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In terms of the theory of relative p-bounded operators, we study the Barenblatt—
Zheltov—Kochina model, which describes dynamics of pressure of a filtered fluid in a
fractured-porous medium with general Wentzell boundary conditions. In particular, we
consider spectrum of one-dimensional Laplace operator on the segment [0, 1] with general
Wentzell boundary conditions. We examine the relative spectrum in one-dimensional
Barenblatt—Zheltov—Kochina equation, and construct the resolving group in the Cauchy-
Wentzell problem with general Wentzell boundary conditions. In the paper, these problems
are solved under the assumption that the initial space is a contraction of the space L?(0,1).

Keywords: Barenblatt—Zheltov—Kochina model; relatively p-bounded operator; phase
space; Cy-contraction semigroups; Wentzell boundary conditions.
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Introduction

Let us consider the Cauchy—-Wentzell problem

u(z,0) = vo(x), = €[0,1],
Uz (0, 1) + apug(0,t) + aqu(0,t) = 0, (1)
Uz (1, 1) + Bou(1,1) + Sru(l,t) =0

for the Barenblatt-Zheltov—Kochina equation on the segment [0, 1]
Mg (2, 1) — Upe (2, 1) = QU (z,t) + f(2,1), (2,t) €[0,1] x Ry, (2)

which describes dynamics of pressure of a filtered fluid in a fractured-porous medium.
Here o and \ are the material parameters characterizing the environment, the parameter
a € Ry, the function f = f(x,t) plays the role of external loading.

For the first time Wentzell boundary condition were considered in [1] in order to
find diffusive processes for Markov processes homogeneous in time on the segment.
Independently, these conditions were investigated in [2|. More general case were studied
later in [3]. Namely, the domain belongs to n-dimensional Euclidean space which is a circle
or a sphere, and semigroup is Cy-contracting and invariant under rotations.

Further the results of 3| were developed and generalized in papers [4-7]. In particular,
the classification of general Wentzell boundary conditions for a fourth-order differential
operator in the one-dimensional case was established in [4], the role of Wentzell boundary
conditions in linear and nonlinear analysis was shown in [5], Wentzell boundary conditions
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for the Sturm-Liouville operator were studied in [6], the Laplace operator with general
Wentzell boundary condition in Sobolev space was considered in [7|. These papers formed
the basis of the new scientific direction, which endures a blossoming time in the present.

The purpose of this work is to research resolvability of problem (1) — (2) with Wentzell
boundary conditions. The article contains two sections except introduction, conclusion,
and references. The relative spectrum of the Laplace operator with Wentzell boundary
condition is found in the first section. The main results on resolvability of the Cauchy—
Wentzell problem in the Barenblatt-Zheltova-Kochina model are given in the second
section.

1. Relative Spectrum of the Laplace Operator with Wentzell
Boundary Condition

Let us consider the differential operator

Au(z) =u"(z), x€l0,1] (3)
with general Wentzell boundary conditions
Au(0) + apu’(0) + aqu(0) = 0, (4)
Au(1) 4 Bou/(1) + fru(l) = 0. (5)
By formulas (3) — (5) we define the linear operator A : dom A C § — §. Here § is a space

@ nds
(0,1)

<L2 [0,1], dx

) with the norm

{01} 1

!\uH%:/\u(x)IdeﬂLno!U(O)\Q+m\u(1)!,

where dz is a Lebesque measure on the segment (0,1), ds is a point measure at the
boundary, 17y = }al, m é, where oy < 0 < f;, are positive weights. The
full construction of the space § is given in [8]. We consider also the linear manifold
dom A = {u € C?0,1] : conditions (4), (5) are fulfilled} as the domain of the operator A.

Lemma 1. Let the operator A be defined by formulas (3)—(5). Then

(i) dom A = {u € C?[0,1] : conditions (4), (5) are fulfilled} is a Banach space with
regard to the norm ||lul|czpg 45

(11) dom A is densely embedded in §;

(i1i) A € L(dom A;F).

Let us give an idea of the proof. Statement (i) is obviously, since dom A forms a
subspace closed in C?[0, 1]. Statement (7)) obviuosly follows from the fact that the operator
of embedding G : C?[0,1] — § is compact. Statement (711) is obviously.

We consider the spectral problem for the operator A with general Wentzell boundary
conditions. Prove the following theorem.

Theorem 1. Suppose that the operator A satisfies the conditions of Lemma 1. Then A
has a real, discrete, finite multiplicity spectrum with the unique limit point at infinity.

Proof. 1t follows from [8] that the operator A on § is essentially self-adjoint. This means
that the spectrum of the operator A is real. Let us define the spectrum of the operator A
and find its resolvent. We have (A — A)u = f(z), = € [0,1], for f € C?0,1].
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Consider the case of A < 0. Solve the differential equation with general Wentzell
boundary conditions by classical methods, and obtain the resolvent of the following form:

u(z) = (AI—A)' f = Ry f = Oy cos(vV—=Az)+Casin(v/—Az)+ sin(v/—=\(z—s))ds.

gks
: : — Ao — 4
Write coefficients C; = 5 and Cy = 5] for the resolvent, where
B=(\+a) ()\ sin(v/=\) + Bov—Acos(v =) + B sin(\/——)\)) — ao\/——)\()\ cos(v/—\)—
o/ =X sin(v=X) + A cos(\/—_)\)),
Ay = £(0) ()\ Sin(vVN) + fov/=X cos(VR) + sin(\/——)\)) _ aom( F(1)—
flf(s))‘ sin(v/=\(1 — s ds;@off cos(v=A(1 — s))ds 5, f \J;(ism (V=1 — s))ds),

]

A=A+ aq) (f(l) — bf {/(%\ sin(v/=\(1 — s))ds — f3 ff cos(v/=A(1 — s))ds—
—By fj(ism (V=1 - s))ds) —f(0) (/\ cos(vV-N) — Bov/—Asin(v/ =) + B cos(\/——/\)).

The resolvent operator R, is the sum of a two-dimensional operator (a linear
combination of sine and cosine) and an integral operator of Hilbert—Schmidt type. A two-
dimensional operator is finite-dimensional, and hence compact, since the coefficients C;
and C5 depend continuously on f in the metric of §. Hence, the operator Ry = (A\[— A)~*
is compact in § as the sum of finite-dimensional and compact operators. By Hilbert’s
theorem, R, has a discrete, finite multiplicity spectrum with the unique limit point at
Zero.

Let us show that the operator A has a discrete, finite multiplicity spectrum with
the unique limit point at infinity. Fix an arbitrary eigenvalue )y of the operator R, and
express the eigenvalues of the operator A through the eigenvalues of the resolvent Ry. We
obtain Ry f = Ao f, where f is the eigenvector of the resolvent. By acting with the operator
(AL — A) on both parts of the equality and dividing by Ag (Ao # 0), we get the expression

1
Af = (/\H_A_o>f’

which shows how the eigenvalues of the original and resolvent operators are related. Due
to the behavior of the spectrum of the operator Ry, we proved that for A < 0 the operator
A has a discrete, finite multiplicity spectrum with the unique limit point at infinity.

Similarly, consideration of the case A > 0 by the Sturm-Liouville method shows that
the set of eigenvalues is finite or empty depending on the conditions on the coefficients
in (4), (5).

Consider the case of A\ = 0. Find sufficient conditions for the set of eigenvalues of the
operator A. Note that if the coefficients in (4), (5) satisfy the equality

aofr = a1(Bo + b)),

then A\ = 0 belongs to the set of eigenvalues of the operator A. The theorem is
proved. O
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The Barenblatt—Zheltov—Kochina equation

AUt (2, 1) — Upge (2, 1) = Qe (2, t) + f(2,t), (2,t) €]0,1] x R4
can be considered as a non-homogeneous Sobolev type equation Lu; = Mu+ f, where the
operators L = A — A € L(domA;F), M = oA € L(domA;F), the function f = f(x,t) €
C?([0,1] x Ry;F). In order to solve the Cauchy-Wentzell problem (6), (7), we find the
L-spectrum operator of M. Since the L-resolvent of the operator M takes the form

(ML= M) = A= )~ ad) ™ = fp+a £0) = k) |2 a]

with g+ a # 0, then p belongs to relative spectrum o (M) if
_ ac(A)
A —o(A)
Therefore, according to Theorem 1, with p + « # 0, we have a discrete, finite L-
spectrum oX (M) of the operator M with the limit point —« at infinity.
Consider the case of 1+ «a = 0. With A = 0 we have o%(M) = {—a}. With X # 0 we
have o2 (M) = {@}, if a # 0, and (M) = {0}, if a = 0. We described the L-spectrum
of the operator M, getting the following corollary of Theorem 1.

Corollary 1. The L-spectrum of the operator M in the Barenblatt—Zheltov-Kochina
equation with Wentzell boundary conditions is discrete, finite multiplicity, with the limit
point —a at infinity.

2. The Cauchy—Wentzell Problem in the Barenblatt—Zheltov—
Kochina Model

Let us consider the Cauchy—Wentzel problem in the previously introduced space § on
the segment [0, 1]

u(z,0) = vo(x), = €10,1],
Uz (0, 1) + apu,(0,t) + aqu(0,t) = 0, (6)
Uag(1,8) + Boua (1, 1) + fru(l,t) = 0
for the Barenblatt—Zheltov—Kochina equation
Mg (2, 1) — Uppe (T, 1) = Qg (2, t) + fx,1), (2,1) € [0,1] x R, (7)
By Corollary 1, the operator M is (L, o)-bounded, therefore, the following theorem holds.

Theorem 2. Suppose that the linear operator A satisfies the conditions of Lemma 1, and
f € § is a fized vector. Then

(i) if X\ & o(A), then for any vg € domA and f € §F there exists the unique solution
u € C*(R;domA) to problem (6)—(7), which has the form

alg alg ¢

. < foon >
u(z, t) = Ze*%t < vy, or >3 or(z) + Z (eA A — )%ﬁgs@k(x);

k=1

(it) if X\ € o(A), then for any f € § and vy € Py = {u € domA : a\ < u,pp >z=

— < [0k >z, A\ = )\} there exists the unique solution u € C*(R;By) to problem (6), (7),
which has the form
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1
u(@ ) =——= ) < fon>5 pul2) + > et < vo(@), pr >3 )+
A=Ak AFE AR
2kt < [ ¢r >3
A=A _ t
+ Z (e P ) o, or(z).
AEN

Proof. The proof of this theorem depends on the kernel of the operator L and consists in
applying either the classical theorem for a non-homogeneous differential operator equation,
or Sviridyuk’s theorem. According to Theorem 1, the Laplace operator has a real, discrete,
finite multiplicity spectrum having the limit point at —oo, and { ), : k € N} are eigenvalues
of the Laplace operator, which are numbered in non-increasing order taking into account
the multiplicity, and correspond to eigenfunctions {¢y : k& € N}. Then, according to the
completeness of the eigenfunctions, for v € §F we have

Ru(A)o = (ul — )ty = 3 202 75 2k

—~ p=X
and, therefore,
< (,Ok >g /\ )\k)
RY(M)v = (uL — M)~ . 8

k=

Termwise integration is admissible, since the series uniform convergences by the norm of
the space domA. Therefore, substituting L-resolvent (8) of the operator M and applying
the residue theorem, we obtain corresponding expressions (1), (ii). O

Conclusion

We constructed the resolution group in the Cauchy—Wentzell problem. To this end,
we used the Sviridyuk’s theory, and the space, the structure of which is specified in [8].
Further, we plan to continue the results of the paper by applying the Wentzell boundary
conditions in directions related to [10, 11].
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MOJEJIb BAPEHBJIATTA — 2KEJITOBA - KOUNHOM B OBJIACTU
C T PAHNYHBIMU YCJIOBNAMU BEHTIEJIA

H.C. TI'onuapos, HOxHo-YpaJbCKuii roCy1apCTBEHHbBIN YHUBEPCUTET, T. e/ Isa0nHCK,
Poccniickas @eneparust

B TepMuHAX TEOPUU OTHOCUTEBHO P-OIPAHMYEHHBIX OIIEPATOPOB UCCJIEIYeTCsl MOJIEIb
Bapenbsarra — 2Kesnrosa — Kounnoii, onuceiBaroriasi JUHAMUKY JIaBJieHNAs] (DUIBTPYOMIE-
Cs1 YKUJIKOCTH B TPEIIMHHOBATO-TIOPUCTON cpejie ¢ OOIMUMU TPAHUIHBIMA YCJIOBASIMU Bent-
nesist. B 9acTHOCTH, paccMaTpUBaETCs CIIEKTP OJHOMEPHOTO orepaTopa Jlamraca Ha oTpe3ke
[0,1] ¢ obIUMU IPAHUYHBIMEU YCJIOBUSIMU BeHTIesist; cTaBUTCA BOIPOC 00 OTHOCUTEILHOM
CIIeKTpe B OfHOMepHOM ypaBHenuu bBapenOsarrta — 2Kenroa — Kounmboit u moctpoerun
paspemaorineil Tpynnbl B 3amade Komu — BenTienst ¢ obmuMu rpaHUYHBIMEA yCJIOBUSMU
Benrnensa. B pabore pereHbl yKa3aHHBIE 33a9d B MPEAMNOJTOXKEHUH, 9TO MCXOIHOE IIPO-
CTPAHCTBO, B KOTOPOM JieficTByeT oniepaTop Jlamiaca Ha oTpe3ke, eCTh CyKeHHe TTPOCTPAH-
crea L2(0,1).

Karuesvie caosa: modeav Bapenbaamma — 2Keamosa — Kowunotli; omnocumesvHo p-
oepanunertbil onepamop; daszosoe npocmparcmao; Co-Cocumaouue nosyepynnvl; Kpaeeole
yeaosusa Benmueas.
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