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In this paper, we present two new P-type and D-type iterative learning control (ILC)
update laws for linear stochastic systems with random data dropout modeled with a
Bernoulli random variable. We prove that the P-type and D-type ILC update laws converge
to the desired input in the almost sure sense. We show that the convergence conditions of
the inputs corresponding to the P-type and D-type ILC update laws for networked control
systems are the same. We present the performance comparison of the P-type and D-type
ILC update laws. In this comparison, we conclude that the P-type ILC update law is more
effective than the D-type ILC update law for networked control systems.
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Introduction

For systems that can control an identical work at a limit time in a repetitive manner,
iterative learning control (ILC) is an efficient method. In ILC, the information of the
previous iteration is used to generate input of the next cycle. Hence, tracking performance
improves when the number of iterations increases. The idea of ILC follows from the article
[1]. Three essays [2–4] led to further research on ILC. Today, there exists a lot of literature
on various topics about ILC, such as [5–15]. ILC is an important field of smart updating
law that can be used in practice, for instance, see [16–23].

Besides, network control systems (NCSs) are widely used recently. In NCS, the
information can transmit by the communication channels. Therefore, data dropout often
occurs in NCSs due to the congestion of network or node failures. The main issue is
how good performance can be guaranteed under severe transmission conditions, e.g. data
dropouts. For literature about ILC and NCS systems, see the survey [24], which is devoted
to ILC for systems with incomplete information.

Note that most of the articles on NCSs, in a way, are not consider the randomness of
data dropouts during the proof process of convergence.

In this article, for linear stochastic systems with random data dropout modeled by a
Bernoulli random variable, the new P-type and D-type ILC update laws are characterized.
We show convergence of the P-type and D-type ILC update laws with random data dropout
in the almost sure sense. Randomness of data dropouts is considered. We specify that the
convergence conditions of the inputs corresponding to the P-type and D-type ILC update
laws for networked control systems are the same. Performance comparison of the P-type
and D-type ILC update laws is investigated. In this comparison, we conclude that the
P-type ILC update law is more effective than the D-type ILC update law in networked
control systems.
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The paper is organized as follows. Section 1 gives definition of the system and problem
statement. Section 2 presents the P-type ILC update law and its convergence analysis. We
study the D-type ILC update law and its convergence analysis in Section 3. In Section 4,
we present the illustrative simulation. Finally, Section 5 summarizes the results and draws
conclusions.

Let us give some explanations on notations used in the paper. Transposition of a
matrix or a vector is denoted by the superscript T . We refer to almost sure, infinitely
often, independent and identically distributed, with probability one as a.s, i.o, i.i.d and
w.p.1, respectively. Finally, ‖.‖ represents the Euclidean norm.

1. Definition of System and Problem Statement

Consider the linear system given by the following state-space equations:

xk(t + 1) = A(t)xk(t) +B(t)uk(t) + µk(t + 1),
yk(t) = C(t)xk(t) + ϑk(t),

(1)

where the index k denotes the number of an iteration, the argument t ∈ [0, N ] indicates
the discrete-time index, xk(t) ∈ R

n is the system state, uk(t) ∈ R
p is the input signal of the

system, and yk(t) ∈ R
q is the measurement output of the system. The random variables

ϑk(t) ∈ R
q and µk(t) ∈ R

n are the measurement and system noises, respectively.
If yd(t), t ∈ [0, N ], characterizes the desired output trajectory, then ek(t) = yd(t)−yk(t)

indicates the tracking error.
In deterministic systems, the general purpose of the control is to construct the ILC

algorithm to generate the input such that the output of the system can track the desired
output.

In the case of stochastic systems, there exist the measurement and system noises that
can not be predicted and eliminated by any algorithm. Therefore, in stochastic systems,
we can not expect that yk(t)− yd(t) → 0 ∀t when k tends to infinity. Hence, in stochastic
systems, the control aim is uk(t)− ud(t) → 0 ∀t when k → ∞.

System (1) is considered under the following assumptions.
A1. As a necessary condition for proving the convergence [25], the matrix C(t+1)B(t)

has the full-column rank ∀t.
A2. Since yd(t) is realizable, then, for any yd(t), there exist the desired input ud(t) and

the desired state xd(t) such that

xd(t + 1) = A(t)xd(t) +B(t)ud(t),
yd(t) = C(t)xd(t).

(2)

A3. The (i.i.d) sequence {µk(t), k = 1, 2, ...} is independent of the (i.i.d) sequence
{ϑk(t), k = 0, 1, ...}, and both are sequences of white Gaussian noises with zero mean

value such that supkE‖µk(t)‖
2
< ∞, supkE‖ϑk(t)‖

2
< ∞, lim

n→∞

1
n

n
∑

k=1

µk(t)µ
T
k (t) = Rt

µ, and

lim
n→∞

1
n

n
∑

k=1

ϑk(t)ϑ
T
k (t) = Rt

ϑ a.s, where Rt
µ and Rt

ϑ are unknown matrices.

A4. The (i.i.d.) sequence of initial states {xk(0)} is such that Exk(0) = xd(0),

lim
n→∞

1
n

n
∑

k=1

xk(0)x
T
k (0) = R0, and supkE‖xk(0)‖

2
< ∞.
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Furthermore, {ϑk(t), k = 0, 1, ...}, {xk(0), k = 0, 1, ...}, and {µk(t), k = 0, 1, ...} are
independent of each other.

In this article, without loss of generality, it is assumed that the network exists in the
output channel only, and the input channel transmits the data well.

The random data dropout can be simulated with a Bernoulli random variable. For this
purpose, αk(t) is introduced as follows:

αk(t) =

{

1, if yk(t) is well transferred,
0, otherwise.

(3)

Let R such that 0 < R < 1 be the probability of successful transfer of the measurement
output yk(t) for all t and k.

If αk(t) = 1, i.e., yk(t) is well transferred, then ek(t) = yd(t)− yk(t) can be computed
for the update. If αk(t) = 0, then no tracking error can be found for the update.

In this article, we present the P-type and D-type ILC update laws for networked control
systems. We investigate convergence analysis of the P-type and D-type ILC update laws.
This kind of convergence analysis is new. We show that convergence conditions of the
inputs related to the P-type and D-type ILC update laws for networked control systems
are the same.

2. P-type ILC Update Law

For discrete-time-varying linear system (1), the P-type ILC update law is as follows:

uk+1(t) = uk(t) + rkGtEk
(t+ 1), (4)

where Gt is the learning gain matrix, {rk} is a decreasing sequence that reduces the effect
of stochastic noises and satisfies the following conditions:

rk → 0, rk > 0,

∞
∑

k=1

rk = ∞,

∞
∑

k=1

r2k < ∞. (5)

Also, {rk} ensures input convergence with zero error in the almost sure sense and also
suppresses the effect of stochastic noises when the number of iterations increases.

In (4), we define E
k
(t) as

Ek(t) =

{

ek(t), if αk(t) = 1,
0, if αk(t) = 0.

(6)

For a matrix Am×n, we define the infinity norm ‖.‖∞ as follows:

‖A‖∞ = max
1≤i≤m

n
∑

j=1

|aij|, aij ∈ A,

where aij denotes an element of the matrix A.
Now, investigate the convergence analysis of P-type update law (4) by Theorem 1.

Theorem 1. Consider law (4) for updating the input of system (1). If
‖I − rkGtC(t+ 1)B(t)‖∞ < 1, ∀t, then uk(t) → ud(t), ∀t w.p.1, as k → ∞.
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Proof. From (4), (6) according to (1), (2), and taking the norm, we have

‖∆uk+1(t)‖∞ ≤ ‖I − rkGtC(t + 1)B(t)‖∞‖∆uk(t)‖∞+

+‖rk‖∞‖Gt‖∞‖C(t + 1)‖∞‖B(t)‖∞‖∆uk(t)‖∞+

+‖rk‖∞‖Gt‖∞‖αk(t + 1)‖∞‖C(t+ 1)‖∞‖B(t)‖∞‖∆uk(t)‖∞+

+‖rk‖∞‖Gt‖∞‖αk(t + 1)‖∞‖C(t+ 1)‖∞‖A(t)‖∞‖∆xk(t)‖∞+

+‖rk‖∞‖Gt‖∞‖αk(t + 1)‖∞‖C(t+ 1)‖∞‖µk(t + 1)‖∞+

+‖rk‖∞‖Gt‖∞‖αk(t+ 1)‖∞‖ϑk(t+ 1)‖∞ a.s.

(7)

According to (1) and (2), we have

‖∆xk(t)‖∞≤

t−1
∑

i=0

(

t−1
∏

j=i+1

‖A(j)‖∞)‖B(i)‖∞‖∆uk(i)‖∞+

t
∑

i=0

(

t−1
∏

j=i

‖A(j)‖∞)‖µk(i)‖∞ a.s. (8)

Here
n
∏

j=i

A(j) = A(n)A(n− 1)...A(i), ∀n ≥ i and
i−1
∏

j=i

A(j) = I.

Substituting (8) into (7), we have

‖∆uk+1(t)‖∞ ≤ ‖I − rkGtC(t+ 1)B(t)‖∞‖∆uk(t)‖∞ + ‖rk‖∞‖Gt‖∞‖C(t + 1)‖∞×

×‖B(t)‖∞‖∆uk(t)‖∞+‖rk‖∞‖Gt‖∞‖αk(t+1)‖∞‖C(t+1)‖∞‖B(t)‖∞‖∆uk(t)‖∞+

+‖rk‖∞‖Gt‖∞‖αk(t+1)‖∞‖C(t+1)‖∞‖A(t)‖∞[
t−1
∑

i=0

(
t−1
∏

j=i+1

‖A(j)‖∞)‖B(i)‖∞×

×‖∆uk(i)‖∞]+‖rk‖∞‖Gt‖∞‖αk(t+1)‖∞‖C(t+1)‖∞‖A(t)‖∞×

×[
t
∑

i=0

(
t−1
∏

j=i

‖A(j)‖∞)‖µk(i)‖∞]+‖rk‖∞‖Gt‖∞‖αk(t+1)‖∞‖C(t+1)‖∞×

×‖µk(t+ 1)‖∞ + ‖rk‖∞‖Gt‖∞‖αk(t + 1)‖∞‖ϑk(t+ 1)‖∞a.s.

(9)

Let us prove that lim
k→∞

‖∆uk(t)‖∞ = 0. To this end, we use mathematical induction.

Initial step. In (9), let t = 0:

‖∆uk+1(0)‖∞ ≤ ‖I − rkG0C(1)B(0)‖∞‖∆uk(0)‖∞ + ‖rk‖∞‖G0‖∞‖C(1)‖∞×

×‖B(0)‖∞‖∆uk(0)‖∞ + ‖rk‖∞‖G0‖∞‖αk(1)‖∞‖C(1)‖∞‖B(0)‖∞‖∆uk(0)‖∞+

+‖rk‖∞‖G0‖∞‖αk(1)‖∞‖C(1)‖∞ ‖A(0)‖∞‖µk(0)‖∞ + ‖rk‖∞‖G0‖∞‖αk(1)‖∞×

×‖C(1)‖∞‖µk(1)‖∞ + ‖rk‖∞‖G0‖∞‖αk(1)‖∞‖ϑk(1)‖∞a.s.

(10)

Note that ‖αk(1)‖∞ is bounded because αk(1) is a Bernoulli variable, and its norm is
bounded. Also, ‖µk(0)‖∞, ‖µk(1)‖∞, and ‖ϑk(1)‖∞ are bounded because white noises
functions µk(0), µk(1), and ϑk(1) are continuous on [0, N ]. Therefore, concerning lim

k→∞
rk =

0, we conclude that

‖rk‖∞‖G0‖∞‖αk(1)‖∞‖C(1)‖∞ ‖A(0)‖∞‖µk(0)‖∞ → 0 w.p.1,
‖rk‖∞‖G0‖∞‖αk(1)‖∞‖C(1)‖∞‖µk(1)‖∞ → 0 w.p.1,

‖rk‖∞‖G0‖∞‖αk(1)‖∞‖ϑk(1)‖∞ → 0 w.p.1.

In (10), ∆uk(0) is the input error vector, therefore, its norm is bounded. Hence, concerning
lim
k→∞

rk = 0, we conclude that

‖rk‖∞‖G0‖∞‖C(1)‖∞‖B(0)‖∞‖∆uk(0)‖∞ → 0,
‖rk‖∞‖G0‖∞‖αk(1)‖∞‖C(1)‖∞‖B(0)‖∞‖∆uk(0)‖∞ → 0 w.p.1 when k → ∞.
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Let σ1 = ‖I − rkG0C(1)B(0)‖∞, σi = 0, i = 2, 3, ..., ek = ‖∆uk(0)‖∞, and ϕk = 0,
under the assumption of Theorem 1, namely, ‖I − rkG0C(1)B(0)‖∞ < 1, and Lemma 1
of the paper [26], from inequality (10), we conclude that lim

k→∞
‖∆uk(0)‖∞ = 0.

Inductive Step. Suppose that lim
k→∞

‖∆uk(n)‖∞ = 0 for n = 0, 1, ..., t− 1. The purpose

is to show that lim
k→∞

‖∆uk(n)‖∞ = 0 for n = t.

In (9), similar to initial inductive, we have ‖rk‖∞‖Gt‖∞‖αk(t + 1)‖∞‖C(t+ 1)‖∞
‖µk(t+ 1)‖∞ → 0, w.p.1 and ‖rk‖∞‖Gt‖∞‖αk(t+ 1)‖∞‖ϑk(t + 1)‖∞ → 0, w.p.1. Also,

note that in [
t
∑

i=0

(
t−1
∏

j=i

‖A(j)‖∞)‖µk(i)‖∞], the number of sum terms is finite because

i = 0, 1, ..., t, t ∈ [0, N ], where N is the given length of each iteration, hence

[
t
∑

i=0

(
t−1
∏

j=i

‖A(j)‖∞)‖µk(i)‖∞] is bounded. Therefore,

‖rk‖∞‖Gt‖∞‖αk(t+ 1)‖∞‖C(t + 1)‖∞‖A(t)‖∞[
t

∑

i=0

(
t−1
∏

j=i

‖A(j)‖∞)‖µk(i)‖∞] → 0, w.p.1.

Taking into account the assumption of induction lim
k→∞

‖∆uk(i)‖∞ = 0, ∀k, ∀i = 0, 1, ..., t−

1, w.p.1, therefore, we have

‖rk‖∞‖Gt‖∞‖αk(t+1)‖∞‖C(t+1)‖∞‖A(t)‖∞×

×[

t−1
∑

i=0

(

t−1
∏

j=i+1

‖A(j)‖∞)‖B(i)‖∞‖∆uk(i)‖∞] → 0, w.p.1.

Since ∆uk(t) is the input error vector, then its norm is bounded. Therefore, since
lim
k→∞

rk = 0, we conclude that ‖rk‖∞‖Gt‖∞‖C(t+ 1)‖∞‖B(t)‖∞‖∆uk(t)‖∞ → 0 and

‖rk‖∞‖Gt‖∞‖αk(t + 1)‖∞‖C(t+ 1)‖∞‖B(t)‖∞‖∆uk(t)‖∞ → 0 w.p.1 when k → ∞.
Set σ1 = ‖I − rkGtC(t+ 1)B(t)‖∞, σi = 0, i = 2, 3, ..., ek = ‖∆uk(t)‖∞, and ϕk = 0,

taking into account ‖I − rkGtC(t + 1)B(t)‖∞ < 1 and Lemma 1 of the paper [26], from
inequality (9), we conclude that lim

k→∞
‖∆uk(t)‖∞ = 0, w.p.1.

✷

Therefore, P-type ILC update law (4) converge in the almost sure sense. Next section
presents the D-type ILC update law and proves its convergence in the almost sure sense.

3. D-type ILC Update Law

For system (1), the D-type ILC update law takes the form

uk+1(t) = uk(t) + rkGt[Ek
(t + 1)− E

k
(t)], (11)

where Gt is the learning gain matrix, and {rk} is the agent that reduces the effect of
stochastic noises as (5). In (11), we indicate E

k
(t) as (6).

Remark 1. Note that this research tries to show that the convergence conditions of the
P-type ILC update law and D-type ILC update law for networked control systems are the
same, and we present a new way of convergence proof.

Theorem 2. Consider law (11) for updating the input of system (1). If
‖I − rkGtC(t+ 1)B(t)‖∞ < 1, ∀t, then uk(t) → ud(t), ∀t w.p.1, as k → ∞.
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Proof. Due to (6), from (11) we have

uk+1(t) = uk(t)+rkGt[Ek(t+1)−Ek(t)] = uk(t)+rkGt[αk(t+1)ek(t+1)−αk(t)ek(t)]. (12)

Therefore, we have

‖∆uk+1(t)‖∞ ≤ ‖I − rkGtC(t+1)B(t)‖∞‖∆uk(t)‖∞+‖rk‖∞‖Gt‖∞‖C(t+1)‖∞×
×‖B(t)‖∞‖∆uk(t)‖∞+‖rk‖∞‖Gt‖∞‖αk(t+1)‖∞‖C(t+1)‖∞‖B(t)‖∞‖∆uk(t)‖∞+

+‖rk‖∞ ‖Gt‖∞ ‖αk(t+1)‖∞ ‖C(t+1)‖∞ ‖A(t)‖∞ [
t−1
∑

i=0

(
t−1
∏

j=i+1

‖A(j)‖∞) ‖B(i)‖∞×

×‖∆uk(i)‖∞]+‖rk‖∞ ‖Gt‖∞ ‖αk(t+1)‖∞ ‖C(t+1)‖∞ ‖A(t)‖∞ [
t
∑

i=0

(
t−1
∏

j=i

‖A(j)‖∞)×

×‖µk(i)‖∞]+‖rk‖∞‖Gt‖∞‖αk(t)‖∞‖C(t)‖∞[
t−1
∑

i=0

(
t−1
∏

j=i+1

‖A(j)‖∞) ‖B(i)‖∞×

×‖∆uk(i)‖∞] + ‖rk‖∞‖Gt‖∞‖αk(t)‖∞‖C(t)‖∞[
t
∑

i=0

(
t−1
∏

j=i

‖A(j)‖∞) ‖µk(i)‖∞]+

+ ‖rk‖∞ ‖Gt‖∞ ‖αk(t+ 1)‖∞ ‖C(t + 1)‖∞ ‖µk(t+ 1)‖∞ + ‖rk‖∞ ‖Gt‖∞ ×
×‖αk(t+ 1)‖∞ ‖ϑk(t+ 1)‖∞ + ‖rk‖∞ ‖Gt‖∞ ‖αk(t)‖∞ ‖ϑk(t)‖∞ a.s.

(13)

Using mathematical induction and taking into account the proof of Theorem 1, we conclude
that lim

k→∞
‖∆uk(t)‖∞ = 0, w.p.1.

✷

Therefore, we investigated the convergence of the D-type ILC update law. Also, we
showed that the convergence conditions of both P-type and D-type ILC update laws for
networked control systems are the same.

4. Illustrative Simulations

This section shows an example. We compare performance of the P-type and D-type
ILC update laws. The dynamic of a linear system is as follows:







x1(t + 1) = x1(t) + 0, 0100x2(t) + ς1(t+ 1),
x2(t + 1) = x2(t)− 1, 3421x2(t) + 0, 0378u(t) + ς2(t+ 1),
y(t) = x2(t) + ς(t),

(14)

where x1(t), x2(t) are the states of the system, u(t) is the input of the system, y(t) is the
output of the system. The whole iteration length is 1 s, i.e. N = 100. The desired output
is yd(t) =

1
3
(sin( t

20
) + 1 − cos( 3t

20
)), 0 ≤ t ≤ 100. The initial input is u0(t) = 0, ∀t. Also,

ς1(t), ς2(t) and ς(t) are the system and measurement noises of the system, respectively,
that have normal distribution N(0, 0, 022).

Let us illustrate performance of the P-type and D-type ILC update laws. Also, we
show the advantage of the P-type ILC update law compared with the D-type ILC update
law.

First, we investigate the convergence properties of the D-type ILC update law and
the P-type ILC update law. The probability of successful transfer of the output is 90

100
, i.e.

R = 0, 9. We consider the learning gain matrix to be Lt = 50, and assume that the agent
that reduces the effect of stochastic noises is rk =

1
(k+10)

.
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Fig. 1. Outputs of the P-type and D-type ILC update laws at the final iteration: R=0,9

Fig. 2. The average absolute tracking error of the outputs of the P-type and D-type ILC
update laws along the iteration axis, R=0,9

Fig. 1 shows the final outputs of the P-type and D-type ILC update laws, where green,
red, and blue curves indicate the desired output, the final outputs of the P-type and D-
type ILC update laws, respectively. According to Fig. 1, the curves of the output of the
P-type ILC update law and the desired output almost coincide, while the curves of the
output of the D-type ILC update law and the desired output do not coincide. Therefore,
the P-type ILC update law converges to the desired output when R = 0, 9, while the
D-type ILC update law can not quickly converge to the desired output when R = 0, 9.

We plot the average absolute tracking error along the iteration axis in Fig. 2. The

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (Вестник ЮУрГУ ММП). 2020. Т. 13, № 2. С. 69–79

75



S.A. Najafi, A. Delavarkhalafi

average absolute tracking error is determined by ‖ek‖∞ =

(

N
∑

t=1

‖ek(t)‖∞

)

N
in the k-th

iteration. Obviously, there exists a significant difference regarding performance between
the two algorithms.

Although the probability of successful transmissions in the output channel is high,
performances of the P-type and D-type ILC update laws are different, even if there are
no data dropouts. For a more thorough study of the P-type and D-type ILC update laws,
we consider different probabilities of data dropout. In order to specify performance of the
algorithms with different probabilities of data dropout, we compare the P-type and D-type
ILC update laws. We run algorithms in 300 iterations.

We present the average absolute tracking error of the D-type ILC update law
concerning different dropout probabilities, R = 0, 9; 0, 7; 0, 5, and 0, 3 in Fig. 3. Obviously,
under all probabilities of data dropout, the average absolute tracking errors of the D-type
ILC update law along the iteration axis are not decreasing almost uniformly, and there
exist a lot of error variations.

Fig. 3. The average absolute tracking error of the outputs of the D-type ILC update law
with R = 0, 9; 0, 7; 0, 5 and 0, 3

Finally, the case of the P-type ILC update law is illustrated in Fig. 4. Under different
probabilities of data dropout, the average absolute tracking errors of the P-type ILC
update law are more overlap than those in the case of the D-type ILC update law, because
there exists a small number of error variations in the P-type ILC update law. On the
contrary, there are a lot of error variations in the D-type ILC update law.

Conclusion

In this paper, we present new P-type and D-type ILC update laws for stochastic linear
systems with random data dropout. We model random data dropouts by a Bernoulli
random variable. Also, we investigate the convergence of the P-type and D-type ILC
update laws in the almost sure sense. We show that the convergence conditions of the
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Fig. 4. The average absolute tracking error of the outputs of the P-type ILC update law
with R = 0, 9; 0, 7; 0, 5 and 0, 3

inputs corresponding to the P-type and D-type ILC update laws for networked control
systems are the same. In addition, we investigate performance comparison of the P-type
and D-type ILC update laws. In this comparison, we conclude that the P-type ILC update
law is more effective than the D-type ILC update law in networked control systems.
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НОВЫЕ ЗАКОНЫ ОБНОВЛЕНИЯ УПРАВЛЕНИЯ ИТЕРАТИВНЫМ
ОБУЧЕНИЕМ P-ТИПА И D-ТИПА ДЛЯ СЕТЕВЫХ СИСТЕМ
УПРАВЛЕНИЯ СО СЛУЧАЙНЫМИ ВЫПАДЕНИЯМИ ДАННЫХ

С.А. Наджафи1, А. Делавархалафи1

1Йездский университет, г. Йезд, Иран

В этой статье мы представляем два новых закона обновления управления итера-
тивным обучением (УИО) P-типа и D-типа для линейных стохастических систем со
случайным выпадением данных, моделируемым случайной величиной Бернулли. До-
казывается, что законы обновления УИО P-типа и D-типа сходятся к желаемому входу
почти наверное. Мы показываем, что условия сходимости входов, соответствующих за-
конам обновления УИО P-типа и D-типа для сетевых систем управления, одинаковы.
Сравниваются производительности законов обновления УИО P-типа и D-типа. В этом
сравнении мы приходим к выводу, что для сетевых систем управления закон обновле-
ния УИО P-типа более эффективен, чем закон обновления УИО D-типа.

Ключевые слова: управление итеративным обучением; D-тип; Р-тип; выпадение

данных; линейная система сетевого управления.
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