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The article presents a review of the work of the Chelyabinsk mathematical school on
Sobolev type equations in studying the optimal control problems for linear Sobolev type
models with initial Cauchy (Showalter—Sidorov) conditions or initial-final conditions. To
identify the nonemptiness of the set of feasible solutions to the control problem we use the
phase space method, which has already proved itself in solving Sobolev type equations. The
method reduces the singular equation to a regular one defined on some subspace of the
original space and applies the theory of degenerate (semi)groups of operators to the case of
relatively bounded, sectorial and radial operators. Here mathematical models are reduced
to initial (initial-final) problems for an abstract Sobolev type equation. Abstract results are
applied to the study of control problems for the Barenblatt—Zheltov—Kochina mathematical
model, which describes fluid filtration in a fractured-porous medium, the Hoff model on a
graph simulating the dynamics of I-beam bulging in a construction, and the Boussinesq—
Love model describing longitudinal vibrations in a thin elastic rod, taking into account
inertia and under external load, or the propagation of waves in shallow water.
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Introduction

The research of the control problems for mathematical models based on Sobolev type
equations is relevant due to the need to study important applied problems, in particular, in
the theory of filtration, elasticity, biology and others. When studying mathematical models,
it is important not only to understand the properties of the processes being studied, but
also to be able to find the optimal regulation (external influence), with the help of which the
state of the system takes the required value. The article describes methods and approaches
developed in the framework of the scientific direction headed by G.A. Sviridyuk to study
the optimal control problems for linear Sobolev type mathematical models with classical
and non-classical initial (initial-final) conditions. A wide class of such mathematical models
has been studied based on the theory of Sobolev type equations. Consider some of them.

The Barenblatt-Zheltov-Kochina model. Let €2 C R™ be a bounded domain with a
boundary 92 of the class C*°. In the cylinder 2 x R, consider the Dirichlet boundary
condition

x(s,t) =0, (s,t) € 02 xR (1)

for the Barenblatt—Zheltov—Kochina equation [1]
AN=A)t =aAx+u (2)
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that simulates the process of fluid filtration in a fractured porous medium. Here o, A € R
characterize the properties of the medium; parameter o € R, , and parameter A can take
negative values that do not contradict the physical meaning of the problem, the function
u = u(s,t) plays the role of an external exposure (i.e. characterizes the sources (drains)
of the fluid). A mathematical model based on equation (2), supplemented by classical or
non-classical initial (initial-final) conditions, was studied in various aspects in [2-4].

Mathematical model of an I-beam bugling. Let G = G(0; €) be a finite connected
oriented graph, where U = {V;} is a set of vertices, and € = {E;} is a set of edges.
Each edge E; has the length [; € R, and the cross section area d; € R,. In each vertice
Vi, i =1, M, of the graph G consider the continuity conditions

z;(0,t) = 24(0,t) = Ty (L, t) = (10, 1), (3)

where E;, B, € E*(V;), E,, E, € E“(V;) (E“@)(V};) denotes the set of edges with the
beginning (end) at the vertex V;), and flow balance condition

> diz(0,0) = > diwga(li 1) = 0 (4)
)

E;eEx(V; EyeE«(V;)

for Hoff equations [5]
ATjp + Tjres = Q;T5 + Uy (5)

Conditions (3), (4) and equation (5) form the Hoff mathematical model on a graph
that describes the dynamics of deformation of an I-beam construction under constant
load A € Ry. Parameters «; € R characterize beam material properties; the free term
uj = u;j(s,t) corresponds to the external (lateral) load on the j-th edge of the graph.
Equations (5) on graphs were first studied in [6]. The Hoff mathematical model in the
domain or on the graph, supplemented by classical or non-classical initial (initial-final)
conditions in various aspects was studied in [7-9|.

The Boussinesq—Ldve model. Let Q C R™ be a bounded domain with a boundary 02
of the class C*°. In the cylinder © x R consider the Boussinesq-Love equation [10]

A=Az =LA -N)z+u (6)

with boundary condition (1). Model (1), (6) describes the propagation of waves in shallow
water. Parameters 3, A\, ' relate to depth, gravitational constant and Bond number. The
function x(¢,s) determines the wave height at time ¢ at the point s, u(¢,s) is a control
that defines external forces. The Boussinesq—L6ve mathematical model, supplemented by
classical or non-classical initial (initial-final) conditions, was studied in various aspects
in [10,11].

The Dzektzer model. Let 2 C R™ be a bounded domain with a boundary 0f2 of the
class C'*°. In the cylinder €2 x R, consider the problem

x(s,t) = Ax(s,t) =0, (s,t) € 00 x Ry (7)
for a non-classical partial differential equation [12]

(A — A)i = aAzx — BA%z + u. (8)
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The mathematical model (7), (8) describes the evolution of the free surface of the filtered
fluid. Here o, 8 € Ry, A € R are the parameters characterizing the fluid, the free term
u = u(s,t) characterizes the sources (drains) of the fluid. Mathematical model based on
equation (8), supplemented by classical or non-classical initial (initial-final) conditions in
various aspects was studied in 13, 14].

The Chen—Gurtin model with complex coefficients. Let 2 C R™ be a bounded domain
with a boundary 0f2 of class C**°. In the cylinder 2 x R, consider the boundary value
problem (7) for a non-classical partial differential equation [15]

(A — A, = vAz — idA*r + u. 9)

Here the coefficients v, \,d € R characterize parameters of the system. The required
complex-valued function z(s,t) describes the dynamics of the process, and the complex-
valued function u(s,t) describes an external effect on the system. In the special case of
d = 0 equation (9) describes the process of heat conduction with “two temperatures” [15],
as well as the dynamics of fluid pressure in a cracks-porous medium [1]. A mathematical
model based on equation (9), supplemented by classical non-classical initial (initial-final)
conditions in various aspects was studied in |16, 17].

The mathematical models under consideration belong to a wide class of Sobolev
type models (i.e., models based on Sobolev type equations). Sobolev type equations
currently constitute a significant part of the non-classical equations of mathematical
physics. Initially, such equations arose in the works of A. Poincare, C. Rossby, J. Boussinesq
and other mechanics in the late XIX — early XX centuries. However, a systematic study
of such equations began in the middle of the last century with the work of S.L. Sobolev.
A detailed history of this issue can be found in the monograph [18]. Note that various
terms are used in literature to denote such equations [18-20]. The term “Sobolev type
equations” [3,21] first appeared in the works of R.E. Showalter [22]. We adhere to this
term, considering the rest as synonyms.

The mentioned mathematical models with one or another initial (initial-final)
conditions in suitable Banach spaces can be reduced to the corresponding problems for a
linear Sobolev type equation

Az™ = Bx +y + Cu, (10)

where operators A € L(X;9), B € CI(X;), C € L(4;9), functions v : T — 4,
y: T =Y (T CR), and X,9),4 are Hilbert spaces. To select the unique process under
study, the mathematical models under consideration and their abstract interpretation
(10) are supplemented by one of the following conditions:

— the Cauchy condition [3]

2™ (0) = 2, m=0,...n— 1, (11)
— the Showalter—Sidorov condition [23,24]
P (2"(0) = 2,,) =0, m=0,....,n — 1, (12)
— the initial-final condition [4,25]

P (2(0) — 2%) = 0, Py (2™ (1) —2])) =0, m=0,..,n— 1, (13)
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where P, P;,, Py, are some spectral projectors in the space X, which will be defined later.
Condition (13) differs from the initial conditions in that one projection of the solution is
specified at the initial moment of time, and the other is set at the final moment of the
considered time interval. The initial-final condition is a generalization of the Showalter—
Sidorov condition, which in turn is a generalization of the classical Cauchy condition. As it
is well known (see, for example, [23]), the Cauchy problem for the Sobolev type equation
(10) (in case ker A # {0}) is not solvable for arbitrary initial values x,,, m = 0,n — 1. To
overcome this difficulty, G.A. Sviridyuk proposed the phase space method. The foundations
of this concept were laid down in [20], then the concept was developed in [3] and many
other works. Another approach to overcome the difficulties associated with non-existence
of the solution to (10), (11) is to consider the initial Showalter—Sidorov condition (12)
and a more general initial-final condition (13) instead of the initial Cauchy condition (11).
We are interested in solving the optimal control problem, which consists in finding a pair
(%, ), for which the relation

J(z,0) = (m,u{lel;giuad J(z,u) (14)
holds. Here the pairs (z, u) satisfy the Cauchy problem (10), (11) or the Showalter—Sidorov
problem (10), (12), or the initial-final problem (10), (13) and J(x,u) is some specially
constructed quality functional, .4 is some closed and convex set in the control space 4.

The article provides an overview of the results developed in the framework of the
direction headed by G.A. Sviridyuk on the optimal control of the solutions to the initial-
final problem and, in particular, the Showalter—Sidorov and Cauchy problems for linear
Sobolev type equations. The first who began to study the controllability problems and the
optimal control problem for linear Sobolev type equations with the Cauchy condition were
G.A. Sviridyuk and A.A. Efremov [2,13,26|. In these papers, the optimal control problem
with a quadratic quality functional was studied in case n = 1 with (A, p)-bounded or (A, p)-
sectorial operator B and the Cauchy condition, the necessary and sufficient conditions
for the existence and uniqueness of a solution were obtained. G.A. Sviridyuk suggested
moving from considering the classical solution = € C'(J; X) of (10), (11) to the strong
solution x € HPT(X) of this problem, which allowed to set the optimal control problem
(10), (11), (14) and to use the technique of Hilbert spaces for its research. These studies
formed the basis of a number of works by G.A. Sviridyuk’s disciples and followers on the
study of optimal control problems for linear Sobolev type equations based on the theory
of degenerate resolving (semi)groups of operators [3]. Since [2,3,13|, when considering the
classical Cauchy condition, due to the degeneracy of the equation, it was necessary to
reconcile the initial data with the control action, then G.A. Sviridyuk suggested an idea
to use more general initial Showalter—Sidorov condition (initial-final condition), which
made it possible to remove the restriction on the set of optimal controls in the subsequent
works of his disciples and followers and opened the way to a whole class of problems
on this subject [8,27]. In [10] the necessary and sufficient conditions for the existence
and uniqueness of the solution of optimal control problems for high-order Sobolev type
equations with an initial-final condition were obtained. The ideas and methods developed
by G.A. Sviridyuk and A.A. Efremov on controllability of linear abstract Sobolev type
equation opened the way to the study of more general controllability problems [28§].

The article consists of introduction, 6 sections and conclusion. The first Section gives
the main points of the theory of relatively bounded operators, the complete proofs of
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which can be found in [3]. It contains theorems on existence and uniqueness of classical
solution of optimal control problems for an abstract Sobolev type equations, as well as on
existence and uniqueness of strong solution to the initial (initial-final) problem for such
equations. In the second Section, the abstract results are applied to specific Sobolev type
models, namely, the Barenblatt—Zheltovaya—Kochina model, the Hoff model on the graph,
and the Boussinesq-Love model. The third Section contains the results of the theory
regarding relatively sectorial operators for the first-order Sobolev type equation. In the
fourth Section, the Dzektzer model and the pressure evolution model on the graph are
reduced to an abstract Sobolev type equation with initial (initial-final) conditions, and
then the abstract results are applied to the study of optimal control problem for them.
The fifth Section contains the main results of the theory with relatively radial operators.
The optimal control in the Chen—Gurtin model based on the Sobolev type equation with
a relatively radial operator is studied in the sixth Section.

1. Relatively p-Bounded Operators.
Strong Solutions. Optimal Control
In this section definitions and results of the theory of relatively bounded operators

are given [3,29]. Let X, 2 and 4 be Banach spaces. Operators A, B € L(X;9)), operator
C € L(1;9). The set

p*(B) ={peC: (uA—B)™" € L(V; X)}

is called a resolvent set of operator B with respect to operator A (an A-resolvent set of the
operator B). The set C\p?(B) = o(B) is called a spectrum of operator B with respect
to operator A (an A-spectrum of operator B). The operator function

pA—B)"', RA=(uA—B)'A, L= A(uA—B)7!
H w

of a complex variable with domain p#(B) is called a resolvent, a right resolvent, a left
resolvent of operator B with respect to operator A (an A-resolvent, a right A-resolvent, a
left A-resolvent of operator B).

Definition 1. The operator B is called polynomially bounded with respect to operator A
(or simply (A, 0)-bounded), if

Ja>0VueC: (Jjul >a)= (uep?(B)).
Lemma 1. [29] If the operator B is (A,o)-bounded, then the following operators

1 A n—1 1 n—1 A
P [ BAEBW Adn, Q= o [ AR (B

21 271
T T

are projectors, moreover P: X — X and Q : ) — . HereT ={\ € C: |\"| =r > a}.

Set X0 =ker P, 9° = ker Q, X' = im P, 9' = im Q. By A; denote the restriction of
the operator A, and by B}, denote the restriction of the operator B to X*, k = 0,1. The
theorem of operator actions’ splitting is true.
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Theorem 1. [3, Ch. 4| Let the operator B be (A, o)-bounded. Then
(i) operators Ay, By : X¥ — 9k k=0, 1;
(ii) there exists an operator By' € L(P°, X0);
(iii) there exists an operator A7' € L(P',XY);
(iv) operator By € L(X', D).

Let us construct the operators H = By Ay € £(X°) and S = A;'B; € £(X!). Then

(uA—-B)™" = (— ZukH"’> By'I-Q)+ Y uts*lAtQ. (15)
k=0 k=1

Definition 2. The point oo is called:

(i) a removable singular point of the A-resolvent of the operator B, if H = O

(ii) a pole of order p of the A-resolvent of the operator B, if HP? # O, HP*! = Q,
peN;

(7ii) an essentially singular point of the A-resolvent of the operator B, if H1 # Q,
Vq € N.

Definition 3. (A, o)-bounded operator B is called (A, p)-bounded for some p € {0} UN,
if the point oo is a pole of order p € {0} UN of the A-resolvent of operator B.

Definition 4. The vector-function z € C*"(R;X), n € N, satisfying (10) is called a
classical solution of this equation.

Consider linear homogeneous (y = u = 0) Sobolev type equation (10).

Definition 5. The operator-function V* € C*(R;L(X)) is called a propagator of
homogeneous equation (10), if for arbitrary v € X the vector-function z(t) = V'v is
the solution of this equation.

Theorem 2. [29] If the operator B is (A, 0)-bounded, then formulas

X! = pm N " A — B) P Aettdp, m = 0,n — 1,

1
21

—

define propagators of a homogeneous equation (10) for t € R.

Consider the inhomogeneous equation

Az = Bx +y (16)
and sets
m - -1 dnq-i—m
MP={zeX:(I-Pz= —Z;HqBO T I = Q(O)}, m =0 =T (17)
=

The results on existence and uniqueness of a classical solution to (11), (16) were
obtained in [10,29].

Theorem 3. (29| Let the operator B be (A, p)-bounded for some p € {0} UN, the function
y:J = (T CR) be such that y° = (I — Q)y € C""*"(F;Y°) and y' = Qy € C(T;P").
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Let the initial values x,, € M7, m = 0,n — 1. Then there exists a unique classical solution
to the Cauchy problem (11), (16) given by

P t

z(t) = — ZHqB NI — (q” )+ Z X! v+ /sz__slAl_le(s)ds, ted. (18)

q=0 0

There were obtained results [10] on the existence and uniqueness of a classical
solution to problem (12), (16). Note that when using the Showalter—Sidorov condition, the
assumptions of Theorem 3 can be weakened without requiring initial data being agreed
with the right side of equation (16).

Theorem 4. [29]| Let the operator B be (A, p)-bounded for some p € {0}UN, the function
y:J = be such that y° = (I — Q)y € CP™(3;9°) and y* = Qy € C(3;Y'). Then
for arbitrary x,, € X, m = 0,n — 1, there exists a unique classical solution to Showalter—
Sidorov problem (12), (16) given by (18).

Proceed to consider a more general than the Showalter—Sidorov initial-final condition.
Introduce an additional condition

04(B) = 03 (B)Uoi(B),0i!(B) # 0,k =0, T;
and contour 7, is the boundary of domain D C C such that (B)
DNod(B) =oi(B),DNoi(B) =0.

Then there exists an operator

Prin = 5— Ri.(B)W" ' Adp € L(X).

Yo
Lemma 2. [29] Let the operator B be (A, p)-bounded for some p € {0} UN, let condition
(B) be satisfied. Then Py, is a projector, and Py P = PPy, = P,

Construct an operator P, = P— Py, € L(X). By Lemma 2 operator P, is a projector.
Consider operators

1
2m

/RA(E)(M”_W_IA — B)etdp.

Y0

Xfin(t) =

Note that X}, is a propagator of homogeneous (y = 0) equation (16). Introduce a family
of operators

Theorem 5. [29] Let the operator B be (A, p)-bounded for some p € {0}UN. Let the vector
function y : I — Q) be such that y° = (I — Q)y € C"t(3: 9% and y* = Qy € C(3;DY).
Then for arbitrary x°,, x7 E X, m = 0,n—1, there exists a unique classical solution to

problem (13), (16), fort € 3 given by

2(t) = — 3 HI(By) (I — Q)y (1) + z () Pl + z X () Py + "
=9 19
+fX” Yt — s) A7 Pry(s)ds — fX;}ml(t — 8) AT Priny(s)ds.
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Thus, a general theory that allows one to find classical solutions for (16) with initial
(initial-final) conditions is constructed. Now turn to the study of control problems. It
should be noted that in such problems the technique of Hilbert spaces is traditionally
used, which requires consideration of other types of solutions. Further we consider X, 2
and Y being Hilbert spaces. Consider space H*(9)) = {v € Ly(0,7;9) : v® € Ly(0,7;0)}.
The space H*(2)) is Hilbert with inner product

k T
[v,w] = Z/<v(q),w(‘1)>m dt.
q=0 0

Definition 6. The vector-function v € H(X) = {x € Ly(3; %) : 2™ € Ly(3;X)} is
called a strong solution to (16), if it turns the equation to an identity almost everywhere
on interval 3. A strong solution x = x(t) of (16) is called a strong solution of the Cauchy
problem, if condition (11) holds; a strong solution of the Showalter—Sidorov problem, if
condition (12) holds; a strong solution of the initial-final problem, if condition (13) holds.

Note that classical solution (18) is also a strong solution to equation (16) by virtue of
the continuity of the embedding H"(X) < C"~(7J; X).

Theorem 6. [30] Let the operator B be (A, p)-bounded for some p € {0} UN. Then for
arbitrary y € H"*™™(Q)), x,, € M m = 0,n — 1, there exists a unique strong solution to
the Cauchy problem (11), (16).

Theorem 7. [31] Let the operator B be (A, p)-bounded for some p € {0} UN. Then

for arbitrary 2° 27 € X,m = 0,n—1, and y € H™(Q)) there exists a unique strong

m’'m

solution to the initial-final problem (13), (16).

Note that in the case of (0f), = 0(B), 0, = 0) the Showalter-Sidorov problem can
be considered as a special case of the initial-final problem. The following result follows
from Theorem 7.

Corollary 1. Let the operator B be (A,p)-bounded for some p € {0} UN. Then for
arbitrary x,, € X,m = 0,n— 1, and y € H"™™(Q)) there exists a unique strong solution
to the Showalter—Sidorov problem (12), (16).

Definition 7. The pair (z,4) is called a solution to the optimal control problem (10),
(11), (14) if relation (14) is satisfied and all pairs (x,u) € H™P(X) x Uyq are solutions
of problem (10), (11). A wvector function G € g is called an optimal control of solutions
to (10), (11).

Consider the penalty functional

np+n T

J(z,u) = MZ/ |2@ — 79D ||2dt 4 v Z /<Nqu(‘n,u(q>>udt. (20)
q=0 0 q=0 0

Here p,v > 0, p+v =1, N, € L(U), ¢ = 0, 1, ..., np + n, are self-adjoint positively
defined operators, and Z(t) is the target state of the system.
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Remark 1. By Theorem 7 on the existence of a unique solution for all y € H"™™(9))
and u € 4 the solution z = z(u). Therefore, the quality functional depends only on w :
J(z,u) = J(u). Thus, the set of feasible solutions to problem (10), (11), (14) is not empty.

When using the Cauchy condition, we pass to consideration of the subspace of controls

o Np+n

H () ={u € Ly(0,7;44) : wPtn) ¢ LQ(O,T;ﬂ),u(Q)(O) =0,q= W}

o np+n o np+n
In the space H  (4) we single out a closed convex subset $, C H (), which will

be called the set of admissible controls. Results on existence and uniqueness of optimal
control of solutions to the Cauchy problem (10), (11) were obtained in [30].

Theorem 8. [30]| If the operator B is (A, p)-bounded for some p € {0} UN, then for
arbitrary y € H™() and z,, € M m = 0,n—1, there exists a unique optimal
control of solutions to problem (10), (11).

Introduce the control space H™*1"(4l). Single out a closed convex subset U,y C
H™*™(§(). Results on existence and uniqueness of optimal control of solutions to initial-
final problem (10), (13) were obtained in [31].

Theorem 9. [31] If the operator B is (A,p)-bounded for some p € {0} UN, then for
arbitrary y € H™() and 2°,27 € X, m = 0,n — 1, there exists a unique optimal

control of solutions to the initial-final problem (10), (13).

The following result follows from Theorem 9.

Corollary 2. If the operator B is (A, p)-bounded for some p € {0} UN, then for arbitrary
Tm €X,m=0,n—1, andy € H"™™(Q)) there exists a unique optimal control to solutions
of the Showalter—Sidorov problem (10), (12).

2. Optimal Control in Sobolev Type Models
with Relatively p-Bounded Operators

Optimal control in the Barenblatt—Zheltov—Kochina model. Consider the optimal
control problem (14) for mathematical model (1), (2) with the initial Cauchy condition
(11). Reduce this problem to equation (10) with n = 1. For this purpose put

X = BAQN H (Q), 9= Ly(Q), 8= Lo(Q). (21)

and by formulas
A=XN-A, B=aA, C=I, (22)

define the operators A, B € L(X,2). Denote by {¢x} the set of eigenfunctions of the
Dirichlet problem for the Laplace operator A, numbered in ascending order of eigenvalues
{A\x} taking into account their multiplicity. Consider the A-resolvent of operator B in the

form
o0

(nA—B)™! :;W ﬁ’fjif’“mk, (23)
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where (-, -) is an inner product in Ly(£2). Hence, the A-spectrum of operator B is given by

Oé)\k

o (B) = {,Uk = A\ # )\k}. (24)

Lemma 3. [3| The operator B defined by (22) is (A, 0)-bounded for any \ € R.

Let the function y € H*(Q). Then the set M, (given by (18) for n = 1) takes the
form

M, ={z e X: —da(z,or) = (Y(0), pr), \e = A}

and the control space

H (4) = {u € Ly(0,7;80) : 4 € Ly(0, 73 44), u(0) = 0} .
Choose a closed convex subset iU,, in it.

Theorem 10. [2] For any y € H () and xo € M, there exists a unique solution (&,4) €
HY(X) x Uyq to the optimal control problem (14) for mathematical model (1), (2) with the
initial Cauchy condition (11), that minimizes functional (20).

Remark 2. The vector function & € H'(X) defines the desired distribution of pressure in
2, and the control @ means the effect on pressure by increasing (decreasing) the influence
of liquid sources (drains) in 2.

Optimal control in the Hoff model on a graph. Consider the optimal control problem
for mathematical model (3) — (5) with initial-final condition (13) in the case of n = 1.
Reduce the problem to equation (10) with n = 1. Introduce the Hilbert space Ly(G) =
{u= (u1,u,...,uj,...) : u; € Ly(0,1;)} with inner product

lj

(u,v) = Z dj/ujvjds,

Ejee 0
and Banach space X = {z = (21,29, ..., 2}, ...) : z; € H'(0,1;) and (3) holds } with norm

lj

a2 = 3 4 / (22, + a2)ds.

Ejee 0
Denote by 9) the conjugate space to X with respect to the duality (-,-) and by formula

lj

(Lz,v) = — Z d; /xjsvjsds, r,v € X (25)

Ejee 0

define the operator L € L£(X;9). It was shown [32] that o(L) is negative, discrete,
with finite multiplicity, and condenses only to —oo. Number the eigenvalues {vy}
of the operator L in nonincreasing order, taking into account multiplicity. Then the
orthonormal (in the sense of §)) family of corresponding eigenfunctions {1} of operator L
forms the basis in X.
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For A € R, construct the operator A = A+ L. By construction operator A € L(X;9)),
and its spectrum o(A) = {A+vy}. Define the operator B by formula B = al, where a € R,
and C' = I. Thus, we reduced problem (3) — (5) to equation (10). Construct the relative
spectrum of the operator B

UA(B):{uk:%jyk:kEN\{l:/\%—yk:O}}.

Lemma 4. [6] The operator B is (A, 0)-bounded if one of the following conditions holds:
(1) ker A = {0}, X\ # v, Vk € N;
(11) ker A # {0}, o; # 0 for any j.

Further, consider the initial-final problem for mathematical model (3) — (5). Represent
the A-spectrum of operator B in the form

o4(B) = 07,(B) U 0}y, (B), 07, (B) N 05, (B) = 0.
Then the initial-final condition (13) takes the form

Y ((@(0) = o), v) tn = 0, Z ((2(7) = 27), dr) Y1 = 0. (26)

pi€oil (B) pk€ot, (B)

fin

Introduce the control space
HY(80) = {u = (uy,ug, ...uj, ...) : 45 € La(0,75(0,1;))},

and choose a closed convex subset il,; in it. Construct the operators

(Nu®, “’)—Zd/%jq @25

Ejee |

where sz, are positive numbers.

Theorem 11. [8] For anyy € H'(Y) and X € Ry, a; € R, satisfying condition (i) or (ii)
of Lemma 4, for arbitrary xo, z, € X there exists a unique solution (Z,1) € HY(X) X Uyq of
optimal control problem (14) for mathematical model (3) — (5) with initial-final conditions
(26), that minimizes functional (20).

Optimal control in the Boussinesq—Ldéve model. Consider the optimal control problem
for mathematical model (1), (6) with the initial Showalter—Sidorov condition (12). Reduce
the problem to equation (10) with n = 2. To do this, put

X={zc H™Q):2(s) =0,s €00}, 9=H(Q), U=H(Q), 1c{0}UN.

The operators A, B € L(X;%)) are given by formulas A=A —- A, B=3(A-X),C =1L
Then the A-resolvent of operator B takes the form

2 - ©r) P
A—B)” 27
(u P e u AN = A (21)
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where (-,-) is an inner product in L9(2), A, ¢k are the same as in Barenblatt—Zheltov—
Kochina model. Then for the A-spectrum of operator B we get

oA(B) = {uz =AM Ak}. (28)

Lemma 5. [10] The operator B is (A,0)-bounded.

Construct the projector:

I if A o A
pP= .
I— Z <790k:> Pk if Ak: =\
A=A\

The Showalter—Sidorov condition (12) is given by

Z < 0k, x(5,0) — xo(s) > ¢ =0, Z < g, x(5,0) —x1(s) > . =0.  (29)
M A

Let us proceed to the optimal control problem. Introduce the control space
H?*(U) = {u € Ly(0,7;4) : it € Ly(0, 7540}

In the space H?(4l) single out a closed convex subset {1,4, which will be the set of admissible
controls.

Theorem 12. [10] For any o, € R\ {0}, A € R, and 7 € R, ,x,, € X,m = 0,1, there
exists a unique solution (%,4) € H*(X) X Haq to the optimal control problem (14) for the

Boussinesq—Love model (1), (6) with the Showalter—Sidorov condition (29), that minimizes
functional (20).

3. Relatively p-Sectorial Operators

In this section, definitions and results of the theory of relatively sectorial operators
are given |3, Ch. 3|. Let X,%2), 4 be Banach spaces, operators A € L(X;92), B € Cl(X;9),
C € L(1;9), functions y : (0,7) C Ry — Y (7 < 00) to be determined later. Let further
wur € p(B), k=0,1,...,p. Operator-functions

P p
A A A A
Rip = H R, (B), L(u,p)(B) - H Ly, (B)
k=0 k=0

are called, respectively, a right and a left (A, p)-resolvents of operator B.

Definition 8. |3, Ch. 3| The operator B is called p-sectorial with respect to the operator
A with the number p € {0} UN (or simply (A, p)-sectorial for some p € {0} UN) if
(i) there are constants a € R and © € (3, 7) such that

S26(B) = {n € C: |arg(u—a)| < O, # a} C pA(B),
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(i1) there is a constant K € R, such that

K

max {[| R, ) (B)ll ), [ LGup Bllean } £ 55—
I1 g — al
q=0

for any pg € Sio(B), ¢=0,1,...,p.

Let the operator B be (A, p)-sectorial for some p € {0} UN, then there are degenerate
analytic semigroups of operators (see |3, Ch. 3|)

1 1
t A i t A i
X' = 3 R (B)e"dp and Y' = 3ms L, (B)e"dpu,
r T

where ¢t € R, and the contour I' C S(f@(B) is such that |argu| — © for p — oo, p € T,
© € (3, 7). Denote by X* = {X": ¢t € R }. Put X° = ker X*, X' = imX*, 9° = ker Y,
P! = imY* and denote by Aj, the restriction of operator A to X*, and by By, the restriction
of operator B to X*Ndom B, k =0, 1.

There are two approaches to splitting of spaces X and ¥). The first approach is outlined
in [3|, where a stronger condition on operator B (strong (A, p)-sectoriality of operator B)
is set. We follow the equivalent approach firstly proposed by G.A. Sviridyuk. Further, we
need two conditions:

Xox'=%and 9°09' =9, (A1)
there exists an operator A;' € £(P'; X1). (A2)

The equivalence of these approaches was shown in [33|. Note that condition (A1) occurs
when the operator B is strongly (A,p)-sectorial on the right (left). Condition (A2) is
met either when the operator B is strongly (A, p)-sectorial, or when it is (A, p)-sectorial,
(A1) holds and 9! = im A;. If conditions (A1), (A2) are satisfied and operator B is (A, p)

sectorial, then there are projectors P = s- lim X*, Q = s- lim Y, operators H = By ' A, €
t—0+ t—0+

L(X%) and S = A'B; € CI(X'). Moreover, the operator H is nilpotent of degree p, and
the operator S is sectorial.
Further we consider the case n = 1 and equation (10) in the form

Ai = Bx +y. (30)

Proceed to the study of solvability of the Cauchy problem (11) for equation (30). Similarly
to Section 1 for the solvability of the Cauchy problem, it is necessary to construct a
condition connecting the initial value and y in the right-hand side of (30). Introduce the
set

p
My={zeXx: I-Px+> HB;'(1-Q)y"0) =0} (31)
q=0
The solvability of the Cauchy problem (11), (30) was studied in [3,13].

Theorem 13. [3,13| Let the operator B be (A, p)-sectorial for some p € {0}UN, conditions
(A1), (A2) be fulfilled and y° = (I - Q)y € CP([0,7];Y°) N CP*((0,7);V°), y* = Qy €
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C([0,7];DY). Then for any xg € M, there exists a unique classical solution to (11), (30)
given by

p t

2(t) = Xtao— S HUB; (I — Q)y' (1) + / Xty (s)ds. (32)

q=0 0

Proceed to more general initial-final condition (13) and the Showalter—Sidorov
condition (12). If we use these conditions, we can omit conditions on the initial value
xg, and take it from the whole space X. Suppose that conditions (A1), (B) are satisfied.
Construct a relatively spectral projectors [4]

1
LABd.
27”/ (B)dp

Y0 Yo

1 A
%/RH (B)dp, Qpin =

It turns out that under (A, p)-sectorial for some p € {0} UN and conditions (A1), (B)
being fulfilled Pt;,, P = PPrip = Prin, Qin@ = QQ tin = Qfin- S0 there exist projectors

Then 9" = im Qjy, @fm = im Qgp.

Theorem 14. [14] Let the operator B be (A, p)-sectorial for some p € {0} UN and
conditions (A1), (A2), (B) be satisfied. Then for any xo,x, € X and vector function y
such that y* = (I — Q)y € C7([0,7;9°) N CP*((0,7);Y"), ¥y = Qiny € C((0,7[;Y™),
Y™ = Qpiny € C([0,7];D7™) there exists a unique classical solution to (13), (30), given
by

z(t) = — Z H1By ' Lo0(t) + XY, mo +fo;sym(s)ds+

9=

Xt T fzt Syfzn S,

fzn fzn
where
1 A t A t
thn = 2—7'('7/ /R;L (B)e“ d,LL - /RM (B)e“ dﬂ ,
r Yo
1
Z= g | [ == [ua-m ey )
1 r 701
Xt = RY(B)etdu,  Z, = / A— B) teMdyp.
fin 27_” ( )6 H, fin 271'2 (:u ) e 2
v Yo

Corollary 3. Let the operator B be (A, p)-sectorial for some p € {0}UN, conditions (Al),
(A2) be fulfilled and y € CP((0,7); X) N CPT([0,7]; X). Then for any xo € X there exists a
unique classical solution to the Showalter—Sidorov problem (12), (30) given by (32).

Next, we consider the optimal control problem. Let now X, ) and 4 be Hilbert spaces.
Similarly to Section 1, consider strong solutions to

At = Bx +y + Cu. (33)
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Definition 9. The vector-function v € HY(X) = {x € Ly(0,7;X) : @ € Ly(0,7;X)} is
called a strong solution to (33), if it turns the equation to an identity almost everywhere
on interval (0, 7). A strong solution x = x(t) of (33) is called

— a strong solution of the Cauchy problem if tlir(gr(x(t) — x9) = 0;

— a strong solution of the Showalter—Sidorov problem if tlir(gr P(x(t) — zo) = 0;
—
— a strong solution of the initial-final problem z'ftli%rzr Py (z(t)—x0) = 0 and Ppip(x(1)—
%
z,) = 0.
Similarly to Section 1, there exists a unique strong solution to the Cauchy problem

(11), (30) [13]. This implies that the set of admissible pairs (x,u) is non-empty. When
using the Cauchy condition, we pass to the consideration of the subspace of controls

o p+1

H () ={ue Ly0,7;8) : u? € Ly(0,7;80),u9(0) =0,g=0,p+ 1},p € {0} UN.

o p+1 o p+1
In the space H  (4) we single out a closed convex subset g C H  (41).

Theorem 15. [13| Let the operator B be (A,p)-sectorial for some p € {0} UN and
conditions (A1), (A2) be fulfilled. Then for any y € HPY(), xg € M, there exists a
unique solution to the optimal control problem (11), (14), (33) with functional (20).

Proceed to consideration of more general initial-final condition (13) and the Showalter—
Sidorov condition (12). Introduce the control space

HPPHY) = {u € Ly(0,7;4) : ul? e Ly(0, 7540, =0,p+ 1},p€ {0} UN
and select a closed convex subset i,y C HPT1(4).

Theorem 16. (8] Let the operator B be (A, p)-sectorial for some p € {0}UN and conditions
(A1), (A2), (B) be fulfilled. Then for any y € HP™Y(Q), xo, v, € X there exists a unique
solution to the optimal control problem (13), (14), (33) with functional (20).

Corollary 4. Let the operator B be (A, p)-sectorial for some p € {0} UN and conditions
(A1), (A2) be fulfilled. Then for any y € HPTY(Q)), xo € X there exists a unique solution
to the optimal control problem (12), (14), (33) with functional (20).

4. Optimal Control in Sobolev-Type Models
with Relatively p-Sectorial Operators

Optimal control in the Dzektzer model. Consider the Dzektser model (7), (8). For
reducing problem (7), (8) to equation (33), put

X={2e H(Q):2(s)=0,s€9Q}, Y=uUu=H(Q), (=0,1,...,
and define the operators A, B by the formulas
A=XN—-A, B=aA-pA*+~I, C=1LI
Construct the set

domB = {z € H™™(Q) : Az(s) = 0,5 € 00} N X.
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By definition, the operator A € L£(X;%)), and the operator B € CI(X,2)). The relative
spectrum of the operator B is given by

al, — B2 +
o) = {m= DI a0

where A\, ¢ are the same as in the Barenblatt—Zheltov-Kochina model.

Lemma 6. [13| For any o € Ry and 8,7, A € R such that either —\ ¢ o(A), or
-\ € o(A) and —\ is not the root of the equation aa — fa* + v = 0, the operator M is
strongly (L, 0)-sectorial.

Consider the set

My ={z € X: (—aX+ BN — ) {z, ) = (y(0), ), Ak = A},

where (-, -) is an inner product in Ly(2). Introduce the control space
HY () = {u € Ly(0,7;4) : i € Ly(0, 73 4),u(0) = 0}

and construct the penalty functional (20). Choose a closed and convex subset 4 C o (L0).

Theorem 17. [13| Let the conditions of Lemma 6 be satisfied. Then for any y € H' ()
and x € M, there exists a unique optimal control u € ,q of solutions to the Cauchy
problem (11) for the model (7), (8), minimizing functional (20).

Optimal control in the Dzektser model on the graph. Let G = G(U; €) be a finite
connected oriented graph, where U = {V;} is a set of vertices, and € = {E;} is a set of
edge, and each edges F; has the length [; € R, and the cross sectional area d; € R,. On
the graph G consider linear partial differential equations

)\xjt — Tjtss — ijss — QT jssss + VX4 + Uy (34>

We look for a solution to equation (34) on the graph G, satisfying the continuity conditions
(3) and flow balance condition (4).

Reduce the mathematical model (3), (4), (34) to equation (33). Let A € R and define
the operator A = A\ — L, where L is defined by (25) and the space X, ), il are the same as
in the Hoff model on a graph. By construction the operator A € £(X;9)), and its spectrum
0(A) = {\ — v }. Consider the set

dom B ={zx € X:x; € H*(0,l;) and
xjss(oyt) - ZEkSS(O,t) = xmss(lmu t) = xnss(lna t), Eju Ek: S Ea(‘/i)y Ema En S Ew(‘/;)v
Z djxjsss(ou t) - Z dkxksss(lku t) = O}

E;€B%(Vi) By E=(V;)

Further, the formula W : v — (Uissss, U2sssss - - -5 Ujsssss - - -) defines the operator
W € L(dom B;9) and o(W) = {v?}. Take 8,7,A € R and define an operator
B = —fW +aL+ 4l By construction B € CI(%;9). Let 0*(B) = ¢{,(B) U 0, (B),
om(B) N0y, (B) = 0. Then condition (13) takes the form

pr€oi(B) pr€cd(B)
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