let us give an idea of the proof. Statement (i) is obviously, since dom A forms a
subspace closed in C2[0, 1]. Statement (ii) obviuosly follows from the fact that the operator
of embedding G : C2[0, 1] → F is compact. Statement (iii) is obviously.

We consider the spectral problem for the operator A with general Wentzell boundary
conditions. Prove the following theorem.

Theorem 1. Suppose that the operator A satisfies the conditions of Lemma 1. Then A
has a real, discrete, finite multiplicity spectrum with the unique limit point at infinity.

Proof. It follows from [8] that the operator A on F is essentially self-adjoint. This means
that the spectrum of the operator A is real. Let us define the spectrum of the operator A
and find its resolvent. We have (λI− A)u = f(x), x ∈ [0, 1], for f ∈ C2[0, 1].
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Consider the case of λ < 0. Solve the differential equation with general Wentzell
boundary conditions by classical methods, and obtain the resolvent of the following form:

u(x) = (λI−A)−1f = Rλf = C1 cos(
√
−λx)+C2 sin(

√
−λx)+

x
∫

0

f(s)√
−λ

sin(
√
−λ(x−s))ds.

Write coefficients C1 =
A0

B
and C2 =

A1

B
for the resolvent, where

B = (λ+ α1)

(

λ sin(
√
−λ) + β0

√
−λ cos(

√
−λ) + β1 sin(

√
−λ)

)

− α0

√
−λ

(

λ cos(
√
−λ)−

−β0

√
−λ sin(

√
−λ) + β1 cos(

√
−λ)

)

,

A0 = f(0)

(

λ sin(
√
−λ) + β0

√
−λ cos(

√
−λ) + β1 sin(

√
−λ)

)

− α0

√
−λ

(

f(1)−

−
1
∫

0

f(s)λ√
−λ

sin(
√
−λ(1− s))ds−β0

1
∫

0

f(s) cos(
√
−λ(1− s))ds−β1

1
∫

0

f(s)√
−λ

sin(
√
−λ(1− s))ds

)

,

A1 = (λ+ α1)

(

f(1)−
1
∫

0

f(s)λ√
−λ

sin(
√
−λ(1− s))ds− β0

1
∫

0

f(s) cos(
√
−λ(1− s))ds−

−β1

1
∫

0

f(s)√
−λ

sin(
√
−λ(1− s))ds

)

−f(0)

(

λ cos(
√
−λ)−β0

√
−λ sin(

√
−λ) + β1 cos(

√
−λ)

)

.

The resolvent operator Rλ is the sum of a two-dimensional operator (a linear
combination of sine and cosine) and an integral operator of Hilbert–Schmidt type. A two-
dimensional operator is finite-dimensional, and hence compact, since the coefficients C1

and C2 depend continuously on f in the metric of F. Hence, the operator Rλ = (λI−A)−1

is compact in F as the sum of finite-dimensional and compact operators. By Hilbert’s
theorem, Rλ has a discrete, finite multiplicity spectrum with the unique limit point at
zero.

Let us show that the operator A has a discrete, finite multiplicity spectrum with
the unique limit point at infinity. Fix an arbitrary eigenvalue λ0 of the operator Rλ and
express the eigenvalues of the operator A through the eigenvalues of the resolvent Rλ. We
obtain Rλf = λ0f, where f is the eigenvector of the resolvent. By acting with the operator
(λI−A) on both parts of the equality and dividing by λ0 (λ0 6= 0), we get the expression

Af =

(

λI− 1

λ0

)

f,

which shows how the eigenvalues of the original and resolvent operators are related. Due
to the behavior of the spectrum of the operator Rλ, we proved that for λ < 0 the operator
A has a discrete, finite multiplicity spectrum with the unique limit point at infinity.

Similarly, consideration of the case λ > 0 by the Sturm–Liouville method shows that
the set of eigenvalues is finite or empty depending on the conditions on the coefficients
in (4), (5).

Consider the case of λ = 0. Find sufficient conditions for the set of eigenvalues of the
operator A. Note that if the coefficients in (4), (5) satisfy the equality

α0β1 = α1(β0 + β1),

then λ = 0 belongs to the set of eigenvalues of the operator A. The theorem is
proved. �
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The Barenblatt–Zheltov–Kochina equation

λut(x, t)− utxx(x, t) = αuxx(x, t) + f(x, t), (x, t) ∈ [0, 1]× R+

can be considered as a non-homogeneous Sobolev type equation Lut = Mu+ f, where the
operators L = λ − A ∈ L(domA;F), M = αA ∈ L(domA;F), the function f = f(x, t) ∈
C2([0, 1] × R+;F). In order to solve the Cauchy–Wentzell problem (6), (7), we find the
L-spectrum operator of M . Since the L-resolvent of the operator M takes the form

(µL−M)−1 = (µ(λ− A)− αA)−1 = {µ+ α 6= 0} = (µ+ α)−1

[

µλ

µ+ α
− A

]−1

with µ+ α 6= 0, then µ belongs to relative spectrum σL(M) if

µ =
ασ(A)

λ− σ(A)
.

Therefore, according to Theorem 1, with µ + α 6= 0, we have a discrete, finite L-
spectrum σL(M) of the operator M with the limit point −α at infinity.

Consider the case of µ+ α = 0. With λ = 0 we have σL(M) = {−α}. With λ 6= 0 we
have σL(M) = {∅}, if α 6= 0, and σL(M) = {0}, if α = 0. We described the L-spectrum
of the operator M , getting the following corollary of Theorem 1.

Corollary 1. The L-spectrum of the operator M in the Barenblatt–Zheltov–Kochina
equation with Wentzell boundary conditions is discrete, finite multiplicity, with the limit
point −α at infinity.

2. The Cauchy–Wentzell Problem in the Barenblatt–Zheltov–

Kochina Model

Let us consider the Cauchy–Wentzel problem in the previously introduced space F on
the segment [0, 1]

u(x, 0) = v0(x), x ∈ [0, 1],

uxx(0, t) + α0ux(0, t) + α1u(0, t) = 0,

uxx(1, t) + β0ux(1, t) + β1u(1, t) = 0

(6)

for the Barenblatt–Zheltov–Kochina equation

λut(x, t)− utxx(x, t) = αuxx(x, t) + f(x, t), (x, t) ∈ [0, 1]× R+. (7)

By Corollary 1, the operator M is (L, σ)-bounded, therefore, the following theorem holds.

Theorem 2. Suppose that the linear operator A satisfies the conditions of Lemma 1, and
f ∈ F is a fixed vector. Then

(i) if λ /∈ σ(A), then for any v0 ∈ domA and f ∈ F there exists the unique solution
u ∈ C2(R; domA) to problem (6)–(7), which has the form

u(x, t) =
∞
∑

k=1

e
αλk

λ−λ
k
t
< v0, ϕk >F ϕk(x) +

∞
∑

k=1

(

e
αλk

λ−λ
k
t − 1

)

< f, ϕk >F

αλk

ϕk(x);

(ii) if λ ∈ σ(A), then for any f ∈ F and v0 ∈ Pf =

{

u ∈ domA : αλ < u, ϕk >F=

− < f, ϕk >F, λk = λ

}

there exists the unique solution u ∈ C2(R;Pf) to problem (6), (7),

which has the form
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u(x, t) = − 1

αλ

∑

λ=λk

< f, ϕk >F ϕk(x) +
∑

λ6=λk

e
αλ

k

λ−λk
t
< v0(x), ϕk >F ϕk(x)+

+
∑

λ6=λk

(

e
αλ

k

λ−λk
t − 1

)

< f, ϕk >F

αλk

ϕk(x).

Proof. The proof of this theorem depends on the kernel of the operator L and consists in
applying either the classical theorem for a non-homogeneous differential operator equation,
or Sviridyuk’s theorem. According to Theorem 1, the Laplace operator has a real, discrete,
finite multiplicity spectrum having the limit point at −∞, and {λk : k ∈ N} are eigenvalues
of the Laplace operator, which are numbered in non-increasing order taking into account
the multiplicity, and correspond to eigenfunctions {ϕk : k ∈ N}. Then, according to the
completeness of the eigenfunctions, for v ∈ F we have

Rµ(A)v = (µI−∆)−1v =

∞
∑

k=1

< v, ϕk >F ϕk

µ− λk

,

and, therefore,

RL
µ(M)v = (µL−M)−1 =

∞
∑

k=1

< v, ϕk >F (λ− λk)

µ(λ− λk)− αλk

ϕk. (8)

Termwise integration is admissible, since the series uniform convergences by the norm of
the space domA. Therefore, substituting L-resolvent (8) of the operator M and applying
the residue theorem, we obtain corresponding expressions (i), (ii). �

Conclusion

We constructed the resolution group in the Cauchy–Wentzell problem. To this end,
we used the Sviridyuk’s theory, and the space, the structure of which is specified in [8].
Further, we plan to continue the results of the paper by applying the Wentzell boundary
conditions in directions related to [10, 11].
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МОДЕЛЬ БАРЕНБЛАТТА – ЖЕЛТОВА – КОЧИНОЙ В ОБЛАСТИ
С ГРАНИЧНЫМИ УСЛОВИЯМИ ВЕНТЦЕЛЯ

Н.С. Гончаров, Южно-Уральский государственный университет, г. Челябинск,
Российская Федерация

В терминах теории относительно p-ограниченных операторов исследуется модель

Баренблатта – Желтова – Кочиной, описывающая динамику давления фильтрующей-

ся жидкости в трещинновато-пористой среде с общими граничными условиями Вент-

целя. В частности, рассматривается спектр одномерного оператора Лапласа на отрезке

[0, 1] c общими граничными условиями Вентцеля; ставится вопрос об относительном

спектре в одномерном уравнении Баренблатта – Желтова – Кочиной и построении

разрешающей группы в задаче Коши – Вентцеля с общими граничными условиями

Вентцеля. В работе решены указанные задачи в предположении, что исходное про-

странство, в котором действует оператор Лапласа на отрезке, есть сужение простран-

ства L2(0, 1).

Ключевые слова: модель Баренблатта – Желтова – Кочиной; относительно p-

ограниченный оператор; фазовое пространство; C0-сжимающие полугруппы; краевые

условия Вентцеля.
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