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We consider resource allocation problem in the cloud computing. We use queuing model
to model the process of entering into the cloud and to schedule and to serve incoming
jobs. In this paper, the main problem is to allocate resources in the queuing systems as a
general optimization problem for controlled Markov process with finite state space. For this
purpose, we study a model of cloud computing where the arrival jobs follow a stochastic
process. We reduce this problem to a routing problem. In the case of minimizing, cost is
given as a mixture of an average queue length and number of lost jobs. We use dynamic
programming approach. Finally, we obtain the explicit form of the optimal control by the
Bellman equation.

Keywords: cloud computing; multiple queueing system; multiple job classes; stochastic

control policy.

Introduction

Resource Allocating (RA) is the process of assigning available resources to the
applicants. There are several techniques in parallel computing and sharing the computing
resources where cloud computing is the latest technique that shares resources. Cloud
computing provides distributed computing over a network that allocates resources to the
end-users. Since users are distributed geographically over a wide area, the resources are
also distributed. Therefore the cloud management needs to manage resources to allocate
resources efficiently. A comprehensive survey on the cloud computing can be found in [1-3].

In [4], resource allocation strategy is a considered as an integrating cloud provider
activity for utilizing and allocating resources of cloud environment and a classification of
resource allocation strategy is presented. The paper [5| analyses the architecture of the
cloud with considering the Quality of Service (QoS). Also, a sequence of M/M/1 and
M/M/m queues is considered to model the cloud architecture. The paper [6] proposes
different workload types with different characteristics that should be supported by cloud
computing, but there is no single solution where it can allocate resources to all imaginable
demands optimally.

Stolyar A. [7] uses resource pooling to a generalized switch model, where it was used
to study the heavy traffic optimality of the Max-Weight algorithm. Stolyar A. considered
a scaled version of queue lengths and time to obtain these results, where it leaded to
a regulated Brownian motion. In [§], the authors propose another method in unscaled
time for heavy traffic optimality. In addition, this method directly obtains heavy-traffic
optimality in steady state. The problem reduces to a routing problem, which is well studied
in [9-13].

The optimization and the parameter for evaluating the service in cloud computing are
studied in [14]. Also, [14] uses a queuing model to study the performance of services and
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develops a method to optimize it. The paper [15] also considers queuing system for cloud
computing and studies a routing problem regarding to reduced workload, response time
and the average queue length.

In [16], authors use a stochastic model for load balancing and scheduling in cloud
computing clusters where jobs arrive according to a stochastic process and request
resources such as CPU, memory, and storage space. They show that the performance of
JSQ! routing and two-choice routing algorithms with Max-Weight scheduling policy have
optimal throughput. In [17], the authors introduce a cloud resource allocating algorithm
called CRAA/FA?, which creates a market for cloud resources and makes the resource
agents and service agents bargain in that market.

Winston [18] proves that under some conditions, the JSQ strategy is optimal. These
conditions are as follows: (1) we do not have any prior knowledge about the job, (2) the
jobs are not allowed to preempt, (3) the router sends job immediately when it comes,
(4) First-Come-First-Served policy is the only policy for each servers, (5) the job size has
exponential distribution. Although, the JSQ is optimal under these conditions, the model
that we considered does not meet one or more conditions, therefore we need to study a
methodology over these conditions.

There are several types of networks, such as computer multiprocessor networks and
communications data networks in the queuing model. Queues are the main part of various
network components, such as the input and output buffers of packets. We often want
to find the optimal performance of queuing systems, for example, queue length, waiting
time, workload, and probabilities of certain states. Since the performance parameters are
nonlinear as functions of the arrival and service rates , finding the optimal performance of
queues is a difficult problem, whereas efficient control to work loud is one of the highlighted
problems of the computer networks.

In this paper, we consider the problem of providing resources in cloud computing.
Costumers request resources and set the size of their request, such as a memory, processor
power, ..., upon the arrival. The entry point (EP) of the cloud computing puts these
requests into a queue and then distribute them to a processing server (PS). These PSs
have several kinds of resources where there is a limit of each kind in each PS. Due to this
limitation, we have finite number of jobs of each kind on a PS. The simplest architecture
of cloud is parallel queues with a router at the front to schedule incoming jobs to servers
(see Fig.1).

——

Queue of incoming Jobs

Processing Servers

—@
—

Fig. 1. Queuing model of cloud computing

1Join-the shortest-queue
2Cloud Resource Allocating Algorithm via Fitness-enabled Auction
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For a wide class of criteria, we demonstrate that the optimal control problem can
be reduced to the solution of the system of ordinary differential equations. Moreover, the
optimal control exists within the class of Markov strategies and therefore can be calculated
for each possible state of controlled Markov chain. The existence of the optimal solution
was proved in [19]. The papers [20] and [21] consider the general optimization problem for
jump Markov process and propose the reduction to a problem with complete information
for a wide class of optimal control problems.

1. The Mathematical Modelling and State Equation

In this paper, the considered system is a multi-server queuing network where there is
a single entry point (Entry Server) at the front. This entry server works as a load balancer
and sends the user job requests to one of the processing servers PS,, where s =1,..., 5.
The purpose of this server is to chose a PS, to deliver the job requests.

A processing server PS; can be a node, core or processor representing the physical
computational resources of cloud architecture where the services are computed. The
selected processing server executes all services that are demanded by an assigned job.
The processing servers are identical and are modelled as a M/M/m queuing system. The
system has S processing servers (PS) indexed by s = 1,..., S.

Let L be the number of different kinds of resources of each PSs. These resources can
be processing power, disk space, memory, etc. Let R; s be the amount of the resource [ of
PSs;forl=1,...,Land s =1,...,5. We suppose that each job needs r;, [l =1, ..., L, units
of the resource [ to complete its service.

Let I'(¢) be the set of jobs that arrive at the time slot ¢ and y(¢) = >_,cp ;) Di be the
size of I'(t) which means the total time needed for the jobs in I'. It is clear that v(¢) is a
stochastic process which is i.i.d. over time slots, with E[y(¢)] = A.

In each time slot, the Entering Server disputes the arrivals to one of the processing
servers. In the time slot ¢, we use g, to show the queue length at the server s. For a given
server m, denote by Y; the state of the queue. If we define Y as the size of the i-th job
at the server s then the total backlogged job size is given by ¢s(t) = >, Y? which is a
function of the state Y.

In a Markov chain, one can control arrivals to each queues. This control is called load
restriction. For load restriction, control parameter u, is a probability of accepting the new
arrival to the queue of the server s. Now, let all processes be defined on a probability
space (2, F,P) with right-continuous set of complete o-algebras F = {F;};>0 generated
by X(t). Let the process {X,(t)} be the random variable of queue length of queue of the
server s. Similar to [22] and 23], we assume that trajectories of the random processes X(t)
are piecewise right continuous nonnegative jump-like Markov processes and have finite left
limits. Suppose that the state is described by a vector X. We write the standard problem
statement equation as follows:

X0 = [ wrir = [ wiiryi 1)

where 0= {20 i s =500),
s 0 otherwise,

and s* is the server that router chooses it.
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2. Optimal Control Problems

2.1. Optimality Criterion

We assume that the classical performance criterion takes the form
T
U(a) = E* {CO(T, Xr) +/ c(t, Xy, a)dt} , (2)
0

where E“ is the expectation of its argument and the cost functions ¢o(.) and ¢(.) are two
continuous nonnegative functions. In the cost functional (2) the time T is the time horizon.
The optimal control problem is to find controls a; € A, where achieves the extremum of
the functional (2).

Boel R. and Varaia P. [22| propose a method for using Bellman equation to control a
jump-like process. We follow the model presented in [22,24] to drive Bellman equations.

The function V' (¢, z) is called the value function of the control problem. The function
V (t, z) satisfies the Hamilton—Jacobi-Bellman (HJB) equation (also called the optimality
equation)

V(t,z) = min E“{CO(T,XT)+/tTc(s,Xs,as)ds\Xt_ :x}. (3)

{as€A}r<s<T

One can find the derivation of equation (3) for a Markov queuing network in [24]. If we
define the cost function’s difference derivatives as at point (7,2) T (7,2) = V(t,x +e5) —
V(t,z) and Y (1,2) = V(t,x — es) — V(t, ), then the value function V' (¢, ) can also be
presented as the following equation:

ov : -
_E(t’ r) = min {c(t, x,a)+ Z ap MY (T, ) + Z ap Y (T, x)l(Qk>0)} .
kes kes

where the initial condition in (4) is

V(T,x) = c(T,x). (4)

3. Controlling Servicing Intensity

In order to find the control to classical queuing system, let us consider the state X; be
queue length which is a jump-like Markov process. Obviously, the state X; is a birth and
death process. Our goal is to minimize the following functional:

¥(a) = E° /0 "X (5)

Therefore, we need to find the optimal strategy ay;, = a(X;)|X; = k to optimize this
functional considered as an accumulated delay functional. Regarding to this functional,
the value function (4) takes the following form:

~ 5y (ta) = min {x ta {V(t, z—1) = V(t,z) + A {V(t, r+1) = VI(t, x)} 1<x>o>} , (6)

under the initial condition V(T z) = 0.
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We consider in the region [0, 7] x W, and mx(t) = V(¢, k). With this consideration, (6)
reduces to an infinite system of ODEs with respect to the functions m(t):

dﬂ'o(t) o
= Almo(t) — mi(t)],
dﬂ'l(t) .
i afg[lof’lu}{al[ﬂo(t) — (O]} () — ma(t)] + 1,
pra aifne[}){lu]{@i [mic1(t) — 7 ()] FA[mi(t) — miga ()] + 4, (7)

where the initial conditions are m;(7") = 0 for each 1.
Also, if we consider V;(t) = m;(t) — m;_1(t) then we can represent the optimal control
by the following equation:

a;(t) = pl(>0)a-1Vi(t). (8)

And one can find the following expression for Py(7,7) in queueing theory in [25]:
Po(ryi) = eOm [p—f/%i(zn/w R (2 /)

S M/%(%N)], o)

k=i+2
where p = \/p.

Definition 1. We use the notation ® to define the convolution of the functions A(z) and
A(z) as

t
M@ ©A@) = [ Al - Ay,
0
Remark 1. By solving the Chapman—Kolmogorov equations

d
EPO(T, i) = APy_i(1,i) — (u+ AN)P,(1,4) + puPyyi1(7,4), 0> 0,

d

L Rri) = uPi(ni) - AR(m), (10)
-

under the initial condition P,(0,7) = 1(,=), one can find that
pt(r,i) = P{Xo =i} = 1 = Ro(r,), Po(r, i) = P{X, = 0| X, = i}.

Theorem 1. Let X, be a birth and death process with constant birth and death rates A
and p with respect to T =T — t. For the problem with functional (5), the optimal control
18 a Markov control and can be reprresented as

ajr = Ml(i)7 (11)
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where the value function is

Vit,z) = Zﬂ-i(T)]-(x:ei)a (12)

and

2
m(t) :iT—uT®p+(T,i)+)\%. (13)

Proof. In order to show the Laplace transform of the function A(x)

A*(s) = [A] = /0 A (),

we use the symbol x. We use backward method of dynamic programming to find the
optimal control. Let us define a new time variable 7 as 7 = T'— t which takes values from
the time 7" to 0. We consider the function 7;(7) = m;(t), therefore we have

dn;S—T) = _dzit) i1 () = 03(7) = miga (t) — mi(t)

and 7;(0) = m;(T"). Let 7 = 0. We present optimal control (8) as follows
Hence, system (7) can be rewritten as follows:

dno(T)

b0 () = (o))
dm(r) B B 3
1D () = () = Maelr) = m(7),
dﬁ;(:) = p(ni(1) = nic1 (7)) = X (1) — mi(7)), (14)

where 7;(0) = 0. In order to solve (14) we follow the method used in [25].
Consider the generator function to be:

n(z,t) = Z ni(7)2"

multiply both sides of (14) by z; for all i > 0 and take the sum of the equations:

— dni(7) S
) 3 . )
> = > (@ + -1 (7) = (A + p)ni(7) + /\m+1) 2,
i=1 =1
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S ) = ()] = i [+ 2 = O e ) = [ 2= ) ) = o)

With respect to the generator function, Y .-, iz" = ﬁ, and the first equation of system

(14), we have M = A (1) — xno(7)), therefore we have following linear equation:

() = (=20 )+ e ) + o = Nl + e (19)
By using the Laplace transform of (15) for 7, we have
2[sn* (2, 8) = n(2,040)] = A = 2(A + p) + p2®ln* (2, 8) + [z — N (s) + i (10

With regards to the initial condition, we have

(z,04) Zm (04)z

where (16) means that

22— (X — pz)s(1 — 2)’n3(s)
1—2)2(zs =M1 —2) + puz(1—2))

n'(z,8) = ( (17)

If we set the denominator of fraction (17) to be zero then we have the following roots:

fo = 1, which ia a double root,
1

o= (5T AT ut VA=t s+ dus),
1

By = @(8+A+M—V(A—u+s)2+4us>-

According to the Rouche’s theorem [25], only 52(s) is inside the unit circle on the complex
plane. Under the condition that poles of function (17) correspond to a root of top of the
fraction i.e., numerator turns to 0, the function (17) has bounds. Since for z = f5(s) the
top of fraction (17) turns to 0, we have the following equality:

5(s) |
5()‘(1 — Ba(s))? — pfa(s)(1 — 52(5))2)

Mo(s) =

After some algebra and considering ¢ = u — A\, we obtain the final representation for the
Laplace transform:

1 1 9*(s) S
*(2,5) = - - - 18
UCE el e Rl e vl U2 5 B vl e (18)
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where

2
s+¢—+/(s <) +dus

0*(s) =

It is easy to inverse equation (18) with regarding to table of generator functions [25], to
get the following representation for the Laplace transforms n(7):

n; () R Rl S 0*(s)[Bu(s)] 0. (19)
It can be easily seen that
P
9 (s) =

B1(s)pPa(s) = p follows that

‘(g S+ — plBi(s)]~ 0+ _ [Bi(s)] "
V) ) —p Al -1

(20)
Next, we show that

e UB(s)]
B0 = s -1y 2y

and P;(7,1)s are solutions to system of equations (10), which these are widely known [25]
in queueing theory. We consider x = 27y/Ap and use equation (9) for Py(7, ), which is

Pa(ryi) = €O |y () 4 pm O oD Rt }
k=i+2
where Ij(x) is a modified Bessel function for which we have the following simple relation:

Ik+1(33') = kal( ) - %Ik( )

After some simple algebra, we have
Py(r,i) = e OHTN " p 21 (k) — Tppa()],
k=i
and, therefore,
Py(r,i) = e Z kL p 2L (k).
k: i+1
The following Laplace transform is known:

[k~ p e T [ (k)] = [Bu(s)] ¥,
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where
1
pi(s) = ﬂ(s+/\+u+ \/()\—,u+8)2—|—4us).

Then

N e -

Fi(s.i)=— > [Bi(s) ™"
L —
Comparing (19), (20), and (21), we have
] ¢ S
=5+ 5 5 (22)

After taking inverse Laplace transform, we obtain equation (12) for the value function
vi(t) = mi(7).

In order to complete the proof, we need to show that the optimal control does not
switch for all £ > 0. To show this, with regards to (8) it is enough to show ;41 () —m;(t) > 0
for t < T. To this end, we prove that Y;(7) = 1;41(7) — m:(7) is an increasing function.
Now by applying both (21) and (22), we find a representation for the Laplace transform
of the first differentiation of Y;(7):

1:(6) = 5 (1- (o).

By inverting the expression [3;(s)]~(+Y), we find
pi(7) = (i + )t pltHI 2= ORI L (),
while the expression for p;(7) for i = 0,

1
po(T) = —e’(’\Jr“)TIl(ﬁ),

VP

is known [25]. For ¢ > 0 one can easy find that p;(7) is a i-fold convolution of the density
function for the busy period

pi(T) = ?0(7') * = * po(T)j

%

i.e., from [25], it is the distribution density function for the generalized busy period, defined
as the busy period starting from a moment when the queuing system has ¢ claims, one of
which is starting to be serviced. Therefore, we have shown that

——Yi(1) = 1= Fi(7), (23)

where Fj(7) = [J pi(x)dz is the distribution function for the generalized busy period.
F;(1) < 1, hence Y;(7) are strictly increasing functions. Since Y;(0) = 0, we get that

Ti(7) > 0 for 7 > 0, and this completes the proof. 0
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Al

Fig. 2. Router diagram Fig. 3. Transition intensity diagram on the
i-th queue

4. Optimal Load Balancing (OLB)

Let us consider the EP which sends arrival jobs with the probability as € [0, 1],
Zle as = 1 to the PSs. Denote the S-tuple of queue lengths by X* = (X1, ..., X%) with
the set of states x = (11, ..., zs), z € [W]°. Under these assumptions, each of the processing
servers individually is a queuing system with load restriction. In [26], these processes are
studied and it proved that the processes X! are controllable Markov processes. The scheme
of these processes is given in Fig. 3.

Our problem is to find optimal strategy a(t,z) = a(t, X;)| X; = = to minimize

T S
J(a) = E° /0 > xlat. (24)

In order to find the optimal Markovian control, the value function is
2 (t,x)| = mingea { Zle(xs + Aas[V(t,x + es) = V(t, )]+

+us[v(t7 T — 68) - V(t7 x)]l(acs>0))}a

where the initial condition is V(7' ) = 0. The other conditions are as follows:

A:{ase[o,l],z(zszl}. (26)

s=1

Since value function (25) and also conditions (26) are linear with respect to as, we can
present the optimal strategy by a cost function. We define the set of indices s as

Jo(t,z) ={j:j= argminlSsSST:(t,x)} (27)
in which the indices represent minimum of derivatives at the given point (7, x) by
YiH(raz)=V(t,x+e)— V(). (28)
Now we can rewrite the optimal control as follows:

a=1(m = jo(t, z)). (29)
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The idea given in [24] to find the explicit expression of the cost function:

Vi = [ /tasz:@@,x)d@du /zdz [ [ oo saiac

Regarding to (26), one can easy find that the vectors of optimal control are vectors with
unity as the jo(z)-th element and zeros elsewhere. As a result, the cost function with some
replacement such as 7 =T —t, 2 =0 —t, y = ( —t can be formed as follows:

2 s S
.
V(t,x) = )\5 +7'me —Z,U,j[T@p:(T, z)], (30)
j=s j=s

where pf(n,z) = P{zs, > 0|lzg = x,a, = a(n,x,)} are probabilities of non-zero queue
lengths at the given time 7, whereas at the initial time, x is the vector of queue lengths.
These probabilities depend on the optimal control.

Now if we can write the equations for pf (7, z) then we can find the closed representation
for the cost function:

pi(rz) = 1- = Arme)T pis/QIxs (Ss) + ps_(xs—’—l)ﬂlxs—kl(%) + (1 —ps) Z pi—S/QIS(gS)}
s=x;+2

As a result, the optimal control strategy is to route arrival jobs from users at the given
time ¢ to the processing server such that the difference derivative T;—(T, x) is minimal. The
Markovian optimal strategy is not uniform. However, the properties of T;F(T, x) for large
7 imply the optimal controls depend on time only near the optimal control horizon, i.e.,
for values of ¢ that are close to 7.

5. Simulation

The system that we consider to simulate is a sequence of M/M/1 and M/M/K queuing
sytem. The first server, which is called EP, routes incoming jobs to the servers (load
balancer). Each server has its own queue to accept the coming new jobs when the server
is currently busy. To illustrate the effectiveness of this control, we consider the following
assumptions for the system.

e The arrival process is a Poisson process with the arrival intensity A.
e Servers are considered to have the same service rate pu.

e The router sends jobs immediately as they arrive.

To evaluate the presented methodology, we compare it with Join Shortest Queue
(JSQ); which is a common strategy of load balancing. We use Matlab Smulink to simulate
and to compare these strategies. We compare them with regard to the waiting time for
routing policies for a range of different job-size distributions such as Deterministic and
Exponential distributions. The results are shown in Figs 4 — 7.

We consider several strategies to compare OLB method versus JSQ method. We
consider two different queuing system, M/M/N and M/D/N, and then for each of them
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Fig. 4. The waiting time of sampling Fig. 5. The waiting time of sampling
10000 entities to the system where the load 10000 entities to the system where the load
balancers are JSQ and OLB and the balancers are JSQ and OLB and the
service rate depends on the service time  service rate is constant and equals 1 for all
needed for entities for all servers and the servers and the job size follows
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Fig. 7. The waiting time of sampling
Fig. 6. The waiting time of sampling 10000 entities to the system where the load
10000 entities to the system where the load balancers are JSQ and OLB and the
balancers are JSQ and OLB and the service rate depends on the service time
service rate is constant and equals 1 for all  needed for entities for all servers and the
servers and the job size follows exponential ~ job size follows exponential distribution
distribution with mean 8

we consider two different job size distributions, i.e. deterministic job size distribution and
exponential job size distribution. The result of comparison for M/D/N queuing system
when job size follows deterministic distribution is shown in Fig. 5 and when job size
follows exponential distribution is shown in Fig. 6. Also, the result of comparison for
M/M/N queuing system when job size follows deterministic distribution is shown in Fig.
4 and when job size follows exponential distribution is shown in Fig. 7.

Figs. 4 and 5 show that the performance of the OLB strategy is similar to the JSQ
strategy when the job size distribution is deterministic and the queue length is the number
of jobs in the queue. But the OLB strategy shows better performance rather than the JSQ
strategy when job size distribution is exponential as shown in Figs. 7 and 6.
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Regarding to the results provided by simulation, the OLB strategy has less waiting
time and as a consequence less queue length than the JSQ strategy. The reason is because
of that the OLB picks the queue to send the new job based on the value function of queue
lengths if either queue length is the number of jobs in the queue or the queue length equals
to the sum of the job sizes. Despite of OLB, JSQ picks the queue that has the minimum
number of jobs between queues. As a result, the OLB strategy is insensitive to the job size
distribution, while the JSQ routing policy is sensitive.

Conclusion

We study the resource allocation in a private cloud computing via queuing theory
and optimal control. In this paper, in order to analyse the resources allocation in cloud
computing, we propose a queueing model for cloud computing and develope a synthetical
optimal control method to optimize the performance of services. The considered system
is a stochastic system for load balancing and scheduling in cloud computing clusters. We
consider the state vector of system to be available to observe at any time. We pose and
solve the problem of constructing joint control strategies for the queuing system state.
For shortness, we consider a setting with the same type jobs and find the optimal control
strategy. In the future we will study our findings in a region containing private and public
cloud.
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PACITPEAEJIEHVE PECYPCOB B OBJIAYHBIX BBIYNCJIEHNAX
C IIOMOILIBIO OIITUMAJIBHOI'O VIIPABJIEHNA CUCTEMAMNI
ITEPEJTAYN

A. Madanxan', A. Heaasapranagpu', C.M. Kapbaccu', . Adubrnus'
Wesnckuit yumsepcurer, 1. Uesn, Upan

PaccmarpuBaercs: 3aada BblIeI€HUS PECYPCOB B OOJIAYHBIX BBIYHCJIEHUAX. Mbl nc-
[IOJIb3yeM MOJIeJIb Odepeieil JIJIsi MOJIeJIMPOBAaHUS IIPOIECCa BXOJIa B 00JIAKO, a TaKKe JjIs
IJIAHUPOBAaHUsT U OOCIyKUBaHUsS BXOIsux 3ananuii. OCHOBHOI 3ajaqeil, ¢ KOTOPOI MbI
CTaJIKUBAEMCsl B JIAHHOU CTaThe, SBJSETCS 3aJada PaCIpeJleJIeHUs PECYPCOB B CHUCTEMax
MaCCOBOI'O OOCJIy?KABAHUS KaK 00IIast 3a/1a9a ONTUMU3AIINAN JJIS YIIPABJIAEMOIO MAPKOBCKO-
r'0 MPOIECCa ¢ KOHEYHBIM IIPOCTPAHCTBOM cOCTOsiHUi. JIj1s 9TOM e/t Mbl n3y94aeM MO/IENb
00JIAYHBIX BBIYUCJICHU, B KOTOPOIl 3aJ]aHNs 10 MPUOBITUAIO CJIEIYIOT CJIyYaiHOMY IIPOIEC-
cy. MBI cBoJIUM 3Ty 33J1a4y K 3ajiade MapiipyTusanuu. B cirydae MUHUMUAZAIUNA CTOUMOCTD
BBIPAKAETCsl Yepe3 CPEJIHION JIJTUHY OYePeId U KOJMIECTBO MOTEPSIHHBIX 3aaHuil. Mbl nc-
[TOJIBb3Y€EM IOJIXOJ[ AMHAMUYECKOrO MPOrPAMMUPOBAHUS U HOJYIAEM SABHYIO (DOPMY OITH-
MaJIbHOTO YIIPABJIEHUS 10 yPaBHEHUIO Bennmana.
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