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The article describes the inverse problem of diffraction of electromagnetic waves, finding
surface H-polarized currents on an unclosed cylindrical surface according to a given radiation
pattern. The work is based on modelling an operator equation with a small parameter. The
operator is represented as the sum of a positive-definite, continuously invertible operator
and a compact positive operator. The positive-definite operator exactly coincides with the
main operator of the corresponding direct problem of diffraction of electromagnetic waves.
Due to this fact, the solution to the simulated equation satisfies the necessary boundary
conditions. And this is the novelty and difference of the approach developed in this work
from the methods known in the scientific literature. We develop a theory of an operator
equation with a small parameter and a numerical method based on Chebyshev polynomials
with weights that take into account the behavior at the boundary. The efficiency of the
numerical method is shown.

Keywords: inverse diffraction problem; equation with a small parameter; positive
definite operator; completely continuous operator; Hilbert space.

History of the Problem

For the first time, the problem of finding the currents that create a pre-set direction
pattern was considered by Bakhrakh L.D., Kremenetsky S.D. in the monograph [1]. The
connection between surface currents and the direction pattern for a cylindrical surface is
described by the equation [2, p. 145|

Ku=7, 8
where K is the completely continuous integral operator that belongs to the space Lo [—1, 1].
We do not give the form of the operator K, we only note that the core is an infinitely
differentiable function of two variables.

The Hilbert space Ly [—1, 1] is represented as the direct sum of the closure of the image
and the kernel conjugate:

Ly[-1,1]=R(K)® N (K™). - (2)
According to (2), the element f is decomposed into the sum: f = f + fo. Three cases are
possible:

1. fo =0, the function f € R (K) is realizable;
2. fo =0, the function f € R (K) is approximable;

3. fo # 0, the functionf ¢ R (K) is not approximable [3].

In order to determine the case in the considered situation and to find the minimum of

the quadratic functional
2
M (u) = | Ku— f] (3)

on some set, the monograph [4] propose the general methods.
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1. Statement of the Problem

It is necessary to find a function with the given properties. And if the inverse problem
of synthesis of surface currents on a cylindrical surface is solving, then it is necessary that
the currents have the same properties as the currents in the direct problem. To this end,

we involve the equation of the direct problem considered in [5]:
1

(Au) (1) + (Ku) (1) = %%/u(t)%ln |7_1_t|dt+

+/K(T,t)u(t)dt:f(7'), -1<7<1,

where A is a positive definite operator.

The carrier of the properties of surface currents is the operator A. The operator
K:Hjy — Lo[—1,1], where H, is the energy space of a positive definite operator A.
Recall that the scalar multiplication and the norm in H 4 are determined by the formulas,
considered in [6]:

[u,v] = (Au,v), [u]® = (Au, ).

This paper essentially uses the following fundamental result obtained in the paper |7].

Theorem 1. The operator A~ is defined on the dense set Lo [—1,1] and is completely
continuous. The operator is defined on in and is completely continuous.

2. Theoretical Study of Approximmability

The problem of finding the minimum of the functional (3) is unstable [4]; therefore,
we introduce into consideration the quadratic functional with a small parameter

N (u) = a (Au,u) + |[Ku — f||*,u € D (A), (4)
where D (A) is the domain of the operator A, « is a small parameter. The Euler equation
for the functional (4) has the form

aAu+ K*"Ku = K*f. (5)
As shown in the paper [8, 10|, the minimum of functional (4) is achieved precisely on
solutions to equation (5). Equation of the direct diffraction problem (4), equation with a
small parameter (5), and the equation of the inverse problem, have the same structure.
Apply the operator A~! to equation (5), and obtain the equivalent equation
au+ ATK*Ku=A"K*f. (6)
Further, each solution to equation (5) is also a solution to equation (6). A solution to
equation (6) may not belong to the domain of definition of the operator A. Such solutions
are called generalized solutions. With this proviso, equations (5) and (6) are equivalent.
Equation (5) is considered in the Hilbert space H4. As a consequence of Theorem 1,
we obtain that the operator T' = A~ K* K is completely continuous in H 4. In addition, the
operator T' is positive: [A7'K*Ku,u] = (K*Ku,u) = (Ku, Ku) > 0 and therefore self-
adjoint |9, p. 352|. In the Hilbert space H,, a self-adjoint completely continuous operator
has a complete system of orthonormal eigenfunctions:

—1 g = )2 _ 2
ATVK Ky, = A2, =1,2,.., A2 > 0, (7)
—1 g% /
AYK R, = 0,m =1,2, ... (8)
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Theorem 2. The system of functions M = {¢p,,n=1,2,.yU{ /Y., m=1,2,...} is also
complete in the space Ly [—1,1].

Proof. Let f € Ly [—1,1] be an element, which is orthogonal to all functions from the set
M: (f,n) =0, (f, /2!.) = 0. Consider the preimage A~'f € Hs. We have [A7'f, ¢,] =
(AAYf 4b,) = (f,4,)=0. By the same reason, [A7! f, 4! ] = 0. Hence, an element A~ fis
orthogonal to H4 a complete set, i.e. A~1f = 0. Then f = 0.

O
From this theorem we derive following statement

Theorem 3. 1) The system of functions Ki,,n = 1,2, ..., is complete and orthogonal in
the space R (K) C Lo [—1,1]. 2) Equality is fair. These equalities are correct K /], =
O0om=1,2,..

Theorem 4. To implement the function f, i.e. Ku € R(K) necessary to satisfy the

imequality

n

(f, Kon) |

2 < 400, 9)

and if Ku € R(K), then inequality (9) is also a sufficient condition.

Proof. If f is implemented, then there is such an element

=D (W) Yt Y () vy, (10)

that f = Ku. Then

[ Kb, Ku, Kty
do) () _ ()

From here, with considering the Bessel inequality in the Hilbert space, we obtain (9). We
prove the sufficiency. If inequality (9) realized, then the formula

(f, Kw
Z ¥n

defines some element of the space H,. Since the operator K is continuous, the system
Ki,,n = 1,2,... is complete in the space R(K) C Lo [—1,1], and the condition f = f
holds, we have

2
) K
If = Kul|* = || f = Ku|* = lim ||f - § j (/. W’ Ky

n—-+00

=0.

(I
Let us turn to the Euler equation (6). Using the proper decomposition (10) and
Theorem 3, we find a solution to the equation with a small parameter:

=y /: K% Un. (11)

a+ A2
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By dint of (11), we find the norm in the energy space and the residual:

2

(0) = fuaf? = 3 [V (12)
(@) = 1w = I = |5 | 1K)+ LAl (13

From formulas (12) and (13) it follows that the norm function & (a) decreases

monotonically, and the residual x (a) increases monotonically. If limy (o) = 0 and
lim¢ (o) < 400 with @ — 0+ then the function is realizable; if lim x (o) = 0 and
lim¢ (o) = +oo, then the function is not realizable, but is approximable; finally, if

limy («) > 0, then the function is not approximable. The following theorem is a
consequence of Theorem 4.

Theorem 5. If0 < r3 < lim¢ (a), then the functional (2) reaches a minimum on the set
[u]2 <12, at that at a single point.

3. Example of Numerical Algorithm

We do not know the eigenfunctions 1, /!, therefore, to solve the Euler equation
(5), we use functions that are used to solve the direct problem [7], namely, the system of
functions

on (1) = \/%sin [narccos (7)] = \/%\/1 — 712U, (1),n=1,2,3, ..., (14)

here (+,-) means the scalar product in Ly [—1,1], and U (7) is the Chebyshev polynomials
of the second kind Uy (1) = 1, Uy (1) =27, U3 (1) = 47% — 1,...
This one is full and orthonormal

(onsonl = (gmon) ={ g0 (15

then it is an orthonormal basis of space H4 [7].

In addition, the basis functions ¢, (7) satisfy the Meixner condition on the edge: the
basis functions tend to zero according to the law ¢,, (7) = const - /1 — 7 when 7 — 1 (the
radiation point approaches the edge). And the basis functions tend to zero as ¢, (17) =
const - v/1 4+ 7 when 7 — —1 (the point of radiation approaches the other edge).

An approximate solution to equation (6) is countuened in the form

u(r) =Y capn (7). (16)

We substitute (16) into (5) and multiply by basis functions @1, s, ..., px scalarly in
the space H 4. Considering equality (15), we obtain a system of linear algebraic equations

N
OéCn+ZCmen = fp,n=1,2,,...,N. (17)
m=1
where Kmn = (K*K@my(pn) = (K@myK(pn)afn = (K*fv(pn) = (fa K@ny)
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After solving system (17), we find the approximate value of the norm and the residual:

[wal = 4| Y leal® 1K ua — f]l = /H(Kua) (1) = f (7)|* dr. (18)

In conclusion, we consider a model example. After changing the variable, the
connection between the surface currents and the radiation pattern for the band, is given
by the following integral completely continuous operator:

f(r)=Ku= /exp (tkatt)w (t) dt, (19)

where k = 27/ is a propagation number, A is a wavelength, in calculations it is usually
specified like a/\ the ratio of the half-width of the band to the wavelength. Table illustrates
the convergence of the Galerkin method for small values of the parameter a.. The results
obtained with N = 10 and N = 20 completely coincided, which indicates a good
convergence of this numerical method.

Table
Internal convergence of the numerical method
N | 3=0,5a=0,001 1 = 0,5,a = 0,000001
[a] [ Kua — £ [a] [ Kua — £

1 10,8014824 | 0,07117072 | 0,8019675 | 0,07116798
1,034875 | 0,04108093 | 3,527968 | 0,002271569
10 | 1,034875 0,0408093 3,527968 | 0,00271566
20 | 1,034875 0,0408093 3,527968 | 0,00271566

Summary

Therefore, the following results were obtained.

1) In the energy space H4 of a positive definite self-adjoint operator it is proved that
the Euler equation has a unique generalized or classical solution the direct diffraction
problem on an unclosed cylindrical surface.

2) We study the properties of the solution w,, to the Euler equation. We obtain explicit
formulas for the norm and the residual, from which it follows that the norm is a decreasing
function of the parameter o, and the residual is a monotonically increasing function.

3) It is proved that the problem of finding the minimum of a residual has a unique
solution on a set bounded in norm set in the energy space.

4) We obtain the formulas for finding the functionals of the norm and residual after
solving the Euler integro-differential equation with a small parameter.
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CUHTES ITOBEPXHOCTHHBIX H-IIOJIAPN30BAHHBIX TOKOB
HA HE3AMKHYTON ITMJIMHAPMYECKOI IIOBEPXHOCTH

C.1U. Bmunos', C.IO. ITemposa’

"Hosroposcknit rocymapersennbiii yansepenter nM. Spocaasa Mymporo,
r. Benuknit Horopon, Poccuiickas ®eneparms

2CeBacTomno/IbLCKHI rocyJapcTBennblii yuusepeuteT, I. CeBacToIoIb,
Poccuiickas @enepariust

Pabora mocssimena obpaTHBIM 3agadaM AuPAKITAN JIEKTPOMATHAUTHBIX BOJIH, HAXO0XK-
JIEHUIO TTOBEPXHOCTHBIX H-TIOJISIPU30BAHHBIX TOKOB Ha HE3AMKHYTOW NUJIUHIPUIECKON HO-
BEPXHOCTH 110 33J@HHOl JuarpaMMe HaIlpaBJIEHHOCTH. B ocHOBe pabOTHI JIEXKUT MOJIEJIH-
pOBaHMe OIepaTOPHOIO YPaBHEHUsI C MaJibIM HapamerpoM. OnepaTop MnpecTaB/ieH B BUJE
CYMMBI TI0JIOYKUTEJIbHO-OIPEIEIEHHOTO, HEIIPEPHIBHO-OOPATUMOTO OIEPATOPA U KOMIIAKT-
HOTO TIOJIOXKHUTEJIHHOTO oreparopa. [10/10:KUTeIbHO-0IPe/Ie/IeHHBII 0IlepaTop B TOYHOCTH
COBIIAJIAET C TVIABHBIM OIIEPATOPOM COOTBETCTBYIOIIEH MPAMON 3aa9u JTuMPAKIINU JI€K-
TPOMATHUTHBIX BOJIH. Buraromapst aToMy (bakTy, pelreHre CMOJIEJIUPOBAHHOTO yPaBHEHUS
VJ/IOBJIETBOPSIET HY?KHBIM I'DAHUYHBIM YCJIOBUsIM. U B 9TOM HOBU3HA M OTJIAYMAE PA3BUTOIO
B JIaHHOI paboTe IMOX0/1a OT U3BECTHBIX B HAYYHON JUTEpaType MeToJoB. B pabore aBro-
paMu paspaboTaHa TEOpHsi OIEPATOPHOIO YPABHEHUS ¢ MAJIBIM APAMETPOM U IUCJIEHHBIIH
METOJT Ha OCHOBE MOJUHOMOB UebbIleBa ¢ BECOM, YUIUTHIBAIOIINM [TOBEJICHNE HA TPAHUIIE.
ITokazana 3¢ PEKTUBHOCTD IUCIEHHOTO METOIA.

Karoueswie caosa: obpamuasn 3adawa Qudparyuu; YpasHEHUe ¢ MGALLM NAPAMEMPOM;
NONOHCUMENDHO-ONDPEICAEHHDBIT ONEPATNOP; BNOAHE HENDEPBIEHBIT ONEPAMOP; 2UALOEPMOBO
NPOCMPAHCMEO.
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