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STOCHASTIC INCLUSIONS WITH FORWARD MEAN DERIVATIVES
HAVING DECOMPOSABLE RIGHT-HAND SIDES
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In this paper, we prove a theorem on the existence of solutions for stochastic
differential inclusions given in terms of the forward mean derivatives and the quadratic mean
derivatives. These derivatives present information on the drift and the diffusion coefficient,
respectively. The forward mean derivatives were introduced by E. Nelson for the needs of
the so-called stochastic mechanics (a version of quantum mechanics), while the quadratic
mean derivatives were introduced by Yu.E. Gliklich and S.V. Azarina. In the case of both
the forward mean derivatives and the quadratic mean derivatives, we assume that the right-
hand side is set-valued and lower semi-continuous, but not necessarily convex. Instead of
this, we assume that the right-hand side is decomposable. Such inclusions naturally arise
in many models of physical processes.
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Dedicated to Yu. Gliklikh’s 70-th bithday.

Introduction

The notion of mean derivative was introduced by Edward Nelson [1–3] for the needs
of stochastic mechanics (a version of quantum mechanics). Then it was found that the
equations in mean derivatives take place also in many other branches of science (mechanics,
hydrodynamics, Navier–Stokes vortices, gauge fields, economics, etc.).

A new mean derivative called quadratic is introduced in [4]. The derivative gives
information on the diffusion coefficient of the process. Using Nelson’s and quadratic mean
derivatives together, we can recover the process from its mean derivatives under some
additional hypotheses.

Note that a lot of models of various physical, economical etc. processes are based on
equations and inclusions with mean derivatives. Also, the inclusions play important role
in the optimal control problems.

We investigate inclusions with forward mean derivatives having lower semi-continuous
right-hand sides. The images of points are not necessary convex sets. Instead of this,
we suppose that the right-hand sides are decomposable. This property provides serious
modification of all proofs and constructions. We obtain an existence of solution theorem
for such inclusions. Note that the arguments are seriously different form those in [13].

Let S(n) be the space of symmetric n × n matrices, S+(n) be the subset of positive
defined symmetric matrices, and S̄+(n) be its closure, i.e. the set of positive semi-definite
symmetric matrices.

1. Preliminaries on Mean Derivatives

Let ξ(t) be a given stochastic process with values in R
n on certain probability space

(Ω,F ,P). Suppose that the element ξ(t) belongs to the functional space L1 for every
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t. Denote by Pξ
t the σ-subalgebra of F that is generated by preimages of Borel sets

in R
n under all mappings ξ(s) : Ω → R

n, 0 < s < t. By E(· | Pξ
t ) we denote the

conditional expectation with respect to Pξ
t . Following Nelson [1–3], we call Pξ

t the past of
the process ξ(t).

Definition 1. [1,4] The forward mean derivative relative to the past (P-mean derivative)
DPξ(t) of ξ(t) at the time t is L1-random element of the form

DPξ(t) = lim
△t→+0

E

(

ξ(t+△t)− ξ(t)

△t

∣

∣

∣
Pξ

t

)

, (1)

where the limit is assumed to exist in L1, and △t → +0 means that △t tends to 0 and
△t > 0.

The properties of conditional expectation [6] give that Dξ(t) can be represented as
compositions of ξ(t) and Borel measurable vector fields (regressions)

a(t, x) = lim
∆t→+0

E

(

ξ(t+∆t)− ξ(t)

∆t
|ξ(t)

)

= x (2)

on R
n. This means that Dξ(t) = a(t, ξ(t)).

Following [4, 8], we introduce a new mean derivative D2, called quadratic relative to
the past, that differentiates a L1 random process ξ(t), t ∈ [0, T ], according to the rule

DP
2 ξ(t) = lim

△t→+0
E

ξ
P

(

(ξ(t+△t)− ξ(t))⊗ (ξ(t+△t)− ξ(t))

△t

∣

∣

∣
Pξ

t

)

, (3)

where the limit is assumed to exist in L1, △t → +0 means that △t tends to 0 and △t > 0,
and ⊗ denotes the tensor product in R

n. Here (ξ(t+△t)− ξ(t)) is considered as a column
vector in R

n while (ξ(t + △t) − ξ(t))∗ is a row vector (transposed or conjugate vector),
and the limit is supposed to exist in L1(Ω,F ,P).

We emphasize that the matrix product of a column on the left and a row on the right
is a matrix. It is shown that D2ξ(t) is a symmetric positive semi-definite matrix function
on [0, T ]× R

n.
Consider the Banach space of continuous curves in R

n given on [0, T ]: Ω̃ =
C0([0, T ],Rn) with usual uniform norm and the σ-algebra F̃ generated by cylinder sets. By
Pt we denote the σ-subalgebra of F generated by cylinder sets with bases over [0, t] ⊂ [0, T ].
Recall that F̃ is the Borel σ-algebra on Ω̃. Let a : [0, T ]×Ω̃ → R

n and α : [0, T ]×Ω̃ → S̄+(n)
be measurable mappings.

The equation with P-mean derivatives is a system of the form
{

DPξ(t) = a(t, ξ(·)),
DP

2 ξ(t) = α(t, ξ(·)).
(4)

Definition 2. [5] We say that (4) on R
n has a solution on [0, T ] with initial condition

ξ(0) = ξ0 if there exists a probability space (Ω,F ,P) and a process ξ(t) given on (Ω,F ,P)
and taking values in R

n such that ξ(0) = ξ0 and for almost all t ∈ [0, T ] equation (4) is
satisfied P a.s. by ξ(t).

Let Ξ : [0, T ]× Ω̃ → Z be a mapping to some metric space Z. Below we often suppose
that such mappings with various spaces Z satisfy the following condition.
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Condition 1. Ξ(t, x1(·)) = Ξ(t, x2(·)) for each t ∈ [0, T ], if the curves x1(·), x2(·) ∈ Ω̃
coincide for 0 ≤ s ≤ t.

Remark 1. Note that the fact that a mapping Ξ satisfies Condition 1 is equivalent to the
fact that Ξ for each t is measurable with respect to Borel σ-algebra in Z and Pt in Ω̃ [11].

Lemma 1. [5] For a continuous (measurable, smooth) mapping α : [0, T ] × Ω̃ →
S+(n) satisfying Condition 1, there exists a continuous (measurable, smooth, respectively)
mapping A : [0, T ]× Ω̃ → L(Rn,Rn) that satisfies Condition 1 and such that α(t, x(·)) =
A(t, x(·))A∗(t, x(·)) for each (t, x(·)) ∈ R× Ω̃.

The proof of Lemma 1 can be found in [5, Lemma 1].

Theorem 1. [4] Let a : [0, T ]× Ω̃ → R
n and α : [0, T ]× Ω̃ → S+(n) be jointly continuous

in t, x(·) and satisfy Condition 1. Also, suppose that the estimates

tr α(t, x(·)) < Θ(1 + ‖x(·)‖)2, (5)

‖a(t, x(·))‖ < Θ(1 + ‖x(·)‖) (6)

take place for some Θ > 0. Then for every initial condition ξ0 ∈ R
n equation (4) has a

solution that is well-defined on the entire interval [0, T ].

2. Main Result

Sometimes we use a modification of the system of arguments from [12]. If the values
of a lower semi-continuous set-valued mapping (generally speaking) are not convex, then
the mapping can not have continuous selectors. Hence, the following construction is often
very useful.

Definition 3. [9] Let E be a separable Banach space. A non-empty set M ⊂ L1([0, l];E) is
called decomposable, if f ·χM+ g ·χ[0,T ]\M ∈ M for all f, g ∈ M and for every measurable
subset M in [0, T ], where χ is the characteristic function of the corresponding set.

The reader can find more details about decomposable sets in [9, 10].

Theorem 2. (The Bressan – Colombo Theorem [9]) Let (Ω, d) be a separable metric
space, X be a Banach space, and (J,A, µ) be a measurable space with a σ-algebra A and
a non-atomic measure µ such that µ(J) = 1. Consider the space Y = L1

X(J,A, µ) of
integrable mappings from (J,A, µ) into X. If a set-valued mapping F : Ω → Y is lower
semicontinuous and has close decomposable values, then F has a continuous selector.

Theorem 2 is proved, e.g., in [9, Lemma 9.2]. Recall some facts and notion involved in
further considerations. Suppose that T > 0. In what follows we denote by λ the normalized
Lebesgue measure on [0, T ], i.e. such that λ([0, T ]) = 1.

Lemma 2. [10] Let (Ξ, d) be a separable metric space, and X be a Banach space. Consider
the space Y = L1(([0, T ],B, λ), X)) of integrable maps from [0, T ] into X. If a set-valued
map G : Ξ → Y is lower semicontinuous and has closed decomposable images, then the
map has a continuous selector.
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This is a particular case of Bressan – Colombo Theorem 2. Consider set-valued
mappings a(t, x) and α(t, x) that send [0, T ] × Ω̃ to R

n and S+(n), respectively, and in
addition satisfy Condition 1. The differential inclusion with forward P-mean derivatives
is a system of the form

{

DPξ(t) ∈ a(t, ξ(·)),
DP

2 ξ(t) ∈ α(t, ξ(·)).
(7)

Definition 4. [5] We say that inclusion (7) has a solution with initial condition ξ0 ∈ R
n,

if there exists a probability space and a stochastic process ξ(t) given on the space and taking
values in R

n such that ξ(0) = ξ0 and a.s. ξ(t) satisfies inclusion (7).

For simplicity below we consider only solutions with deterministic initial values.

Theorem 3. Let the set-valued fields a and α on R
n be lower semicontinuous and have

closed decomposable images of points. Also, suppose that α is positive definite, and the
following estimates hold:

tr α(t, x(·)) < Θ(1 + ‖x(·)‖C0)2, (8)

and
‖a(t, x(·))‖ < Θ(1 + ‖x(·)‖C0) (9)

for all α(t, x) ∈ α, a ∈ a and for some Θ > 0, where ‖ · ‖C0 is the norm in C0([0, T ],Rn).
Then for the initial condition ξ(0) = ξ0 inclusion (7) has a solution, which is well-defined
on the entire interval t ∈ [0, T ].

Proof. We apply a serious modification of arguments used in [8, Chapter: Mechanical
systems with random perturbations]. According to Lemma 2, the set-valued fields a and
α have continuous selectors a and α, respectively. Construct a sequence of their smooth
approximations ak and αk that converge to a and α with respect to the supremum norm. In
addition, it is possible to construct αk to be symmetric and positive definite, since we deal
with approximations in the space of symmetric matrices, and any positive semi-definite
matrix is a limit point of the space of positive definite matrices.

Let x(·) be a continuous curve. Consider the set-valued vector field a(t, x(·)) along
x(·). Denote by Pa(·, x(·)) the set of all measurable selectors of a(t, x(·)), i.e. the set of
measurable maps {f : R → R

n : f(x(t)) ∈ a(t, x(·))}. Obviously, all those selectors are
integrable on any finite interval in R with respect to Lebesgue measure, since estimate (9)
is satisfied. Denote by

∫

Pa(·, x(·)) the set of integrals with varying upper limits of those
selectors.

In C0([0, T ],Rn), introduce the σ-algebra F̃ generated by cylindrical sets. By P̃t denote
the σ-algebra generated by cylindrical sets over [0, t] ⊂ [0, T ].

Consider the set-valued mapping B that sends x(·) ∈ C0([0, T ],Rn) to Pa(·, x(·)).
Because of estimate (9), all selectors from Pa(·, x(·)) are integrable (see above), hence
B takes values in the space L1(([0, T ],B, λ),Rn). It is known (see, e.g., [10, Section 5.5])
that under the above-mentioned conditions B : C0([0, T ],Rn) → L1(([0, T ],B, λ),Rn) is
lower semicontinuous, and for any x(·) ∈ C0([0, T ],Rn) the set Pa(·, x(·)) (the image
B(x(·))) is decomposable and closed. Therefore, by Lemma 2, B has a continuous selector
b : C0([0, T ],Rn) → L1(([0, T ],B, λ),Rn).
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For any t ∈ [0, T ], we introduce the map ft : C
0([0, T ],Rn) → C0([0, T ],Rn) that sends

a curve x(·) ∈ C0([0, T ],Rn) to the curve

ft(τ, x(·)) =

{

x(τ) for τ ∈ [0, t],
x(t) for τ ∈ [t, l].

Obviously, the map ft is continuous. Since ft(τ, x(·)) belongs to C0([0, T ],Rn), the curve
b(ft(τ, x(·))) ∈ L1(([0, T ],B, λ),Rn) is well defined. By construction, b(ft(τ, x(·))) ∈
a(τ, x(τ)) for almost all τ ∈ [0, t]. Therefore, this selector continuously depends on t

in L1(([0, T ],B, λ),Rn).
Introduce the map a : [0, T ]× C0([0, T ],Rn) → R

n by the formula

a(t, x(·)) = b(ft(τ, x(·))). (10)

By construction, this map is continuous jointly for t ∈ [0, T ] and x(·) ∈ C0([0, T ],Rn). It
is obvious that a(t, x1(·)) = a(t, x2(·)), if x1(·) and x2(·) coincide on [0, t]. This means that
a(t, x(·)) is measurable with respect to P̃t (see Remark 1). Taking into account (9), we
can easily derive the inequality

‖a(t, x(·))‖ = ‖b(ft(τ, x(·))) ≤ ‖a(τ, x(·))‖ ≤ Θ(1 + ‖x(·)‖C0).

It is evident that

DP(ft(τ, ξ(·))) = a(t, ξ(·)) ∈ a(t, ξ(·)). (11)

Consider the set-valued vector field α(t, x(·)) along a continuous curve x(·). Denote
by Pα(·, x(·)) the set of all measurable selectors of α(t, x(·)) (the set of measurable maps
{f : R → S+(n) : f(x(t)) ∈ α(t, x(·))}). It is evident that all those selectors are integrable
on any finite interval in R with respect to Lebesgue measure, since estimate (9) is satisfied.
Denote by

∫

Pα(·, x(·)) the set of integrals with varying upper limits of those selectors. In

C0([0, T ],Rn), introduce the σ-algebra F̃ generated by cylindrical sets. By P̃t denote the
σ-algebra generated by cylindrical sets over [0, t] ⊂ [0, T ].

Consider the set-valued mapping B̄ that sends x(·) ∈ C0([0, T ],Rn) to Pα(·, x(·)).
Since all selectors from Pα(·, x(·)) are integrable under estimate (8) (see above), B̄ takes
values in the space L1(([0, T ],B, λ), S+(n)). It is known [10, Section 5.5] that under
the above-mentioned conditions B̄ : C0([0, T ],Rn) → L1(([0, T ],B, λ), S+(n)) is lower
semicontinuous, and for any x(·) ∈ C0([0, T ],Rn) the set Pα(·, x(·)), i.e. the image
B̄(x(·)) is decomposable and closed. Therefore, by Lemma 2, B̄ has a continuous selector
b̄ : C0([0, T ],Rn) → L1(([0, T ],B, λ), S+(n)).

Since ft(τ, x(·)) belongs to C0([0, T ],Rn), the curve b̄(ft(τ, x(·))) ∈
L1(([0, T ],B, λ), S+(n)) is well-defined. By construction, b̄(ft(τ, x(·))) ∈ α(τ, x(τ)) for
almost all τ ∈ [0, t], and this selector continuously depends on t in L1(([0, T ],B, λ), S+(n)).

Consider the map α : [0, T ]× C0([0, T ],Rn) → S+(n) defined by the formula

α(t, x(·)) = b̄(ft(τ, x(·))). (12)

By construction, this map is continuous jointly for t ∈ [0, T ] and x(·) ∈ C0([0, T ],Rn).
In addition, it is obvious that α(t, x1(·)) = α(t, x2(·)), if x1(·) and x2(·) coincide on [0, t].
This means that a(t, x(·)) is measurable with respect to P̃t (see Remark 1).
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It is evident that

DP
2 (ft(τ, ξ(·))) = α(t, ξ(·)) ∈ α(t, ξ(·)). (13)

By Lemma 1, there exists a continuous mapping A : [0, T ]×C0([0, T ],Rn) → L(Rn,Rn)
that satisfies Condition 1 and such that α(t, x(·)) = A(t, x(·))A∗(t, x(·)) for each (t, x(·)) ∈
R× C0([0, T ],Rn).

Taking into account (8), we can easily derive the inequality

‖A(t, x(·))‖ ≤ Θ(1 + ‖x(·)‖C0).

Now the couple a(t, x(·)) and A(t, x(·)) satisfies all conditions of Theorem 1 [11, Section
III.2]. Hence, the stochastic differential equation

ξ(t) = ξ0 +

∫ t

0

a(s, x(·))ds+

∫ t

0

A(s, x(·))dw(s) (14)

has a solution on [0, l]. This means that there exist a probabilistic measure µ on
(C0([0, T ],Rn) and a Wiener process in R

n given on (C0([0, T ],Rn),F , µ) and adapted
to Pt such that the coordinate process ξ(t) on (C0([0, l],Rn),F , µ) and w(t) satisfy (14).
Together with (10) – (13), this completes the proof of Theorem.

✷
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СТОХАСТИЧЕСКИЕ ВКЛЮЧЕНИЯ С ПРОИЗВОДНЫМИ
В СРЕДНЕМ СПРАВА, ИМЕЮЩИЕ РАЗЛОЖИМЫЕ
ПРАВЫЕ ЧАСТИ

А.В. Макарова, Военный учебно-научный цента ВВС ≪Академия имени
профессора Н.Е. Жуковского и Ю.А. Гагарина≫, г. Воронеж,
Российская Федерация

Получена теорема существования решений для стохастических дифференциаль-
ных включений, заданных в терминах производных в среднем справа (дающих ин-
формацию о сносе) и квадратичных производных в среднем (дающих информацию о
коэффициенте диффузии). Правые части, как в части с производными справа, так и
в части с квадратичными производными, многозначны и полунепрерывны снизу, но
не обязательно выпуклозначные. Вместо этого мы предполагаем, что они разложимы.
Такие включения возникают во многих моделях физических процессов.

Ключевые слова: производные в среднем; разложимые многозначные отображения;

дифференциальные включения.
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