MSC 35G61 DOI: 10.14529/mmp190304

A NON-STATIONARY MODEL OF THE INCOMPRESSIBLE
VISCOELASTIC KELVIN-VOIGT FLUID OF NON-ZERO ORDER
IN THE MAGNETIC FIELD OF THE EARTH

A.O. Kondyukov', T.G. Sukacheva'?

'Novgorod State University, Velikiy Novgorod, Russian Federation
2South Ural State University, Chelyabinsk, Russian Federation
E-mails: k.a.o_leksey999@mail.ru, tamara.sukacheva@novsu.ru

We investigate the Cauchy—Dirichlet problem for a system of Oskolkov equations of
nonzero order. The considered mathematical model describes the flow of an incompressible
viscoelastic Kelvin—Voigt fluid in the magnetic field of the Earth. The model takes into
account that the fluid is subject to various external influences, which depend on both the
coordinate of the point in space and the time. The first part of the paper presents the known
results obtained by the authors earlier and based on the theory of solvability of the Cauchy
problem for semilinear nonautonomous Sobolev type equations. In the second part, we
reduce the considered mathematical model to an abstract Cauchy problem. In the third part,
we prove the main result that is the theorem on the existence and uniqueness of the solution.
Also, we establish the conditions for the existence of quasi-stationary semitrajectories, and
describe the extended phase space of the model under study. In this paper, we summarize our
results for the Oskolkov system that simulates the motion of a viscoelastic incompressible
Kelvin—Voigt fluid of zero order in the magnetic field of the Earth.
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Introduction

The Oskolkov’s system of equations

K
1 1
(1=3V?)vy = vV20—(v - V)U+Z 61V2w1—;Vp—2§2 X v4+—(V x b) x b+ f1,

pL

=1
V=0, V-b=0, b=0Vb+Vx(vxb)+[? D
%:ijquz, aq€eR., feR,, =1 K,

simulates the flow of an incompressible viscoelastic Kelvin—Voigt fluid [1| of non-
zero order K in the magnetic field of the Earth. Here the vector functions v =
(vi(x,t),va(x,t),...,v5(x,t)) and b = (by(x,t),ba(x,t),...,by(x,t)) characterize fluid
velocity and magnetic induction, respectively, p = p(z,t) is the pressure, s is the
coefficient of elasticity, v is the coefficient of viscosity, ) is the corner velocity, § is the
magnetic viscosity, p is the magnetic permeability, p is the density, and the parameters
B, 1 =1, K determine the time of pressure retardation (delay). The absolute terms
=L, ff = fix,t), f2 = f*(z,t) correspond to external influences on the
fluid.
Consider the first initial boundary value problem for system (1):

v(z,0) =vo(x), b(x,0)=0bo(z), wyz,0)=uwp(zx) ze€D,
v(z,t) =0, b(z,t)=0, w(zr,t)=0 (z,t)€edD xRy, =1, K
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under assumption that 4 = 1 and p = 1. Here D C R" is a bounded domain with the
boundary 9D of the class C.

Problems that are similar to problem (1), (2) take place, for example, in mathematical
modelling in geophysical sciences [2].

Note that degenerate models of magnetohydrodynamics were previously studied by
the authors in the papers [3-6]. A distinctive feature of the present paper is the presence
of the vector-functions f!' = (f{,..., f)), f} = fHx,t), f> = f*(x,t) in the right hand
side of equation (1). The paper [7]| considers the model of magnetohydrodynamics, which
takes into account various external influences for X' = 0. The case of K > 0 is investigated
for the first time.

Problem (1), (2) is investigated in the framework of the theory of semilinear Sobolev
type equations [8,9]. The main tool of the study is the notion of a relative p-sectorial
operator and a resolving degenerate semigroup of operators generated by this operator
[10, 11]. We prove the theorem on the existence and uniqueness of the solution to this
problem, and describe the extended phase space of the problem.

The article consists of three sections. Section 1 gives the known necessary results of
the theory of semi-linear Sobolev type equations [10,12]. Section 2 reduces problem (1),
(2) to the Cauchy problem for the semi-linear Sobolev type equation. Section 3 presents
the theorem on the existence and uniqueness of the solution to the considered problem,
shows that the solution is a quasi-stationary trajectory, and describes the extended phase
space of the problem.

1. Semi-Linear Non-Stationary Sobolev Type Equations

Let U4 and F be Banach spaces, the operator L € L(U;F), i.e. L is linear and
continuous, the operator M : dom M — F be linear, closed and densely defined in

U, i.e. M € Cl(U; F). Denote Uy = {u € domM : |u|| = ||Mullz + ||ully} Let the
operator F' € C*(Uy; F). We suppose that the operator F' € C*(Uy; F), and the function
feC=(Ry; F).
Consider the Cauchy problem u(0) = ug 3)
for the semi-linear non-stationary Sobolev type equation
Li = Mu + F(u) + f(t). (4)

By a local solution (hereinafter, solution) to problem (3), (4) we mean the vector
function u € C*((0, T'); Uy, ) that satisfies equation (4) and such that u(t) — ug for ¢ — 0+.

Let the operator M be strongly (L, p)-sectorial [12]. It is well known that, under this
condition, problem (3), (4) can have several solutions [13]. Therefore, we are interested in
only such solutions to problem (3), (4) that are quasi-stationary semitrajectories.

Definition 1. Suppose that the space U splits into the direct sum U = Uy & Uy such that
ker L C Uy. A solution u = v + w to equation (4), where v(t) € Uy and w(t) € Uy for all
t € (0,7T), is called a quasi-stationary semitrajectory, if Lo = 0.

Also, it is known [12] that problem (3), (4) can has no solutions for some wuyE€Uyy;.
Therefore, we introduce another definition.

Definition 2. The set Bt C Uy x R, is called the extended phase space of equation (4),
if for any point ug € Uy; such that (ug,0) € BY there erists a unique solution to problem

(3), (4), and (u(t),t) € B".
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We consider problem (3), (4) under the condition that the operator M is strongly
(L, p)-sectorial [12]. In this case, the problem can have no solution for some ugy € Uy, and
even if there exists a solution for all vy € Uy, then the solution can be non-unique.

It is well known that if the operator M is strongly (L, p)-sectorial, then U = U° G U*,
F=F'aF wherell’ ={pecld:Ulp=0 FHeR },F'={peF:Fap=0 Tt eR,}
are the kernels, and U' = {u € U : limy o, Ulu = u}, F' = {f € F : limy_o, F'f = [}
are the images of the analytic solving semigroups

1 1
U'=— [ RE(M)er'd Ft:—/LLM“td 5
5 | Bu(M)e®dp, 57 | Lu(M)edu (5)
r r
of the linear homogeneous equation
Li = Mu, (6)

where I' C S§ (M) is a contour such that arg yu — £© for |u| — +oo0.

Denote by L and M, the restrictions of the operators L and M on U* (U* N
dom M), k=0, 1, respectively. Then Ly : U* — F* M, : U*Nndom M — F*, k=
0, 1, and the restrictions My and L; of the operators M and L on the spaces U° N dom M
and U are linear continuous operators and have bounded inverse operators.

Therefore, problem (3), (4) is reduced to an equivalent system, which we call the
normal form of problem (3), (4):

Ri® = u® + G(u) + g(t), u°(0) = u, .

u' = Sul + H(u) + h(t) u'(0) = u}, (7)
where u* € U*, k= 0,1, u = u® + u', the operators R = My 'Ly, S = L;'M;, G =
My'(I-Q)F, H=L{'QF, g=M;'(I-Q)f, h=L7'Qf.

Here Q € L(F)(= L(F; F)) is the projector that splits the space F as required.

Further, we study only the quasi-stationary semitrajectories of equation (4), for which
Ri° = 0. To this end, we assume that the operator R is bi-splitting , i.e. the kernel ker R
and the image im R are completed in the space U. Suppose that U = ker R. Denote by
U = U S U™ a complement of the subspace U. Then the first equation of normal form

7) is reduced t
(7) is reduced to Ri® = u® + 0™ + G(u) + g(t), (8)

where u = u% + u% 4+ .

Theorem 1. Let the operator M be strongly (L, p)-sectorial, and the operator R be bi-
splitting. Suppose that there exists the quasi-stationary semitrajectory u = u(t) of equation
(4). Then u = u(t) satisfies the following relations:
0=u" +u" + G(u) + g(t),u" = const. (9)

It is known that if the operator M is strongly (L, p)-sectorial, then the operator S
is sectorial. Therefore, on ", the operator S generates an analytic semigroup, which we
denote by {U{ : t > 0}, since the operator U} is a restriction of the operator U’ on U'.

Since U = U® @ U', then there exists the projector P € L(U) corresponding to this
splitting. It is easy to see that P € L(Uys). Then the space Uy, splits into the direct sum
Uy = UY; ® UL, such that the embedding UY, C U*, k=0, 1, is dense and continuous.
Further, denote by A’ the Frechet derivative at the point v € V of the operator A defined
on the Banach space V.

Theorem 2. Let the operator M be strongly (L, p)-sectorial, the operator R be bi-splitting,
the operator F € C>®(Uys; F), and the vector-function f € C®(R,;F). Suppose that the
following conditions are fulfilled.
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(i) In the neighborhood O,, C Uy of the point ug, the following relation takes place:
0 =ud + (I — Pp)(G(u™ +ud" +u') + g(1)). (10)
(ii) The projector Pp € L(Uy;), and the operator I + PrG', : Uy — Uy is the
0

topological linear isomorphism (U = Uy NUY).
(iii) For the analytic semigroup {Ut :t > 0}, the following condition is fulfilled:

/mnw%)dt <oo VreR,. (1)
0

Then there exists the unique solution to problem (3), (4), which is the quasi-stationary
semitrajectory.

Remark 1. Condition (11) is not satisfied for ordinary analytic semigroups having the
estimate [|Uf || z@na,) < const/t. Denote by Uy, = [U'; Uyla, a € [0, 1], some interpolation
space constructed by the operator S. Complete the condition F' € C*(U,,; F) of Theorem 2
with the condition H € C*(Uj};;UL), and replace Condition (11) with

/ HUfHL(L{l;Mé) dt <oo, T€ER,. (12)
0

Then the statement of Theorem 2 is the same.

Let Uy and Fj, be Banach spaces, the operators Ay, € L(Uy, F), and the operators
By : dom B, — F be linear and closed with domain of definitions dom Bj,, which are
dense in U, k = 1,2. Construct the spaces U = U; X Uy, F = F; X Fo and the
operators L = A; ® As, M = B; ® Bs. By the construction, the operator L € L(U; F),
and the operator M : dom M — F is linear, closed and densely defined, dom M =
dom By x dom B,.

Theorem 3. Let the operators By be strongly (Ay, pr)-sectorial, k = 1,2, and p; > po.
Then the operator M is strongly (L, py)-sectorial.

2. Reduction to Abstract Cauchy Problem

In order to reduce problem (1), (2) to problem (3), (4), we transfer from system (1)
to the system

K
(1—%V2)vtzyv2v—(U-V)U+Zﬁzv2wl—ﬁ—2§2><U+(V><b)><b+f1,

=1
V(V-v)=0, V(V-b)=0, b =0Vb+Vx(vxb)+f2 (13)
8wl

E:U+alwl’ aqeR_, feR, (=1 K.

We are interested in solvability of problem (13), (2). Following the
paper [12], we introduce the spaces H2?, H2, H,, and H,. Here H? and
H, are subspaces of the solenoid functions in the spaces (WZ(D))" N
ﬁ(Vf/%(D))" and (Ly(D))", respectively, and H2 and H, are their orthogonal (in the
sense of (Ly(D))"™) complements. Denote by ¥ both the orthoprojector on H, and its
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restriction on the space (WZ(D))™ N (V?/%(D))" Suppose that II = I — 3. The equality
A=V’E,: H2®H? - H, ® H,, where E,, is a unit matrix of order n, defines a linear
continuous matrix operator with discrete finite-multiple spectrum o(A) C R that tends
only to —oo. The formula B, : v = V(V-0)(B, : b — V(V-b)) gives the linear continuous
surjective operator B,(By) : H2 & H2 — H, with the kernel ker B, = B, = H2. We use
the natural isomorphism of the direct sum and the Cartesian product of Banach spaces
in order to introduce the spaces U;p = H2 x H2 x H, , F9 = H, x H, x H,,, where

H,=H,;U;=H*NH'=H2 xH2 , and F}; = Ly = H, x H,, i =1, K. Then spaces
Lﬁ Z@{iobﬁl 5 flz@lliofll. R
The operators A; and B are defined by the formulas A; = diag [A; , Fx] , where

Alz(/il 0)’ Alz(Z(I—/\A)E EA([—/\A)H)‘

0 0 (I — AA)S TIA(I — AA)IL )
B, = (Bij)ijzl , where
vA v¥A O /XA ... PBrXA
Bl'=| vIIA vIIA —I |, BPf=| plA ... BgIIA
@) B O o ... O

In the matrix B{', B =V (V-v)—V(V-b) = B, — By. The matrix B}! contains K rows
of the form (I, I, O), B# = diag|ay, ..., ak].

Remark 2. Denote by A, the restriction of the operator YA on H2. According to
the Solonnikov—Vorovich—Yudovich theorem, the spectrum o(A,) is real, discrete, finite-
multiple, and tends only to —oo.

Theorem 4.
i) The operators Ay, By belong to L(Uy; Fy), and if =1 ¢ o(A), then the operator A,
is bi-splitting, ker A; = {0} x {0} x H, x {0} x ... x {0}, im A; = H, x H; x {0} x F; X

~
K

]:2 X ... X ]:K-
i) If \' ¢ o(A) Uo(A,), then the operator By is (Ay,1)-bounded.

Proof. The statement of the theorem is the direct corrolary of the results obtained in [12].
O
Remark 3. The (L, p)-bounded operator is defined, for example, in [12].
Suppose that Uy = Fo = Lo(D). The equality By = 6V? : def By — F, defines the
linear closed and densely defined operator By, dom By = WZ(D) N I/IO/'%(D) Let Ay = 1.

Theorem 5. The operator By is strongly As-sectorial.
Proof. The statement of the theorem follows from the sectoriality of the operator By [14].
a

LetUzleUQ,f:fleg.

The vector u of the space U has the form u =col(uy, Ur, up, w1, ..., Wk, up), where
cOl(Ug, Uy Up, W1, . . ., W) € Uy, and uy € Us, up = (by, by), by € H2, by € H2. The vector
f € F has the similar form. Define the operators L and M by the equalities L = A; ® Ay
and M = B; ® B,. The operator L belongs to L(U; F), and the operator M : dom M — F
is linear, closed and densely defined, dom M = U; x dom Bs.
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Theorem 6. Let 7' ¢ o(A), then the operator M is strongly (L, 1)-sectorial.

Proof. By virtue of Theorem 4 and the results of Paragraph 3.1. [12], the operator B
is strongly (Aj, 1)-sectorial. Therefore, taking into account Theorems 3 and 5, we obtain

that the statement of the theorem is true. -

Let us construct the nonlinear operator F. Represent the operator as

F=F®F,
where

Fy = Fi(tg, g, b) = col (=S (((ug + tr) - V) (g +tr) — 22 X (g +ur) + (V X b) x b+ f1),
—TI(((to 4 tr) - V) (U 4 1r) — 20 X (uy + ) + (V x b) x b+ f1),0,...,0),

K+1
Fy = Fy(ug, g, b) = V x (g + 1) x b) + f2.
In our case, Uy; = U; X dom Bs, since the operator B; is continuous.

Theorem 7. The operator F' belongs to C*(Ups; F).

Proof. The statement of the theorem follows from the fact that for any v € U, the
operator F! belongs to L(Uyr; F), the second Frechet derivative F”,, of the operator F' is
the continuous bilinear operator that belongs to Uy x Uy in F, and F) = O (similarly
to [12]).

(]

Therefore, we have reduced (1), (2) to (3), (4), and we can consider these two problems
to be equivalent. Let us verify the conditions of Theorems 1 and 2.

3. Theorem on Existence and Uniqueness of Solution

By virtue of Theorem 6 and the results of Paragraph 3.1. [12], there exists the analytic
semigroup {U':t€R,} of the resolving operators of equation (6). In this case, U’ is
naturally represented as U* = V' x W' where V! (W?) is the restriction of the operator
Ut on U, (Us). Since By is sectorial, then W' = exp(tBy), and, therefore, the kernel of this
semigroup is W° = {0}, and the image of this semigroup is W' = U,.

Consider the semigroup {V*: ¢t € R, }. By virtue of Theorems 4 and 6 and results of
Paragraph 3.1. [12], this semigroup is extended to the group {V*: ¢ € R}. The kernel of
the semigroup is V' = U & UM, where UP = {0} x {0} x H, x {0} x ... x {0}(= ker A,
due to Theorem 5), and U{" = BAZTAZI[HZ] x HZ x {0} x ... x {0} . Here A, = I — A,

Kt
A, is the restriction of the operator ITA! on H,. It is known that if >~ ¢ o(A)Uc(A4,),
then the operator A, : H, — H2 is topological linear isomorphism [12]. Denote by U}
the image of V. Then, since the operator Bj is strongly (Aj, 1)-sectorial, then the space
U, decomposes into the direct sum of the subspaces U; = U & UM & U]

Construct the operator R (see (5), (6)). In our case, R = By, Ay € LIUY @ UY),
where Ajg(Bjg) 1is the restriction of the operator A;(B;) on U & U, Note that the
operator Bj; exists due to Theorem 6 and the corresponding results obtained in [12].
By construction, ker R = U, and the paper [15] shows that im R = U, Therefore,
the operator R is bi-splitting. Denote by Pg the projector of the space U & UP! on U
along UM . Taking into account the structure of the space Uy, we obtain that the projector
Pg belongs to L(UY,), where U, = Uy N(UYP DU (= U SUPY). Therefore, the following
lemma is valid.
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Lemma 1. Suppose that ' ¢ o(A) U a(A,). Then the operator R is bi-splitting, and
Pre L(UY).

Consider the projectors
P, = diag [Py, 0], Qr = diag [Qx,0], k=0, 1,

see [12] for a detailed description of these projectors. Taking into account the results of [12]
and the fact that the kernel W° = {0}, we obtain that I — P = (P, + P;) x O, Q =
(I —Qo—Q) xI, P:U—U, Q:F — F) Then, apply the projector IP to

equation (4) in our situation and obtain the equations
K

M(rA(us + ur) — ((ug + ur) - V) (U + ug) + Z BiV2w, — uy, — 29 X (g + Ug)+ (
=1
(Vxb)xb+ fi(t)) =0, Buy,=0, Bb,=0.

Hence, by virtue of Theorem 1 and the properties of the operator B, we obtain the
necessary condition for existence of the quasi-stationary trajectory u, = 0, b, = 0, i.e.
all solutions to problem (2), (13) (if they exist) necessarily belong to the plane B = {u €
Z/{]V[ Uy = 0, bﬂ- = O}

Since Ilu, = u,, we obtain relation (9) from the first equation of (14), i.e. in our case,

K

14)

up = (v Au, — (g - Vg + Y BV W — 22 X ue + (V X by) X by + f1(1)).  (15)
1=1
Lemma 2. Under the conditions of Lemma 1, any solution to problem (1), (2) belongs
to the set

K
M={uecly: u, =0, by =0, Up:H(I/AJ—(UU-V)UU+ZBlv2wl—QQXUJ+

H(V x by) X by) + F1(1)}. =
Remark 4. Relation (15) gives condition Ay) of Theorem 2 for any point u) € U (=
U x {0}). Therefore, similarly to [12], we obtain that the set 9 is a simple Banach
manifold that is C*-diffeomorphic to the subspace U} X Uy, and can be the extended
phase space of problem (1), (2) ((13), (2)).

Let us verify conditions (11), (12). Construct the space U, = U; x I/IO/'%(D) Obviously,
this space is the interpolation space for the pair [U,Uy],, and o = 1/2. As noted above,
the semigroup {U’ : t € R, } is extended to the group {V{ : t € R} on U}, where V} is the
restriction of the operator V' on U]. Since Ui, = Uy N U} by construction, the operator
By is continuous by virtue of Theorem 4, and the semigroup {U?: ¢ € R, } is uniformly
bounded, we obtain the inequality

J Vel de < const x 1Bl canmy [ 1Villeaaydt < o0, 7€ Re (16)

Accotding to Sobolev’s inequality [12], the sémigroup {W' : ¢ € R, } satisfies the

estimate T
t
/HW | tom iy U < - (17)
0

Suppose that Uy = U, NU', where U' = U} X Us. Then inequalities (16) and (17) give
the following lemma.

Lemma 3. Under the conditions of Lemma 1, relation (11) takes place.
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Taking into account condition (12), we obtain the operator H as follows. The operator
H is naturally represented as H = H;® H,, where H, = Aj'(I —Qo—Q1)Fy, and Hy = F,
(Ay is the restriction of the operatorA; on U}). For the operator H, there is the statement
that is similar to Theorem 7 for the operator F, i.e. H € C*®(Uy,;UL), where UL = U, NU.

Therefore, all the conditions of Theorem 2 are satisfied. Therefore, the following
statement is valid.

Theorem 8. Suppose that ' ¢ o(A)Uc(A,). Then for any ug such that ug € M, and
some T € R, there exists the unique solution u = (u,,0, u,, up) to problem (1), (2), which
is a quasi-stationary trajectory, and u(t) € M for all t € (0,T).
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HECTAIIMOHAPHASA MO/JEJ/Ib HEC2KIMAEMOM BA3KOVYIIPYTON
YKNJIKOCTU KEJIBBUHA — ®OMI'TA HEHYJIEBOT'O IIOPSIJIKA
B MATHUTHOM IIOJIE SEMJIN

A.O. Konowxos', T.I. Cyrxauesa'?>

"Hosroposckuit rocymapersennbiii yansepeuter uM. pocaasa Mymporo,
r. Benukuit Hosropos, Poccuiickass ®eneparius

2FOxxH0- Y paIbcKuit roCyJapeTBeH bl yHuBepcuTeT, I. eIa6umck,
Poccniickas ®enepariust

B pabore ucciemyercs 3amada Komu — dupuxie mist cucremsr ypasaenuit OCKOJIKO-
Ba HEHYJIEBOI'O IOpsijKa. PaccMarpuBaemasi MaTeMaTUIeCKasi MOJIE/b OIKMCHIBAET TEUYEHe
HECXKMMAEMOil BSI3KOyIpyroi kuakoctu Kegbpura — Qoiirra B MAIHUTHOM II0JI€ 3€MJIH.
[Ipu 3TOM yIUTBIBAETCSI, YTO HA YKUJKOCTH OKA3BIBAIOT BJIMSIHUE PA3JIMIHbIC BHEITHUE BO3-
JIefiCTBUsI, 3aBUCAINNE KAK OT KOOPIAMHATHI TOYKKU B IMPOCTPAHCTBE, TaK W OT BpeMeHH. B
EPBON YacTu pabOTHI M3JIATAIOTCS U3BECTHBIE PE3YJIbTATHI, MOy YeHHBIE ABTOPAMU PaHee,
U3 TEOPHUHU Pa3PeIMMOCTH 3ajadn Komm Jiyisi Moy IMHeTHbIX HeABTOHOMHBIX ypaBHEHMI
c000JIeBCKOTO THITa. BO BTOPOIi 9acTH MPOBOAUTCS PELYKIUs PACCMATPUBAEMON MaTEMATHU-
JeCcKOil MOJeIn K yKa3aHHOU abcTpakTHO 3amade Komu. B Tperbeil wacTtu moka3biBaeT-
Cs1 OCHOBHOI pe3yJsibTaT — TeopeMa CyIIeCTBOBAHUS U eIMHCTBEHHOCTH perrneHus. Haxo isr-
Cs1 yCJIOBHUSI CYNMIECTBOBAHUS KBAa3WCTAIMOHAPHBIX MMOJIyTPAEKTOPHil, a TaKyKe OIUCHIBAET-
cs1 pacimpenHoe $ha30Boe IPOCTPAHCTBO HCcemyeMoit Mmojienu. [Ipe/icTaBiennbie B cTaThe
HCCIIeIOBaHUST 0000IIAIOT PE3yJIbTAThI aBTOPOB It cucTeMbl OCKOJIKOBA, MOJEJUPYIONIEit
JIBUKEHIE BsI3KOYIIPYTOil HeckuMaeMoii xKuakoctu Kejabpuna — Qoiirra HyJIeBOIO HOPSIIKA,
B MArHUTHOM TIOJIE 3€MJIN.

Karouesvie cro8a: maznumozudpoounamura; YpasHENUA COOOAEBCK020 MUNG; PACULU-

pernoe Pasosoe NPOCMPAHCMB0; HECHCUMAEMAA BAZKOYNPY2QA HCUIKOCTID.
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