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Prediction of a new object state at a lack of the known characteristics and estimates
of quality indicators of a number of studied objects (a set of reference data) often leads
to the problem of multicollinearity of basic data. We propose the following three ways
to overcome this problem relating to the sphere of data mining: use a ridge regression,
train with the teacher a two-layer neural network, consecutive adapt a single-layer neural
network. Also, we compare characteristics of the proposed ways. In the ridge regression
method, the introduction of a regularizing term into the LMS equation gives an approximate
solution with a sufficient degree of accuracy. A disadvantage of use of the two-layer neural
network “feed-forward backprop” and the procedure of training with the teacher “train”
is that adjusted weights of the neural network take chaotic (and even negative) values
that contradicts a common practice of examination. The following features are revealed:
considerable dispersion of weights and shifts of a neural network, ambiguity of the solution
due to the choice of random initial conditions, strong dependence on a training algorithm.
In order to overcome this shortcoming, we propose a transition to consecutive adaptation
of a single-layer neural network with fixing shifts of neurons at zero level.

Keywords: examination of objects; prediction; multiple regression; ridge regression;
regularization; neural network; training of model; adaptation.

Introduction

The problem of overcoming multicollinearity of input data is one of the main problems
of modern calculus mathematics. The multicollinearity is a consequence of existence of
strong correlation, even functional, communications of vectors of signs (factors) of various
compared objects. The simplest methods to eliminate the multicollinearity (reduction of
amount of signs, addition of low significant signs, nonlinear transformation of the equations
of regression) are artificial and, as a rule, do not yield positive results. In this work, we
propose three regular methods of overcoming multicollinearity based on the theory of data
mining and compare them with each other [1].

During examination of difficult technical objects (systems, devices, samples), need of
approximate quality assessment of a new object often evolves from the analysis of reference
data, i.e. a set of the known characteristics X and estimates of the quality indicator J of
similar objects. This problem is complicated by the fact that the technique to obtain such
estimates is, as a rule, unknown.

Usually, for joint examination of several technical objects, the theory of multiple linear
regression is used [2,3]. Then for k& objects (samples) having characteristics (signs), linear
equations for each of them can be written in a matrix form.
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The mathematical model corresponds to the model of a linear multiple regression,
which we write in the compact matrix form

J=XV+E, (1)

where J is a vector of indicators of the order k£ x 1, X is a matrix of independent variables
(predictors) of the order k£ x m, V' is a vector of regression coefficients of the order k x 1,
E is a matrix of the remains (regression noise) of the order k x 1.

In our case, it is necessary to solve the following problem: for the given integrated
indicators of the known objects (samples) J and the matrix X for several known samples,
to define a set of weight coefficients to be regression coefficients, and then to use this set
for assessment of the indicators of new objects {V;}, i.e. to carry out their prediction. In
econometrics, such a procedure is called multidimensional calibration [2,4].

As arule, in problems of examination, there are data (X, J) for a number of the known
objects called reference data. It is required to use these data in order to make training of
regression model, i.e. to find unknown weight coefficients Vi by the method of the least
mean squares (LMS) [2,5]:

V=X"X)"'x"J (2)

However, actually often, we do not manage to calculate already the first factor of
expression (2), i.e. to find the inverse matrix of X7 X since the determinant of this matrix
is equal to zero.

In this situation, we observe the phenomenon of multicollinearity of reference data
which reflects strong correlation (or even functional) communication between the matrix
X vectors (such a matrix is called badly caused). The strict multicollinearity breaks one
of the main conditions of the Gauss-Markov theorem (about a matrix rank), and makes
it impossible to construct a regression.

The following factors are among the main reasons for multicollinearity [2,5].

1. The quantity of samples k (rows of the matrix X) insufficiently also approaches the
amount of signs m (a saturation status).

2. Two or more linearly dependent variables are wrongly included in the equation.

3. Two or more explanatory variables, which are poorly correlated in a normal situation,
become strongly correlated under specific conditions of selection.

4. The model includes the variable which is strongly correlating with a dependent variable
(such independent variable is called dominant).

Further, to overcome the computing problems connected with multicollinearity, we use
the data mining methods [6]: theory of multiple linear regression, method of the analysis
of hierarchies, method of ridge regression, methods of the theory of neural networks.

1. Forming of Reference Data

For assessment of technical objects (in the problems of multidimensional calibration
called samples), the works [1,5,7] propose the complex quality price indicator, which we
rewrite in the modified form as follows:

Jempl = (‘/qwj + ‘/;)Tp)/(‘/qw + ‘/pr)u (3)

where J, P are the integrated indicators of quality and price of a sample; Vg, V,, are
the weighting coefficients of quality and price that allow to make a choice about the
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required ratio “quality-price”; the character “A” over designation of a variable means a
normalization.
The additive integrated indicator of quality has the form

1 v ) Zj V}vqi.j ) Zz ‘/i,eac-fi 5 Z[ ‘/l,ql-fl
T T T
) Vor " Zj Via 7 Zj Vjex 7 Zl Vi 7

where Z;, Z;, Z; are rated signs of quantity, existence and quality, respectively; V; 4, Vi g, Vig
are partial weight coefficients in each group of signs; V.1, Vg2, Vyr,3 are weight coeflicients
of groups of signs; > V,, is a sum of group coefficients.

In order to provide a uniform contribution of various composed terms in weighed sum
(4), it is necessary to reduce their values to uniform range |7]. Distinguish the positive
effect signs (PES) and negative effect signs (NES) depending on the impact of growth of
sign value on the size of the integrated indicator J. For these two groups of signs, the
normalization is carried out differently.

For quantitative and qualitative signs of PES, we consider the following normalization:

J= +V, +V, (4)

x.
A _ ] -
T; = , ] = 1,2, .,y (5)
L base

where Z; pase 18 @ basic (maximum) value of the sign for all k£ objects

T}, base = mﬁxxgl), l=1,2,..,k, &; €[0; 1] Vj. (6)
Second composed term of formula (4) gives only relative size of observation of existence
54gNs.

For NES, as a basic object for comparison with other objects of examination, we choose
an object with the minimum value of sign in the group of the compared objects
R (7)

T}, base = mlin x§l), [=1,2
Then, excess of the j-th sign value of NES for the I-th object over basic (minimum) value
is characterized by the rated sign
A Lj base
)= 0

For the return price, the formula takes the following form:

~ P,
o _ base o
PO = 2 =12,k (9)

As the considered technical objects, we choose the integrated security systems (ISS),
which technical characteristics are described in the works [8,9] in detail.

Let us select signs of ISS in decreasing order of their importance: z; is the maximum
length of the communication line, (m); 5 is the number of the events which are stored in
memory; z3 is a response time on violations, (ms); 4 is existence of the special controller
for work with address annunciators; x5 is integration with the system of security television;
xg is the scale of an object to which ISS can be applied. Let us find the rated values of
signs for 3 samples (Table 1).
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Table 1

Rated values of signs of examination objects

ISS model | “Boundary-08" | “Kodos-A20” | “C2000M” | “AST-I"
€ 1 2 3 4
T 0,400 0,533 1,000 0,900
T 0,693 1,000 0,267 0,240
T3 1,000 0,571 0,800 0,800
S Vi 0,598 0,667 0,789 0,715
T4 1,000 0,000 1,000 1,000
Y. Vi, 1,000 0,000 1,000 1,000
Ts 1,000 1,000 0,800 0,400
T 1,000 1,000 0,700 0,600
S Vi 1,000 1,000 0,700 0,460
J 0,705 0,683 0,701 test
P 0,545 0,960 1,000 0,750
Zempl 0,651 0,775 0,801 test

For quantitative signs, we define the vector V, using method of the analysis of
hierarchies [10, 11]. We choose the sign x; as the basic (general). The matrix of pair
comparisons takes the form

1 3 5
W=103 1 3], (10)
0,2 0,33 1
for which, taking into account the equation
WV = AV, (11)

we obtain the greatest eigenvalue Ay, = 0,033 and the index of coherence 1.5 = 0,017.
For the defined matrix of eigenvectors for matrix (10), we find the vector of priorities

V,= (0,917 0,371 0,151), (12)
and, after a normalization division by > V; = 1,439, we obtain
V = (0,637 0,258 0,105)". (13)

Taking into account (13) and private values of signs (see Table 1), we determine the
weighed sums of signs (see Table 1).
Let us calculate further integrated indicators J, Je,p, take

vV =1(0,637 0,105 0,258)", (14)
and construct the expanded vector of weights

Vept = (0,637 0,105 0,258 0,500)", (15)

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 69
u nporpammuposBanues> (Becruuk FOYpI'Y MMII). 2020. T. 13, Ne 4. C. 66—80



S.B. Akhlyustin, A.V. Melnikov, R.A. Zhilin

for the case V,,,/V,r = 2, i.e. when choosing a ratio between quality and the cost to be
1:0,5.
Then
J = (0,705 0,683 0,707)", (16)
the vector of cost sign
P = (0,545 0,960 1,000)". (17)

The vector of the complex indicator “quality-price” is calculated by formula (4) and is
equal

Jemp = (0,651 0,775 0,871)" . (18)

As before, we tabulate the obtained values of integrated indicators J , 15, jempl.
Let us construct finally reference data for three ISS samples in the form

R 0,538 1,000 1,000 0,545 0,652
X = 10,667 0,000 1,000 0,960 |; Jemp = {0,775, (19)
0,789 1,000 0,770 1,000 0,871

where rows and columns of the matrix X correspond to samples and signs, respectively.

2. Ridge Regression Method

As we see from (18), the quantity of samples k = 3 are less than the amount of signs
m = 4 and it is not possible to use formula (2) of the LMS method for assessment of the
weights vector V.

Owing to a lack of samples for training model, there exists a problem of
multicollinearity for which overcoming we suggest to use one of the data mining methods
that is a method of ridge regression. The method of regularization proposed by the
academician A.N. Tikhonov and applied to the solution of incorrect problems [12] is the
cornerstone of the procedure of ridge regression.

The theory of regularization proposed by A.N. Tikhonov assumes representation of
mistakes functional in the form of a sum of two composed terms [13]:

E(F) = Es(F) + Eo(F).

In this formula, the first term Es(F') describes a mistake that is a distance between the
desirable response of the model J; and the actual output signal y; for the chosen example
of training. For instance, it is possible to define

k k

Bs =25 ) = 23 i - Fla)

2 4 ,
i=1 i=1

| —

The second composed term (regularization augend) E. (F') depends on “geometrical”
properties of the approximation function F' (x). As a rule, some square functional can be
used in the form of this stabilizing functional Q(F’). In the last expression, existence of the
second composed term stabilizes the solution in the sense of smoothness and, therefore,
guaranteeing the continuity of display.
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In the theory of regularization, it is required to minimize the size

1 N

B(F) = BJ(F) = 5 31— F) + 500(F),

i=1

where « is a positive real number called regularization parameter.
Therefore, ridge regression assumes assessment of unknown vector of weight coefficients
V. in the calibration model by the modified formula of the LMS:

Vo= (X"X +al,) ' X", (20)

where [, is a diagonal single matrix of the order m.

Adding of the regularization parameter « solves the problem of bad conditionality
of a matrix. Nevertheless, there exist no accurate rules of the choice of this parameter.
Therefore, in calculations, it is required to reduce consistently «, since the value oo = 0,1,
before achievement of the best accuracy of estimates.

In order to assess an error of the proposed calibration model in the course of training,
the “exact” vector of weight coefficients (16) (in the sum, the first three elements equal 1,0,
and the fourth one is 0,5 that reflects the choice of the ratio “quality price” to be 1:0,5)

V = (0,637 0,105 0,258 0,500)T (21)

is compared with the vector Vc = <Vc,1, e f/cm) estimated by formula (20), consistently
reducing size. At the same time, the relative error of calibration is

ISE

(Ve = V3)?

1

viE

by = A

(22)

where ||V is the Euclidean norm of the vector V.

Let us calculate the vector of weight coefficients V. and the relative error of calibration
0y for various values of the regularization multiplier oe. As we see, if a takes values from
0,1 to 1078, then the relative error of calibration decreases to very small values.

At the same time, after calibration, the best approach to the vector of weight
coefficients takes the form

V.= (0,279 0,088 0,185 0,421)" . (23)

Let us go to the second stage of multidimensional calibration, i.e. assessment of the
integrated indicator J of a new sample. Consider a new ISS “AST-I" (see Table 1, Column
5) as the characteristic test and choose its signs z; to be the same as for three known
samples. Find the rated values of its signs x; according to the normalization technique
given above:

Xrewr = (0,715 1,000 0,460 0,750)" . (24)

Further, we use weight coefficients (16) — (18) and calculate “true” value of the integrated
indicator Jempu = 0, 703.
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Table 2

Relative error of prediction of the integrated quality indicator

o« ] 0,10,0L]000[107[107°[10°°
5, % | 2,94 | 1,36 | 1,09 | 1,07 | 1,06 | 1,06

Consistently reducing the regularization parameter from 0,1 to 1075, we estimate the
relative error of prediction of the integrated quality indicator (Table 2)

_ e =]

07 7

(25)

Therefore, the relative error of the prediction is less than 1,07% that is quite
satisfactory result. Note that this small error of prediction is reached at much bigger
relative error of assessment of weight coefficients. This is due to the fact that, in the
summation composed term V. ;z;, the integrated indicator part J. has big value, than
corresponding composed indicator J and other part have smaller value. Therefore, the
effect of partial mutual compensation of composed terms is observed. The last statement
can be proved using Cauchy’s inequality known from the functional analysis:

[(Ve =V, X < |[Ve = V[ - 1 XL (26)

3. Neural Network: Procedure of Training

For overcoming the problem of multicollinearity of reference data, the neural networks
methods are perspective [14-17]. When training (calibration) of a model by a neural
network, formula of LMS (3) is not used at all and, therefore, equality to zero of the
determinant }X X } does not matter. In neural networks, as a rule, control of the weights w;
by criterion of mistakes functional minimum is carried out by gradient methods. However,
these methods rather slowly work and demand a large number of iterations. Therefore,
further, for control of a model, we propose an alternative approach.

Newton’s method [15,18] can be considered as an alternative to the method of gradients
for the accelerated training of neural networks. The main step of this method is defined
by the expression

wi1 =w; — Hy'g;,

where w; is a vector of the adjusted neuron weights w; = (wy;, wa;, ...,wmj)T; H; is a
Hesse’s matrix of the second private derivatives of the mistakes functional in the configured
settings; g; is a gradient of the mistakes functional. Procedures of minimization on the
basis of Newton’s method, as a rule, work quicker than the same procedures on the basis of
the interfaced gradients method. The best one is the class of quasi Newtonian algorithms,
which uses some approximate assessment of a Hesse’s matrix at each iteration.

In particular, the Levenberg—Markuardt’s algorithm (LM) realizes the following
strategy for assesment of a Hesse’s matrix. Under the assumption that the functional
is defined as the sum of squares of mistakes that is a characteristic when training neural
networks with direct transfer, the Hessian can be approximately calculated as

HYTY
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and the gradient is calculated by the formula
g="YTe,

where Y = 0e/0W is the Jacoby’s matrix of mistake functional derivatives in the
configured settings; e is the vector of mistakes of a neural network.
The LM algorithm uses approximation of a Hessian of the form

wiy1 =w; — (YTY + pul)7'Y e,

If coefficient 4 = 0, then we have Newton’s method, while if ;4 is bigger, then we obtain
the method of gradient descent with a small step.

Let us make the following hypothesis: as at the solution of a direct examination
problem (assessment of the integrated indicator J on the set of signs X and the vector of
weight coefficients V'), two-stage division of weights on group and partial, natural way to
solve the inverse problem (assessment of weights on the basis of the sets X, J) is also to
use application of a two-layer linear network.

Let us construct a two-layer neural network of direct signal transmission with the
return distribution of a mistake (feed-forward backprop) in the beginning. To this end,
we use means of GUI (Graphical User Interface) of the nntool package of the MATLAB
environment (Fig. 1) [19]. Here the first layer is hidden, the second layer is output; W2
are matrixes of weights of the first and second layers; b'? are constants of shifts signals
of the first and second layers. Numbers given at the bottom of the corresponding blocks
show the corresponding parameters of the network: 4 is the dimension of a vector of an
entrance, 1 is existence of one neuron at the hidden and output layers. As shown, linear
functions of activation purelin are chosen in both layers.

Hidden Layer Output Layer

‘3 & j'@[lo : °u ilj QU. . oil

Fig. 1. Block diagram of two-layer neural network

Two approaches can be applied to the calibration of a neural model: training with the
teacher (train) and consecutive adaptation (adapt) [20]. In both cases, at an entrance of
network move data (19), the vector of indicators J.,,, is chosen as a target vector.

For training of network, we use the Levenberg—Marquardt’s algorithm. After 5 steps
of training, square of the mean square error of calibration of the model

1 n
CKO =~ ; (8.J1)? (27)
decreases to negligible value (Fig. 2).
After the end of a procedure of training, the weights and shifts of the network neurons

in terms of the procedure nntool take the form

iw{1,1} =[0,096 0,912 0,926 —0,687];

{2, 1} = [0,904]:  b{1} = [0,930]: b{2} = [~0,03]. (28)
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Mean Squared Error (mse)

S
@

-20

Fig. 2. Training quality of two-layer neural network

Let us calculate the integrated “quality-price” indicator of the new (test) ISS “AST-
I’ using assessment (28) of weights and shifts of a two-layer neural network received
after calibration. The characteristic vector Xy of this sample is calculated by the same
technique which was applied when determining matrix (19), and has form (24).

Comparing the received value Jr. = 0,681 and the exact value J = 0,703, we are
convinced that the relative error of prediction of the integrated indicator of the new ISS
“AST-1"is 07 = 0,031, or 3,1%. Note that the accuracy of the neural modelling prediction
is slightly lower than when using the method of ridge regression (the error is 1,06%)

The obtained results allow to confirm the hypothesis given above: application of a
two-layer neural network is enough for the solution of the inverse problem of examination.
Besides, at numerical modelling, the method of training revealed the following features:
considerable dispersion of weights and shifts of a neural network, ambiguity of the solution
due to the choice of accidental entry conditions, strong dependence on a training algorithm.

4. Consecutive Adaptation of Neural Network

At high accuracy of estimates of the generalized indicators, a two-layer neural network
has the noticeable shortcoming: training is made in a multidimensional space (weights of
the hidden neuron, weights of an output neuron, signals of the general shift) and therefore
the received estimates of neurons weights considerably differ from initial vector of scales
(15) used for synthesis of reference data in the course of solution of the direct problem of
the carried-out examination.

To eliminate such discrepancy, unlike the method of training of a neural network
considered earlier with use of the automated editor of GUI, we apply the procedure of
adaptation on the basis of our program in the MATLAB environment (the so-called M-
file) and using specific designations of neural networks.

Let us choose a 4-dimensional space of scales corresponding to number of signs, and
consider a single-layer network. Namely, construct a single-layer neural network, for the
chosen linear function of activation as it corresponds to the rules of construction of the
integrated indicator described above. At the same time, there is an elimination of the
second layer (see Fig. 1). Besides, we consider the reference values of the weights w; and
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shift b' to be zero:
net IW{1} =10 0 0 0]; net.b{1} =0. (29)

For the considered example with a four-dimensional vector of an entrance, the block
diagram of network takes the form given in Fig. 3.

Layer
;nput S5 ) Output
& = @ |
a 3‘ 1

1
Fig. 3. The block diagram of a single-layer network with a linear function of activation

In the course of adaptation, we apply the procedure nullifying the control shift speed
Ir to an exception of changes of zero shift

net.biases{1,1}.learnParam.lr = 0. (30)

For rather effective control of scales, we choose the speed of adaptation of a compromise
between the speed and stability of the process:

net.inputWeights{1, 1}.learnParam.lr = 0,01. (31)

This parameter is very important to assess the degree of stability of an algorithm [19].
However, it is necessary to determine Ir in the course of calculations by the trial and error
method.

Vectors of rated signs of various objects (19) are consistently analyzed. For their
description, we choose the specific structure of the MATLAB environment, i.e. the array
of elements (cell)

0,538 1,000 1,000 0,545
P = 10,667 0,000 1,000 0,960] . (32)
0,789 1,000 0,770 1,000

As a target vector to which exits of neural network will aspire, the vector of integrated
indicators is considered (also the array of elements)

T = (0,652 0,775 0,871). (33)

Fig. 4 presents results of adaptation by consecutive consideration of vectors of an
entrance for a single-layer neural network.

Let us consider the number of steps of adaptation to be equal 100. As a result, we
obtain estimates of the separate indicators J; — Jj:

y1 = 0,7216, yo = 0, 7254, ys = 0, 8493, (34)

and the average square of LMS of calibration calculated by formula (27) is equal to 0,0027.
As we see, after the procedure of adaptation, the constructed vector of weight of a neuron

iw{1} = (0,2247 0,1503 0,2863 0,3012)" (35)
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Fig. 4. Values of exits, neuron scales, and mistakes at consecutive consideration of vectors
of an entrance

contains only values of weights from the interval |0; 1] that corresponds to a common
practice of expert systems [5, 7], unlike data (28) when the adjusted weights can take
negative values. This is an important advantage of the consecutive adaptation method
over the previously discussed method using the GUI graphical editor procedure.

Let us apply to modelling a characteristic vector of a new sample (in the form of the
array of elements)

Prest = (0,715 1,000 0,460 0,750] . (36)

For assessment of an indicator of a new object, we use the procedure of modelling
(sim) of the MATLAB language

[YTesta pf] = Sim(neta PTest) (37>

and, for a test object, obtain the value of the indicator of quality with the relative error
4,8% (in comparison with the exact value 0,703). The value of the found error is quite
admissible for prediction of the integrated indicator of quality of new objects, especially
under the conditions of multicollinearity of basic data.

Therefore, all three considered above methods allow to overcome the multicollinearity
problem when forecasting the integrated indicator of a new object on the basis of the
previously known reference data on similar objects.

Conclusion

1. In the course of examination of a model, when using multiple linear regression for
high-quality training of a model, it is required that the number of objects (samples) k
considerably exceeds the amount of signs of an object m: k > (2 -+ 3) m. However, in
practice, this condition often is not satisfied and there exists the multicollinearity problem
in such cases.

2. A reliable way of overcoming this problem is to use the method of ridge regression
based on the theory of solution of incorrect problems. It is shown that introduction of the
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regular adding LMS composed terms in the equation gives an approximate solution with
the sufficient degree of accuracy.

3. Another way is to use the two-layer neural network feed-forward backprop and the
procedure of supervised learning train on the basis of the package nntool of the graphic
user interface GUI of the MATLAB environment. An advantage of such approach is the
lack of need to develop a special program (M-file).

4. A lack of the previous approach is that configured weights of a neural network take
chaotic (and even negative) values that contradicts customary practice of examination.
For overcoming this shortcoming, we propose a transition to consecutive adaptation of a
single-layer neural network with fixing shifts of neurons at zero level.
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INPEJICKASBAHUE MHTETI'PAJIBHOI'O NTHIANKATOPA KAYECTBA
HOBOTI'O OB'BEKTA B YCJIOBUAX MYJIbBTUKOJIJIMHEAPHOCTU
PEOEPEHTHBIX JTAHHBIX

C.B. Azmocmunt, A.B. Meavnuxos', P.A. Kuaun!
'Boponexkckuit uncruryr MB/I, Poccun, r. Boponesx, Poccniickas @eepaiius

[Ipeckazanue cocTosiHAS HOBOTO OO'bEKTA IIPU HEJOCTATKE U3BECTHBIX XAPAKTEPUCTUK
U OLIEHOK IIOKa3aTesiell KauecTBa psijia M3YUIEHHBIX OOBbEKTOB (MHOXKECTBA DedepeHTHBIX
JIAHHBIX ) 3a9aCTYI0 OPUBOJAUT K [poOJeMe MyJIbTHKOJJIMHEAPHOCTU HCXOIHBIX JIAHHBIX.

78

Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2020, vol. 13, no. 4, pp. 66—80



I[TPOI'PAMMIPOBAHNE

IIpemmaratorca Tpu crocoba MPeoaoseHnsT 3TOH MpobaeMbl, OTHOcsIeca K cdepe data
mining: ucnoab3oBanue rpebueBoit (ridge) perpeccuu, 06ydeHHe ¢ yduTeJNeM JIBYXCJIORHOM
HEUPOHHON ceTH, II0CaeN0BaTeabHasd aJalTanud OJHOCIONHON HEAPDOHHOU CEeTH U CPaBHU-
BAaIOTCsl UX XapaKTepUCTUKU. B Merose rpebHEBON perpeccuu BBeIEHHE PEeryJisipu3upyo-
mero ciaaraemoro B ypaBHeune MHK maer npubimkeHHOe pelieHue ¢ JOCTATOYHON cTere-
Hbio TouHocTH. HemocraTkoM ncrnonb3oBaHust 1By XcyoiHo# Heliponnoii cetn <feed-forward
backprop> u mponeaypbl 00ydeHHUS ¢ yuuTeaeM <trains sBJISeTCS TO, UTO HACTPOEHHDIE
Beca HEHPOHHON CeTH MPUHUMAIOT XaOTHYHbE (U JaxKe OTPUIATEJNbHbIE) 3HAYEHUS, UTO
[IPOTUBOPEYUT OOBIYHOM IIPAKTUKE IKCIEPTU3bI. BBISBIIEHBI CJIe/Iyonne OCOOEHHOCTH: 3Ha~
YUTEJIBHBIN pa3dpoC BECOB U CMeEIeHIT HEfPOHHOI ceTH, HEOIHO3HAYHOCTh PEIIEHNUsT 38, CUeT
BBIOOpA, CIIydYailHbIX HAYAJbHBIX YCJIOBHUI, CUJIbHAS 3aBUCUMOCTb OT aJIlOPUTMa O0yJeHMUsI.
1s1st IpeosoJIeHnsT STOr0 HEIOCTATKA [IPEJJIOYKEH [IEPEXO/T K ITOCJIeI0BATEIHHON aaTaliuu
OJTHOCJIONHOI HEHPOHHOU ceTn ¢ (puKcarmeir CMeIeHnit HeifpOHOB Ha HYJIEBOM YPOBHE.
Karouesvie caosa: axcnepmusa 06seKmos; npoezHo3upoSaHuUe; MHONCECTNEEHHAA Peepec-
cus; epebnesas peepeccus; PeeysApu3auus; Hetuponnas cems; obywenue modeau; adanma-
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