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A two-stage discrete model for the location of facilities is considered. At the first stage,
a set of facilities to be opened is selected. At the second stage, additional facilities may be
opened due to the realization of random demand for products. Customers preferences are
taken into account in choosing the facility in which they will be served. The quantile of
losses (income with the opposite sign) is used as a criterion function of the model. Several
optimization problems are stated. In the first problem, a set of facilities to be opened
is selected for a given value of the reliability level. In the second problem, along with
the set of facilities to be opened, the reliability level of the quantile criterion is selected.
At the same time, restrictions on the level of reliability and the value of the quantile
criterion are introduced. Two approaches to setting these constraints are proposed. To
solve the problems stated, the method of sample approximations is used. A theorem on
sufficient conditions for the convergence of the proposed method is proved. We formulate
mathematical programming problems, the solutions of which under certain conditions are
solutions to the obtained approximating problems. Numerical results are presented.

Keywords: facility location; stochastic programming; quantile criterion; sample

approximation.

Dedicated to Professor A.l. Kibzun
on the occasion of his anniversary

Introduction

When planning the development of the company activities, there is a need for planning
the opening of new facilities. At the same time, the demand appearing in the future for
products is not known at the time of making a decision. It is necessary to select the location
of the enterprises such that to receive the maximum income from customers. Due to the
random nature of demand, income is also a random value. For mathematical modelling
of the decision-making process in this system, it is necessary to formulate an optimality
criterion for the chosen strategy. In this case, the criterion in the form of the maximum
value of the expectation is not justified, since the average income is of little interest in the
case when planning is carried out for a small number of time periods. It is preferable to
use a criterion that takes into account reliability requirements, in particular the quantile
criterion [1]. The quantile criterion is the minimum level of losses, the non-exceeding of
which is guaranteed with a given fixed probability. The use of a quantile criterion requires
setting the level of reliability. Choosing the level of reliability largely depends on the
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specifics of the system under consideration [1], therefore, the study of methods for its
determination is a problem of current interest.

Review of mathematical formulations of facility location problems, including stochastic
ones, can be found in |2, 3]. Facility location model with quantile criterion was proposed
in [4]. The quantile criterion and its convex upper approximation (Conditional Value-at-
Risk, CVAR) in stochastic problems of facility location were used in the work [5], in which
the problem was solved by reducing it to a mixed integer mathematical programming
problem. The CVAR criterion was also used in [6]. In the bilevel competitive location
problem, the quantile criterion was used in our previous work [7], a number of ways to
obtain estimates for the solution of which is proposed in [8]. A bi-objective generalization
of this model was proposed in [9].

In two-stage planning, some decisions are made before the implementation of random
factors, while others are made when the implementation of random factors becomes known.
In stochastic programming, two-stage problems [10] are used to model such a decision-
making structure. Two-stage stochastic problems of facility location with a criterion in the
form of expectation were proposed in the works [11,12].

This article proposes a two-stage facility location model with quantile criterion. We
propose a setting in which additional optimization is performed according to the reliability
level of the quantile criterion. To solve the problem, the method of sample approximations
of stochastic programming problems is used [10,13].

1. Two-Stage Model of Facility Location with Quantile Criterion

Let us describe a stochastic two-stage model of facility location with quantile criterion.

Denote by I £ {1,...,m} the set of possible locations of facilities, and by
J= {1,...,n} we denote the set of customers.

Assume that the income X;;, 7 € J, received by the facility ¢ € I from the customer j €
J is a random value with realizations denoted by z;;. Let X be a random matrix composed
of the values X;;. The distribution of the matrix X is assumed to be known. Denote
realizations of a random matrix X by z. We assume that the random matrix X is given
on the probability space (X, F,P), where X is a compact set in R™*" F is a complete
(with respect to the probability measure P) o-algebra of its subsets. For convenience, the
space of elementary events is identified with the space of realizations of the random matrix
X.

Let a linear order >~; be given on the set I, which describes the preferences of the
customer j € J. For a given linear order, ¢ >; k& means that the customer j chooses the
facility ¢ among the two open facilities ¢ € I and k € I.

The decision to open a facility is made in two stages. The realization of random demand
becomes known at the second stage, and at the first stage only its distribution is known.
Suppose that the vector f £ (f;), i € I, consists of the known costs of opening of the
facilities at the first stage, and the vector g = (g;), i € I, describes similar costs if the
facility is opened at the second stage. Since, at the second stage, the opening of a facility
requires a prompt decision-making on the fact of the arising demand, we assume that
gi > fi,1 el

At the first stage, the optimization strategy is the vector u = (u;), @ € I, in which
u; = 1, if, at the first stage, the facility ¢ € I is opened, and u; = 0, if the i-th facility is
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not open. The second stage strategy consists of the vector y = (y;), ¢ € I and the matrix
Y = (yi5), 1 € I, j € J. If the facility ¢ € I is opened at the second stage, then y; = 1,
otherwise y; = 0. The matrix Y describes the assignment of facilities to customers for
services. The variable y;; shows whether the facility ¢ € [ is assigned to serve the customer
J € J:y;; = 1, if the i-th facility is assigned, and y;; = 0, if the i-th facility is not assigned.

The problem of the second stage is solved with the known strategy of the first stage u
and the known realization x of the random matrix X:

5 i Tyt al .
<I>(u,x)—(y§r)1éry1(u){f u+tg y—zzxmyu}, (1)

icl jeJ

where Y(u) is the set of pairs (y,Y) € {0,1}™ x {0, 1}"™*" satisfying the constraints

Zyijglaje‘]; (2)

el
ui+yi > yij, i €1, j € (3)
wityi+ Y yy<lLiel jel (4)

I|i51

In the objective function of problem (1), the first two sums express the costs of opening
the facilities at the first stage and the second stage, respectively, and the third sum
expresses the income received from customers. This means that at the second stage, the
profit taken with the opposite sign is minimized. Constraint (2) forbids the assignment
of more than one facility to serve the j-th customer. Constraint (3) allows to assign only
facilities opened at the first or second stage to serve the customers. Constraint (4) forbids
to open the i-th facility at the second stage, if it was already opened at the first stage. Also,
this constraint forbids assigning the facilities that less preferable for the j-th customer than
the facility with the number 4, if it is opened at the first or second stage, to service the
7-th customer.

For each u € {0,1}"™, we can consider the random value ®(u, X). Define the quantile
of the leader objective function:

¢a(u) = min {p € R | P{®(u,z) < ¢} > a}, ()

where a € (0,1] is the given level of reliability. The minimum possible value of the loss
function is denoted by g(u) £ in)f( O (u,x).
xre

The two-stage problem of the location of facilities (the problem of the first stage) is
formulated as follows:

U2 A i o(w), 6
o = Arg min (u) (6)
wh 2 min g (u).

uef{0,1}™

2. Optimization by Reliability Level

Note that, in problem (6), the choice of the reliability level a can lead to significant
changes in the structure of the solution. In this regard, a modification of problem (6) is
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proposed, the purpose of which is to relieve the need to pre-install the level a.. To formulate
this problem, we introduce the value

which is equal to the minimum possible loss, and the values
plu) £ flu,

which are equal to the maximum losses arising at zero demand for products. Note that
the value ¢, (u) — ¢ characterizes the excess of the minimum possible level by the losses
under a favorable scenario guaranteed with the probability o (in this case, the losses are
replaced by their upper estimation ¢, (u)), and the value g(u) — ¢ is the expected excess
of the minimum possible level by the losses in an unfavorable scenario. To prevent losses
in an unfavorable scenario from having a significant effect on the total amount of losses,
taking into account the probabilities of favorable and unfavorable scenarios, we require

that
a(palu) —¢) = (1 — a)(o(u) — @) (7)

The set of values (u, ) € {0,1}™ x [4,1], satisfying constraint (7), we denote by V. The
levels for which a < % are of no practical interest, and they do not satisfy constraint (7).
Thus, the optimization problem is proposed for consideration:

V' Arg min o (u), (®)

(u,@)€

Y2 (urrolli)gv #alt)

Along with constraint (7), we consider the constraint of the form

Spalt) — ) > (1= )3~ o), ©

where
¢ =flh = Zfz
iel
are the maximum possible losses, which appear with the opening of all facilities and zero
demand for products. Note that constraint (9) is a strengthening of inequality (7). The set
of (u,a) satisfying (9) is an inner approximation of the set described by (7). This follows
from the fact that £(¢a(u) — ¢) < a(pa(u) — ¢) and @(u) < @. It should be noted that
constraint (9) is satisfied when o = 1, which means that it describes a non-empty set. The
set of pairs (u, ) € {0,1}™ x [%, 1] satisfying constraint (9), we denote by W.
Further, along with problem (8), we consider the problem

A .
W* £ Arg min ¢, (u), (10)
(u,) W
* .
0* = min @, (u).
(u, ) EW
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Problems (8) and (10) are particular cases of the problem

U* 2 Arg min @, (u), (11)
(u,a)eU
O el

where

U= {(u,a) c {0,1}™ x E, 1} | G(u, o, pa(u)) > O},

for each u € {0,1}"™ the function («, ¢) — G(u, a, ) is continuous and non-decreasing in
each argument such that

1
G (u, 5,(,01/2(’&)) <0, G(u,1,¢1(u)) > 0.

3. Construction of Sample Approximations

Let (X"), v € N, be a sequence of independent identically distributed matrices
whose distribution coincides with the distribution of the matrix X. We assume that
this sequence is defined on some complete probability space (€2, F,P’). Using the sample
(X1, Xa, ..., Xn), we construct an approximation of the quantile function:

wy (u) = min{p € R | P (u) > a},

where P)Y(u) is the estimator for P{®(u, X) < ¢}:
| X
P (u) £ N D Xisor] (B(u, X7)),
v=1

(a) 1 ifae A,
a) =
X4 0 ifa¢ A

Sample approximation of problem (6) has the form

Ud & Arg min g/ (u), (12)
po = min gy(u).

uef{0,1}™

Let us write a sample approximation of problem (11), special cases of which are
problems (8) and (10):

[I>

UY 2 Arg min N (), (13)

(u,a)eUN

=

A . N
= min u),
min @ (1)

¥

where

uv & {(u,a) € {0, 1) x B 1} | G, o, 0N (u)) > o} |
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Note that the function a — ¢, (u) is piecewise-constant function, which ensures that the
minimum in (13) is attainable.

Let us investigate the question of convergence of the constructed sample
approximations. The theorem on the convergence of solutions to stochastic programming
problems with quantile criterion was proved in [14].

Theorem 1. Let the following assumptions be fulfilled:
1) the set of feasible values of the variable u is compact and non-empty;
2) the function (u,x) — ®(u,x) is continuous in u and measurable in (u,x);
3) for all € > 0, there exists a pair (i, ) such that

‘95_902‘ SE, P{@(U,X) S@} > .

Then

*

lim ¢ = % P’-almost surely (a.s.),
N—o00

lim D(UY,Uf) =0 P-as.,
N—oo

where

is the deviation of the set UY from the set U?.

It is easy to see that the first two conditions of Theorem 1 are satisfied for problem (6).
Condition 3 of Theorem 1 is satisfied, for example, when X = {x € R™" | z;; € [a;;, bij]},
where a;; < b;;, and the measure of any open subset of X" is positive.

Let us present the conditions for the convergence of sample approximations of
problem (11).

Theorem 2. Let X = {x € R™" | 2;; € [a;j, bi;|}, where a;; < by, and the measure of
any open subset of X is positive. Then

lim oV =¢* P'-a.s., (14)
N—o00
lim DUN,U*) =0 P'-as. (15)
N—o0

Proof. As follows from [1, Lemmas 2.1, 2.2, the quantile function o — ¢, (u) is continuous
and non-decreasing, therefore it is possible to define correctly

1
a*(u) = min {04 € li, 1) | G(u, a, N (1)) > O} :
Moreover, a*(u) is the only root of the equation

G(u, o, o (u)) = 0.
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Note that, for u € U*, the pair (u, @*(u)) is optimal in problem (8). Let

() = max {a € [5:1) | ) = o)}

By Theorem 1, for all u € {0,1}™ and for all a € [%, 1), the following convergence
takes place:
lim oY (u) = po(u) P-as.
N—oo
It follows that there exists a set of elementary events ' C € of probability measure 1,
where the convergence takes place
lim ¢} (u) = pa(u) (16)
N—oo
for all w € {0,1}™, @ € [1,1) N Q.
Let € > 0 be an arbitrary constant. Due to the continuity of ¢, (u) by « (and hence
to the uniform continuity on any segment in [4,1)) we can choose 6§ € (0,¢€) such that
|0ats(t) — pa(u)| < €. Choose the values a(u) € Q, @(u) € Q such that

a*(u) —0 < a(u) < a™(u), o (u) <a(u) <a™(u)+4.

Then, on the set ', starting from some number N, for all N > N the following conditions
hold:

(u,a(u)) e U™, (u,a(u)) ¢ U", (17)
o8 (1) = aqy ()] < & @l (1) — Gau (W] < e

Let
AV(u) 2 Arg min {o¥(u) | (u,) € U).
oeli)
Let o € AN(u). Due to (17), & > a(u). From the continuity of a — ¢, (u) and

convergence of (16), it follows that for sufficiently large NV (say, N > N’) the inequality
o™ < a(u) holds. Then, for N > max(N, N’),

o (1) = o (u) (1) < @Ry (1) = au) (1) < @R (1) = aq) (1) + 2€ < 3e.
On the other hand,

Par () (1) — ©8v (1) < Pa) () = ©N (1) < Gag) + 26 — Py (1) < 3e.
Since € is arbitrary,
lim o (u) = @ar () (1)

N—oo
on the set ' of probability measure 1, which proves the convergence of (14).
Since the set of possible values of u is finite, on the set '

WIS I 2o () = 2 o) = ¢

Setting sufficiently small ¢ > 0, we obtain that, starting from some number N, for all

N > Nu (uV, o) € UV, there exists a strategy (u*,a*) € U* such that u* = u,

o™ e (a(u*),a(u*)), which means that |a” — a*| < e. Thus, convergence (15) is true.
-
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Therefore, we can formulate a corollary to Theorem 2 on the convergence of sample
approximations of problems (8) and (10). Let

VIS Arg min pg(w), NS min op(u),

(w,a)€V (u,)eVN
N & N &
WS AT B e () 0TS i e )

where

v

PN A {(u,a) € {0,1}™ x F, 1} | alpq (u) — )

. (1= a)(e(u) - )}

w2 ) € 0.7 x [ 31] 1o - e 220 - (e - )}

Corollary 1. Let the conditions of Theorem 2 be satisfied. Then
lim ¥ =¢* P'-as.,
N—o00
lim DOVY, V) =0 P'-as.,
N—o0

lim 6N =6* P'-as.,
N—00

lim DOWY, W*) =0 P’-a.s.
N—oo

Proof. Problems (8) and (10) are the special cases of (11), therefore Theorem 2 is valid for
them.
(]

4. Solving Approximating Problems

For a fixed realization of the sample (x!, 22, ... 2"), sample approximations of the
problems under consideration can be considered as stochastic programming problems
with a discrete distribution of random parameters concentrated on the set of sampling
realizations. This allows to reduce the problems to mixed integer programming problems
using the technique described in 13, 15].

Introduce the variables y” € {0,1}™, Y € {0,1}™*" v € {1,..., N}, corresponding
to the strategies of the second stage in the realization of the random factors x¥, and also the
vector of variables 6 € {0,1}?, in which d, = 1, if for the realization ®(u,z") < ©¥(u)).
Problem (12) is reduced to a mixed integer linear programming problem

© = min (18)
uel, peR, (y1,Y1),..,(yN,yN)eY(u), 6€{0,1} N
subject to
Flut g™y =) > i <o+ (1-6)@—9), ve{l,...,N} (19)
i€l jeJ
1 N
v=1
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In this case, the optimal value of the variable ¢ is equal to ¢, and the set of optimal
values of the variable u coincides with the set UL,

If the conditions of Theorem 2 are satisfied, then the value ¢ = min,ego,1ym @o(u) can
be found as a solution to the integer linear programming problem

. T T
= min u + — bz S

el jel

To solve problem (13), it is necessary to choose the minimum of the values ¢ (u) that
satisfies the constraint

G(u, o, 05 (u)) = 0. (21)

Unfortunately, even under constraint (9), the resulting problem is nonconvex. However,
we can consider the problem

© — min (22)
uel, peR, (y1,Y1),..,(yN,yN)eY(u), §€{0,1}V, ae[%,l)

under constraints (19), (20) and
G(u, a, ) > 0. (23)

If the obtained solution to problem (22) has the property that among constraints (19)
there exists an active constraint corresponding to 9§, = 1, i.e.

T T, v v v
_ Y. 5]}: 1 =, 24
ue?ll%.},ijv}{f utgy szwyw | } ¥ (24)

el jed

then the optimal value of the variable ¢ in this problem is equal to the optimal solution
©" to problem (13).
When approximating problem (8), constraint (23) takes the form

alp—p) > (1 —a)(p(u) —p),

while approximating problem (10) constraint (23) takes the form

o921 -a)(@-g). (25)
Thus, the approximation of problem (10) is carried out by a mixed integer linear
programming problem, and the solution to the problem approximating (8) requires the
use of nonlinear optimization methods.

If condition (24) is not fulfilled, then we can propose a way to find the upper bound for
the optimal solution to problem (13). Let the solutions to problem (18) or several levels
a be found, denote them by «q,...,ay;. Then, among them, choose the minimum «y, at
which G(u*, o, ¢l ) > 0, where u* is the optimal value of the variable u in problem (18).
The found solution u = wuy, o = a4 provides an upper bound for the optimal solution
to problem (13). Taking into account the monotonicity of the function G, the proposed
procedure can be accelerated by using the dichotomy method.
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5. Numerical Experiment

To illustrate the obtained results, let us consider the problem for the following data:
m=4,n=3,f=1(1,23,4)", g=(7,815,12)". Customers’ preferences are as follows:
I =121 3>=14,4>22>33%>21,3>31>32 >3 4. The random values X;; are
independent and distributed uniformly on the segments [0, b;;]. The values b;; form the
matrix

10 8 5
4 4 14
12 10 8
2 18 5

Results of solving problem (22) with constraint (25), approximating problem (10), are
shown in Table.

Table
Solving approximating problems
N uv av oV Time, seconds | Feasibility
100 | (0,0,1,0)" | 0,7261 | —8, 5407 10 +
200 | (0,0,1,0)" | 0,7300 | —8,8600 105 —
300 | (0,0,1,0)" | 0,7327 | —9,0808 313 +
400 | (0,0,1,0)" | 0,7325 | —8,9716 1658 +
500 | (0,0,1,0)" | 0,7320 | —8,8900 6789 +

Table shows that the obtained solution for the sample size N > 300 changes
insignificantly. The solutions given are (u’,a”) € W¥. In the column “feasibility” of
the plus sign means, constraint (24) is satisfied for the resulting solution. Note that, for
all N except 200, this restriction is satisfied, which means that the obtained solutions for
the given N are optimal in the problem approximating problem (10). The calculations
were performed on Intel Core i5-6300U CPU, 2,40GHz, 8Gb RAM. The mixed integer
linear programming problem was solved using the Gurobi solver.

The results obtained show the effectiveness of the approach already with the sample
size of N = 300. Note that a further increase in the sample size leads to a significant
increase in the computational time, which can be seen from Table.

Conclusion

The work proposes a two-stage model for the location of facilities with quantile
criterion. We propose approaches to modelling, which optimize not only the value of the
quantile, but also the level of reliability. To solve the obtained optimization problems,
the method of sample approximations was used. The problem with quantile criterion at a
fixed level of reliability is reduced to a mixed integer linear programming problem. For the
problem with the choice of reliability, a mathematical programming problem is proposed,
which, when the condition (24) is fulfilled, gives the sample approximation solution to the
problem. The question of sufficient conditions for the fulfillment of (24) in terms of the
original problem requires further study. Numerical experiments show that this condition is
fulfilled for many problems. Further research will study not only the issue of convergence
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of the constructed sample approximations, but also the question of their accuracy, as well
as a sufficient sample size for their construction. Numerical experiments show encouraging
results in this direction. Due to the difficulty of solving approximating problems for large
sample sizes, it is of interest to develop fast (possibly heuristic) methods for solving the
problem.

Acknowledgements. The work was funded by RFBR according to the research project
No. 19-07-00436.
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ABYX39TAIIHAYA CTOXACTUNYECKAA MOJAEJIb PASMEIITEHIN £
IIPEJOIIPUATII C KBAHTUJIbHBIM KPUTEPUEM U BEIBOPOM
YPOBH{A HAJTE2KHOCTU

C.B. Usanos', B.H. Axmaesa!
'MocKoOBCKMiT aBHAIIMOHHBIIH UHCTUTYT (HaIlI/IOHaJIbHI)Ifl HCCJIET0BATEIbLCKUIA
yuusepcutrer), r. Mocksa, Poccuiickas ®enepariust

PaccmarpuBaercst aByxaTamfas JUCKPETHAs MOJIEJIb pa3Merenus: npeanpustuii. Ha
[IEPBOM 3Talle BbIOupaeTcss Habop OTKPbIBaeMbIX mpeanpustuii. Ha Bropom sTare mo dhaxry
peaim3aIi CJIyJaifHOro CIpoca Ha IIPOIYKIIUI0 MOTYT OBITb OTKPBITHI JIOHOJHUATEIbHBIE
[PEIIPUSTHsI. Y AUTHIBAIOTCS IPEIITOYTEHUs] TIOTPeOuTe el 110 BRIOOPY MPEIIPUSITUSI, B KO-
TOPOM OHU OYIyT OOCTYKUBATHCA. B KauecTBe KPUTEPUAIHHON (DYHKIINT MOJIETN UCITOIb3Y-
eTCsl KBAaHTUJIb [I0TEPh (JI0XO0/Ia C IPOTUBOIOJIOKHBIM 3HAKOM ). DopMysiupyercs: HECKOJIBKO
ONITUMU3AIMOHHBIX 33/1a49. B nepBoit 3ajia4e BoiOMpaercss HabOp OTKPBIBAEMBIX TPEIIPUs-
THi IPU 38[AHHOM 3HAYEHUU YPOBHsI HaJeXKHOCTH. BOo BTOPOIi 3a/1a4e HAPsIly ¢ MHOYXKECTBOM
OTPBIBAEMbBIX IIPEJIPUSITHS BBIOMPAETCsI YPOBEHb HAJEXKHOCTU KBAHTUJIBLHOI'O KPUTEPHS.
[Tpu 9TOM BBOJATCS OrpaHUYEHNUST HAa YPOBEHDb HAJIEXKHOCTH W 3HAYCHIE KBAHTUIHLHOTO KPHU-
repust. [Ipemraraercs 1Ba MOAX0/a K 3aJJaHUIO TUX orpanuyenwii. JIjis pemmenust mocras-
JIEHHBIX 33J1a9 UCIOJIb3YeTCsl METO/] BIDOPOUIHBIX aIripokcuMariuii. JlokaspiBaeTcs Teopema
O JIOCTATOYHBIX YCJIOBHUSIX CXOIUMOCTH IPEJJIOKEHHOIO MeToja. PopMyIupyroTes 3a/1a9u
MaTeMaTUIeCKOro MMPOrPAMMUPOBAHUSI, PEIIeHUs] KOTOPBIX IIPU OIIPEJEJIEHHBIX YCIOBUSIX
SIBJISTFOTCSI PEIIeHUsIMU 10Ty YEHHBIX aIlllPOKCUMUPYIONUX 3aad. [IpuBogsarcs duc/ieHHbIe
pe3yJIbTaThI.

Karoueswie crosa: pasmeuserue npednpuamutl; cmoracmudeckoe npozpammuposatue;

KBAHMUALHOIT KPUMEPUT; 6b100POUHAA ANNPOKCUMAUUA.
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