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One of the most interesting and relevant approaches for solving optimization problems
are parallel algorithms that work simultaneously with a large number of tasks. The
paper presents a new parallel algorithm for NACO that is a hybrid algorithm that
consists of the Ant Colony Optimization method combined with the Neighbour Joining
method to get accurate and efficient results when solving the Traveling Salesman Problem.
Through carrying out comprehensive experiments using a wide variety of real dataset
sizes and the multi-core system, the practical results show that the developed program
outperforms NACO in terms of execution time and consumed storage space. Availability
and implementation: source codes in MATLAB 2017 are publicly available at Internet’.

Keywords: ant colony optimization; mneighbour joining method; traveling salesman
problem; parallel algorithm; multi-core system.

Introduction

One of the most interesting and relevant methods for solving optimization problems are
parallel algorithms that work simultaneously with a large number of current solutions. In
2020, Warif, Al-Neama, and Ghassan presented a new hybrid method to solve Traveling
Salesman Problem (TSP), which is resulted from combining Ant Colony Optimization
(ACO) and Neighbour Joining method (NJ), and called the new method Ant Colony
Optimization and Neighbour Joining to solve TSP (NACO) [1].

The main idea of the NACO method is to reduce the distance matrix generated by the
cities which the salesman must to visit. The NACO tries to merge the cities by constructing
a phylogenetic tree and then generating a new matrix called LEAF1 which represents the
first stage of the joined leaves. When the salesman reaches any city within this matrix,
he is moved directly to the next corresponding city without doing any computations.
In NACO, runtime and storage space are the most consuming phases appear when the
program performes re-computations of the moving probability on each edge.

Also, visited cities are removed from the distance matrix and the Roulette Selection
function that responsible for choosing the next city is computed. The MATLAB profile of
NACO shows that the Roulette Selection function computation typically exhausts up to
45% of the execution time [1].

In NACO, the complexity of the searching optimal solution is of the order O(n?(n—w)).
Recently, diverse software approaches have been presented to reduce the consumed time
and space in the ACO method. Such approaches include parallel processing [2], and usage
of easily accessible accelerator technologies such as GPU |[3].

From this point of view, NACO algorithm has two obstacles.
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The first one is space complexity especially when dealing with the big number of cities,
which would require the occupancy of capacity storage for most of the programs. As an
example, finding the shortest path with a dataset that includes (10k) cities requires several
gigabytes of the hard disk, which can not be provided by the most computer resources.

The computational load of Roulette Selection function calculations increases greatly
as the number of ants increases. Actually, sometimes, even the best algorithms fail in to
obtain good accuracy results and deal with these complexities efficiently at the same time.

Therefore, this paper presents a new parallel algorithm for the NACO method to
overcome the mentioned obstacles without altering its accuracy. Our aim is to produce a
superlative method over existing ones, especially in execution time.

NACO algorithm has good accuracy with reducing the memory requirement and
acceptable accelerating execution time. Nowadays, the best solution to increase the speed-
up of NACO method is considered to be the parallelization widespread programming
method that allows multiple independent processes that share the same resources to
be executed concurrently at less time. A platform with a multi-core system is used to
implement this program.

The paper is organized as follows. A brief summary of parallel computing is presented.
Then, explanations of the independent procedures of NACO are given. Next, we propose
the optimization algorithm called PNACO for the NACO computation using parallelism on
multi-cores. Finally, we present the comparative study of the parallel proposed algorithm
and the sequential proposed algorithm.

1. Parallel Computing using Multi-Core System

Parallel computing is the simultaneous use of multiple-core system to solve a
computational problem. A problem is divided into tasks that can be solved concurrently.
Each task is divided into a sequence of instructions (threads). The instructions (threads)
are executed simultaneously on different processors. However, the choice of computer
platform often significantly influences on the result [4].

As regards advantages [5], parallel programming is able to
1) decrease the execution time required to get the result and to solve large problems;

2) use non-local resources on a local area network, or even Internet when local computing
resources are insufficient.

On the other hand, the pivotal disadvantage of parallel programming is the
communication time required for simultaneity and transferring of data between processors.
Fig. 1 shows the parallel programming execution |6, 7].

1.1. Parallel Algorithm

Algorithm design is the most significant stage in problem solving. The complexity of
today’s applications coupled with the widespread use of parallel computers led to great
interest in the parallel algorithms.

A parallel algorithm is a method to solve a given problem designed to be performed
on a parallel computer. There exist different levels of parallelism that can be presented
in parallel algorithms as follows [4]. The first one is the lowest level of parallelism called
Instruction-level parallelism, where instructions are executed simultaneously. The second
one called data-level parallelism is the execution of the same operation(s) on all the
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Fig. 1. Parallel programming execution

data elements at the same time. The third one called task-level parallelism uses tasks to
implement parallelization. A simple definition is the following: a task is a list of instructions
along with input data that produces an optional output, e.g. the result of executing the
instructions.

The use of task-level parallelism to do multiple tasks in parallel on the same dataset
is contrary to data-level parallelism. For example, it is clear that the tasks to find the
maximum and minimum values on the same dataset are possible to execute in parallel.

1.2. Measurements

The run-time, speedup, and efficiency are the common timescale units to perform
measurements for the proposed parallel program. Parallel run-time is the elapsed time
for complete computation of the best tour, including all comparison, updating, and all
operations. The ratio between the parallel execution times of the two involved programs
is called the parallel speedup and given by the following equation:

Tseq

S = T’ (1)

where T, is the running time of the sequential program and T}, is the running time of
the parallel program. The ratio of the corresponding parallel speedups of the number of
cores is called parallel efficiency and given by the following equation:

2. Parallel of NACO Algorithm

To speed up the algorithm, it is advisable to run ants in separate execution threads in
parallel, but here it should be taken into account that a large number of ants compared
available multi-core processors will create an execution queue that will slow down the
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Fig. 2. The Flow chart of NACO

operation of the algorithm. In NACO algorithm, there exist three computational loops
that the entire algorithm counts on completely as shown in Fig. 2.

Therefore, any modification of these loops will affect the efficiency of the algorithm
directly. In Fig. 2, red color shows the first computational loop, which is considered to be
the main loop of the algorithm; however, it is not possible to modify this loop and apply
the parallel loop on it, because the components inside the loop are not independent. The
second loop, which is shown in green color in Fig. 2, is the interior loop of the algorithm;
however; it is also not possible to modify this loop and apply the parallel loop on it. Indeed,
this loop is created for moving an ant from a city to another depending on the Roulette
Selection function where its values differ depending on the placing ants randomly in the
beginning of the algorithm. In other words, the lines inside this loop are not independent.

Finally, the third computational loop, which is shown in blue color in Fig. 2, is the loop
to be modified. In fact, this loop is in charge of finding k& tours for k ants independently.
Therefore, applying the parallel loop is possible here.
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Optimization uses the parallel tools library in MATLAB which is intended for systems
with shared memory. It is easy to see that solving problems related to the accuracy
of algorithms in the described way entailed significant losses in the efficiency of using
loops. The independencies of routes from each other with a large number of iterations are
precisely the conditions in which it is advisable to use optimization by means of parallel
programming.

In MATLAB, the parallel tools library is suitable for this purpose: the (parfor) allows
the algorithm to distribute the operations between threads whose number Nthreads
depends on the number of processor cores of the computer on which the algorithm runs.

First, initialize all parameters for the PNACO including distance computations,
number of cities, alpha, beta, ... . Then, the task parallelism process to the tour
construction is based on the movement of ants which are run in parallel looking for the best
tour. The construction of the tour and update of the pheromone loop are carried out until
they reached the convergence criterion. The procedure of ants’ movement is distributed on
the available processors (P) and implemented based on task parallelism on a multi-core
system.

To run PNACO algorithm in MATLAB using (parfor), identify each ant as a thread,
then each thread is distributed among the available processors (P) equally. All threads
assigned to each ant include an ant memory (list of all visited cities, and so on) and its
movement.

Algorithm and Fig. 3 briefly summarize the process developed by each ant.

Algorithm 3.1: PNACO Algorithm

Input: cities number, ants number, iteration and ACO parameters
P ,8 ) CO: Q
Output: Min of (local solution)
1 Compute distance matrix
2 Compute LEAF1 matrix using NJ algorithm
3 for t <+ 1 {o iteration do

4 | parfor m < 1 to ants number do

5 for n + 2 to cities number do

6 if i € LEAF1matriz then

7 ‘ go to ]

8 else

9 L compute P and chose j

10 | store the tour h and compute the cost (h)
11 | localsolution < Min(cost(h))
12 store local solution
13 update pheromone matrix

14 globalsolution < Min(localsolution)

Algorithm in MATLAB
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Fig. 3. PNACO flow chart

3. PNACO Performance Evaluation

This section presents and discusses the results obtained when measuring the
performance of the proposed PNACO algorithm. The algorithm is implemented in
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MATLAB2017 [8]. The performance of the conceived parallel implementation of the
proposed algorithm was extensively evaluated using different performance measurements.

We present the evaluation methodology used to study correctly the results obtained
by the described solution. The improvements achieved due to introduced optimizations
for the multi-core system are intensively explored. The proposed hybrid paradigm agrees
very well with the characteristics of a multicore system. The resulted program has such
an advantage of fine-grained parallelism as a loop level, in which each (parfor) spawns a
team of threads to occupy the multi-core processors when encountering parallel sections
of code using parallel tools.

The given below implementations of all the experiments were obtained using the
following information (Devises and Software):

e HP Laptop with 8GB of RAM and Intel core i7-8565U CPU,
e 64-bit windows operating system,
e MATLAB R2017a (Version 9.2) [8].

The proposed algorithm (PNACO) was tested on many datasets of TSP. In addition,
the results of PNACO was compared with ACO and NACO. The datasets that used in
experiments can be found at the website?.

All the parameters that are shown in Table 1 were taken from the range of the standard
parameters without any changes [9].

Table 1
PNACO, NACO and ACO parameters setup
Parameter name and symbol Value
Density of pheromones @) 100
Coeflicient of Pheromone evaporation p 0,1
Data gathering factor « 1
Indicative prediction factor 5
Number of iterations ¢ 200
Number of ants k Equal to the number of cities

The datasets used in the experiments are dantzigd2, att48, eilb1, €il76, €il101, pr107,
bier127, krob200.

3.1. PNACO Execution Time

The analysis and the results of available datasets are listed below. Experiments
were executed on a 4 cores processor. The number of cities controlled the number of
computations that required for a tour. The run-time (sec.) of the PNACO results against
ACO and NACO are listed. Table 2 presents the time execution of ACO, NACO, and
PNACO.

The number of cities has a large influence on the performance of PNACO. For the
datasets (eil51, att48, and dantzigd2), PNACO shows a slight low performance comparing

2http://elib.zib.de/pub/mp-testdata,/tsp/tsplib/tsp/
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Table 2
The execution time of ACO, NACO, and PNACO

Datasets | ACO runtime (sec.) | NACO runtime (sec.) | PNACO runtime (sec.)
dantzigd2 7.92 7.59 19,61
att48 11,07 10,45 17,88
eilbl 12,27 11,56 17,95
€il76 38,65 29,09 22,33
eil101 60,65 57,08 25,27
pri07 72,47 66,37 26,70
bier127 102,62 95.14 2770
krob200 319,68 279,66 29,88

with the other algorithms. On the other hand, PNACO shows a significant improving in
the performance when the number of cities is more than 76. Fig. 4 shows Relation of
execution time and the number of cities.

1000

BACO ENACO MEPNACO

100

10

Run-time (sec.)

dantzig42 atta8 eils1 eil76 eil101 prio7
Datasets

bier127 krob200

Fig. 4. Relation of execution time and the number of cities

Formula (1) is used to calculate the speedup of PNACO. The highest speedups
appeared when PNACO is implemented on (krob200). Table 3 shows the speedup of
PNACO comparing with ACO and NACO, in addition, Fig. 5 illustrates the comparison.

Table 3
PNACO speed-up
against ACO and NACO

Speed-up

Datasets ACO NACO
dantzigd2 | 0,403824 | 0,387251
att4d8 0,619099 | 0,584352
eil51 0,683247 | 0,643822
eil76 1,731141 | 1,303013
eil101 2,400588 | 2,259155
prl07 2,713752 | 2,48558
bier127 | 3,704387 | 3,434294
krob200 | 10,70072 | 9,360971
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Fig. 5. Speed-up comparison between PNACO and both NACO and ACO

3.2. PNACO Efficiency

The criterion of efficiency is one of the most important criteria when it comes to
the standard comparison of the competent algorithm. In the efficiency comparison test,
PNACO shows an obvious superiority comparing with ACO and NACO. In fact, the
efficiency of PNACO reached up to 2,66 and 2,32 comparing with ACO and NACO,
respectively. Table 4 shows the full comparison between the proposed algorithm and
competed algorithms.

Table 4
Efficiency comparisons between PNACO
and both ACO and NACO

Datasets | ACO | NACO
dantzig42 | 0,10 | 0,095
att48 0,155 | 0,145
eilb1 0,17 0,16
eil76 0,435 | 0,325
eil101 0,6 0,565
pr107 0,68 0,62
bier127 | 0,925 | 0,86
krob200 | 2,675 | 2,32

3.3. PANCO and CPU Performance

The CPU performance of NACO is illustrated in Fig. 6. On the other hand, the optimal
performance of PANCO, with a full CPU usage up to 100%, is illustrated in Fig. 7.

4. The Complexity Analysis of PNACO

In ACO and NACO, the Big O-notation are O(n3) [10] and O(n?(n—w)), respectively.
Assume that the numbers of iterations, cities, and ants are all equal, and w is positive
and represents the number of rows in the matrix LEAF1. In PNACO, it is clear that
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Fig. 6. The performance of CPU when implementing the NACO algorithm
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Fig. 7. The performance of CPU when implementing the PNACO algorithm

the number of ants is divided by the number of cores. Therefore, the Big O-notation of
PNACO is of the order O(n(n?)(n—w)), where p represents the number of cores. As shown
in Fig. 8, this is a great development in improving program implementation time.

Conclusion

In the paper, we propose a new parallel NACO algorithm, which is targeted at the
multi-cores system and accomplishes TSP computation through the efficient improvement
of the overall processing time. This is due to the new suggested partitioning and
scheduling approaches, integrated with (parfor) function in parallel tool in MATLAB,
and the availability of more cores.
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Fig. 8. The implementation time improvement of PNACO against ACO and NACO

The NACO and PNACO methods were implemented on an HP computer with 8GB
of RAM and Intel Core i7-8565U CPU, 64-bit Windows operating system, and tested on
the common benchmark (TSPLIB) datasets. As a result, PNACO program outperforms
NACO at 9,4-fold speedup and ACO at 10,7-fold speedup when comparing on the dataset
(krob200). This accomplishment is due to the perfect hybrid partitioning approaches. In
addition, PNACO supreme efficiency is up to 2,66 and 2,32 with respect to the ACO and
NACO, respectively, for the big cities number.
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PNACO: ITAPAJIJIEJIbHBIN TUBPUIHBIN AJITOPUTM
OBBbEJINHEHNS COCEJEN B COUYETAHU C OIITUMU3AITUEN
KOJIOHIN MYPABBEB HA MHOTOSIIEPHOI CUCTEME

B.B. Axusa', M.B. Aav-Huma?, I.9. Apug'
YVnusepcurer Tuxpura, r. Tukput, Vpak
Mocynbekuit yausepeurer, . Mocyi, pak

OaHrMy 13 HaubOJIee MHTEPECHBIX U aKTYaJbHBIX IIOAXOI0B K PEIIeHNI0 33124 OIITHU-
MU3AIAN SIBJISIOTCS TapaslJIe/IbHbIE aJTOPUTMBI, KOTOPbIE pabOTAIOT OJHOBPEMEHHO € 0O0JIh-
MM KOJIMYIECTBOM 3aJad. B 3Toil cTraTbhe mpejacTaB/IeH HOBBIN MapaJIeTbHBIA aJITOPUTM
aiasgs NACO, T.e. ruOpUIHbBIA AJITOPUTM, KOTOPBIA COCTOUT M3 METOHA ONTUMMU3AIINNA KOJIO-
HUU MypPaBbeB B COYETAHUU C METOIOM OObEJMHEHUs] COCeleil JJisi MOJIyIeHUsI TOYHBIX U
3 PEKTUBHBIX PE3YILTATOB IPHU PEIeHNN 3a1a9 KOMMUBOsIZKepa. Pe3yabTrarsl, Moy IeH-
Hble Ha TMPAKTHUKE IPU IPOBEICHNN BCECTOPOHHUX IKCIIEPUMEHTOB C MCIOJIH30BAHTEM 0OJTh-
IITOTO KOJIMYECTBA PEAJTHHBIX HAOOPOB JAHHBIX W MHOTOSIEPHON CHUCTEMBI, TOKA3AJHM, ITO
paspaborannas nporpamma npesocxoauT NACO ¢ TouKu 3peHus BpeMeHHU BbIITOJIHCHHUS U
OTPEHJIIEMOTO JTUCKOBOI'O IIPOCTPAHCTBA. JlOCTYyIHOCT U peasiu3alys: UCXOHbIE KOJMIbl B
MATLAB 2017 pa3melienbl B OTKPBITOM J0CTyIe B cetu MHTEpHeT.
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