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We consider the problem of scheduling cargo transportation on a railway network
segment. The railway network is represented by an undirected multigraph. The traffic along
the edges of the multigraph is carried out only at certain intervals — using “subthreads”.
We formulate a new mathematical model of traffic along the edges of the multigraph. A
universal criterion of optimality for the scheduling problem is proposed. We propose an
algorithm to find a suboptimal solution. A meaningful example is given.
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Introduction

The formation of a cargo transportation plan consists of two parts: formation of a
timetable for train (car) traffic along the railway network, assigning locomotives to trains
for carrying out transportation. These problems are solved separately due to not only
computational difficulties but even difficulties in constructing mathematical model that
allows to solve these two problems together.

We single out [1-5] among publications devoted to the problem of assigning locomotives
to trains. The papers [1,2] solve the problem of assigning train locomotives to trains with
goal to minimize the number of locomotives in usage and fulfill the transportation plan.
The works [3,4| consider the problem of assigning train locomotives with a criterion of
cost minimization. The paper [5] solves the problem to optimize a shunting locomotives
traffic along a railway station. In [5], the goal of optimization consists in performing all
shunting operations and reducing time in the shunting locomotives traffic.

We note [6-11,13] among the publications devoted to the problem of scheduling train
traffic. The work [6] provides a detailed overview of the early 21st century publications
on this problem. The paper [7] considers the scheduling problem for trains going in one
direction along a single-track track with the possibility of overtaking at stations. This
problem is reduced to an integer linear programming problem. The work [8] considers the
problem to create a cyclical timetable taking into account delays in the execution of the
timetable. The paper [9] considers the problem of forming trains, schedules and routes to
destination stations. The optimization criterion is the minimization of the total weighted
time of order fulfillment. Integer formulations of this problem are proposed taking into
account the limitations that arise in practice. The work [10] considers the problem of
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constructing two-way train timetable between two stations connected by a single-track
railway with a siding. The dynamic programming method is used to solve this problem.

The work [11] presents a polynomial algorithm for adjusting train timetable for the
case when some track of a double-track railway becomes unavailable, the remaining track
contains a siding. All trains are divided into two categories: priority and regular. Such
problems can arise, for example, when a track is closed for a repair — during track
possession [12]. The closest work to the material of this article is [13]. In this work the
problem of scheduling train traffic along the railway network is considered. Traffic along
the railway network is carried out only at certain intervals of time — using “subthreads”.
The present work continues and modifies [13] in reducing number of variables in the
optimization problem and constructing new universal optimality criterion for the forming
of train timetable along the railway network.

In this paper we investigate the problem of constructing optimal train timetable using
a railway network segment multigraph. The traffic along the railway network multigraph
segment is carried out at certain intervals — using “subthreads”. The formation problem of
optimal timetable is reduced to a mixed integer linear programming problem. An algorithm
to find a suboptimal solution is proposed. A meaningful example is given.

1. Basic Notations and Assumptions

Let us consider a railway network segment represented by an undirected multigraph
G =< V,E >, where V is a set of vertices (stations where the railway network branches,
stations whose number of incoming tracks is not equal to the number of outgoing tracks,
marshalling yards, terminal stations) and E is a set of edges (railway tracks) connecting
these vertices. Let |V| = m. By renumbering vertices of multigraph G from 1 to M we
compose the set of indices V' = {1,2,..., M}. Each element of this set uniquely determines
the vertex of the multigraph G. Impose restriction that M > 2. Otherwise, railway segment
consists of only one station and it is meaningless to make transportation plan.

Suppose that we have I trains, for each of which the following is given:

e index of departure vertex v € V’;
e index of arrival (destination) vertex v € V',

e time of readiness for departure t?ep', which is calculated as the number of minutes
from some initial instant of time;

e maximal amount of time d; during which the train is allowed to be at the departure
vertex from the moment of readiness;

e train travel time T, i.e. maximal amount of time during which the train is allowed
to be on the railway network (excluding time at the departure vertex) computed in
minutes.

Train traffic along railway hauls (between vertices) can only be carried out
at certain intervals. To describe such intervals, following [14], we use a set of
conflict-free “subthreads” Z. Each element 2z, of this set represents 5-element row

beg. beg. beg. : : :
2e = (v, v g, £.°% 179) ) where v, € V"’ is the index of starting vertex of movement,
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8- end

v € V7 is the index of ending vertex of movement, moreover v,i’ and vy are indices of
adjacent vertices in the multigraph G, ny is the number of the track connecting vertices
with indices v} and v, t7°® is the starting time of movement, is the ending time
of movement. We suppose that dimZ = K and renumber elements of the set Z from 1 to
K. Thus, a number from 1 to K determines parameters of the “subthread” uniquely.

Train traffic may be restricted due to the train stop at intermediate stations (between
departure and arrival stations) along the route. For example, there must be a change of
locomotives, the uncoupling/coupling of cars at some stations and some stations on the
opposite must be passed without the train stop. Therefore, we introduce minimal and
maximal possible duration of stay at the station with the vertex index v{™® after using the
k-th “subthread” by the ¢-th train: tbt min- and tSt max. =11, k=1K.

We denote duration of the forecast period by Trnax.- 1f the tnnetable is scheduled on a
day (1440 minutes), then Ty,.,. = 1440.

end
tk

2. Construction of Mathematical Model of Train Traffic Along
Railway Network Segment Multigraph

Let us formulate the mathematical model of train traffic of the noted above I
trains along the railway network segment given by the multigraph G on the base of the
“subthreads” set Z. We refer to a range of “subthreads” used by a train for movement as a
route. As a consequence it is possible to determine a range of vertices sequentially crossed
by this train from the route. We limit the maximal amount of “subthreads” in the route
by some predetermined number J. By the j-th phase of the route of the i-th train we
mean a movement of this train when the j-th “subthread” is used in the route, i = 1, I,
j=1,J+1

Let us introduce auxiliary variables 0;;; characterizing the usage of the k-th
“subthread” by the i-th train at the j-th phase, i = 1,1, j = 1,J+1, k = 1,K. A
variable 9, ;  is equal to 0 if the k-th “subthread” is not used by the i-th train at the j-th
phase, and ¢; ; x is equal to to 1 otherwise.

Using the introduced variables we form a set of feasible strategies. By definition of the
variables 9; ; ., we have

bijrk €101}, i=1,1,j=1,J+1,k=1K. (1)

To depart trains from its departure vertices, we introduce the constraints

K
Y Gak=1i=11, (2)
k=1

Z(s“kvk — P =TT (3)

To depart trains not later than d; from the time of readiness for departure, we impose
the constraints

Z 5i,1,kt2eg' <t g, i =1,1. (4)
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To ensure that the start of movement is not earlier than the time of readiness for departure,
we use

K
ty P < Z Giawty®, i=1,1 (5)
k=1

We cut off the possible use of routes with cycles, i.e. we use only simple paths along
the multigraph G for each train

J+1

> > oijpn<1,i=1,I,m=1,M, (6)

I=1 k8 =m 1<k<K

Traffic along the multigraph G' can only be along the adjacent vertices

K K K
D 0ugavf <Y G st + (1 - Z%H,k) M?, (7)
k=1 k=1

k=1

K K K
D Gkt = S s — (1 - Zéi,jﬂ,k) M, i=TTj=1J-1 (8
k=1

k=1 k=1

It is necessary that “subthreads” are docked in time, i.e. the arrival time at some vertex
of the multigraph G must not be more than the subsequent departure time from the same
vertex. And taking into account the duration of stops at intermediate stations on the
route, we get

K K K
Z Sin(td + t?f;; min) < Z 5i,j+1,ktzeg' +2 <1 - Z 5i,j+1,k-> Tinax. 9)
k=1 k=1 k=1

K K
D Gt ) 2 Gty i =11, =1,7 — 1. (10)
k=1 k=1

Arrival at the destination vertex is possible in no more than J phases. That is why we

introduce the constraints
I K

ZZ@,J-‘,—I,k =0, (11)

1=1 k=1

k=1

K K
+ (Z Sigk = 5z‘,j+1,k> vt =11 =17, (12)
k=1 k=1

K K K
> Gt < (1 = ikt Y 5z‘,j+1,k> M+
k=1 k=1

K K K
> Gt > <Z Sigk— Y 51,]-“,,{) i =1,1,5=1,J. (13)
k=1 k=1 k=1
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Let us comment constraints (7) — (13). Due to the presence of constraints (1),
components of the vector

K K K K
def
6’i - E 6’i,1,k7 E 5i,2,k‘7 CI) E 6’i,J,k7 E 6’i,J+1,k
k=1 k=1 k=1 k=1

can only be nonnegative integers. In connection with (2), the first component of the vector
0; is equal to 1. If the second component of the vector ¢; is equal to zero, then constraints
(7) — (10) are fulfilled. Constraints (12), (13) hold then the train arrives to the destination
vertex. If the second component of the vector ; is equal to 1, then constraints (12), (13)
are fulfilled, constraints (7) — (10) hold, since the condition of docking “subthreads” in
place and time must be met. Namely, departure and arrival must be from the same vertex,
departure time must not be earlier than arrival time from the same vertex (taking into
account train stop at the station). If the second component of the vector ¢; is equal to

K

k* = > 0i24 > 2, then constraint (7) is not fulfilled. It is connected with the fact that
k=1

maximal value of the right side of constraint (7) is negative, since by assumption M > 2

and

K K K K
Z5i72,k?)]i)eg' -+ <1 — Z(Si’Q’k> M3 S Z&i,Q,kM + (1 — Z&',Q,k) M3 =
k=1 k=1

k=1 k=1
=kK'M+(1-F)M°* < max k"M + (1—KkYM? =2M — M <0,

while the left side of this constraint is positive since vertex indices are positive. Likewise,
anywhere in the vector §; after 1, there are only 1 or 0. Note that, in the vector §;, after
0 can be only 0 because constraint (8) is violated otherwise. If there is 1 after 0 in the
vector 0;, then the left side of (8) is equal to 0 but the right side is equal to some positive
number. If there is some number k > 2 after 0 in the vector d;, then

K K K K
S Gyl (1 oy a) M= b (1 oy a) M-
k=1 k=1 k=1 k=1

—k—(1—-k)M>mink— (1 -k)M =2+2M —1> 0.
k>2
At the same time, the left side of (8) is equal to 0. Thus, the vector ¢; is a range of ones
followed by a range of zeros. The vector ¢; is guaranteed to have at least one zero due
to constraint (11). And this leads to the fact that the given system of constraints sets
the route from the departure vertex to the arrival vertex while at each phase exactly one
“subthread” is reserved.
Any “subthread” can not be used by more than one train

I J+1

Y k<l k=1K. (14)

i=1 j=1

Note that it is possible to determine rigidly specific edges of the multigraph G which
are sequentially intersected by the train within the framework of the constructed model.

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 65
u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2021. T. 14, N2 3. C. 61-76



A.N. Ignatov

To this end, at each phase, we need to impose the following constraints:

Z 5i,j,k = 17 1= 17[7j = 17‘]@‘*7
k:ke k)

K
Y Gigu=0,i=11j=J +1J+1,

where Kij C {1,...,K} is a set formed by numbers of “subthreads” that admissible for
use by the i-th train at the j-th phase according to a predetermined sequence of edges of
the multigraph G for traffic, and J; is the number of phases required to arrive from the
departure vertex to the destination vertex.

To ensure that train travel time is limited by 7}, we impose the constraints

Z(Saktend Z5z1ktbeg <T, i=11j=1/. (15)

3. Choice of Criterion to Form Optimal Timetable of Cargo
Transportation

To form a transportation plan, we use the criterion which consists in the minimizing of
total time spent by trains on the railway network segment from the moment when trains
are ready for departure. Before scheduling, it is not known how many phases a particular
train needs to use for arriving to the destination in the constructed model. Therefore, the
criterion should be formed from three parts: the total time of trains at railway hauls, the
total parking time of trains at intermediate stations in their routes, the total parking time
at departure stations from the time of readiness for departure. To obtain the total parking
time of trains at intermediate stations, we introduce auxiliary variables T and additional

constraints
K

> Z 5i,j+1,ktze Z 0;j, W =

k=1

~

Optimal value of the variable T” characterizes the time spent at the (j + 1)-th station in
the route (except for the destination station), j = 1,J. Taking into account introduced
variables and constraints we obtain the following optimization problem

K I J
25,]16 tend o tZeg.) + ZZT,Z,} +
i=1 3

1=1 j=1 k=1
g
the total time of trams at railway hauls the total parking time of
trains at intermediate stations (17)

I K I
+ E E 5Z‘717ktzeg' — E t?ep. — A Eln .
: — ; ; 1.7 k=T.K

t1,t2,0; 5,1, 13,20, i=1,1,j=1,J+1,5=1

the total parking time at departure stations
from the time of readiness for departure
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Note that the second term in (17) is responsible precisely for the total parking time
of trains at intermediate stations. Since if there is a need in only one phase for movement
for the i-th train, i.e.

k k
Z(Si,l,k =1, Z(Si,j,k =0, j=2,J+1,
=1 =1

then, according to (16), the value TZ 1 is not less than some negative number. But, according
to the constraint TZ 1 > 0, it is true that TZ 1 > 0 and other constraints (16) for the i-th train
are transformed in the constraints T > 0. Since there is the minimization problem then,
on an optimal solution (if this one ex1sts) it is true that TZ 1= ng =...=1T;;=0.Sum
of these variables is equal to 0 that should be in the case of only one phase for movement as
in this case there are no intermediate stations between departure and destination stations.
If the i-th train uses j* € [2, J]| phases for movement, i.e.

k
> Gik=1, =17,
k=1

k
D k=0, =7+ 1L J+]1,

k=1

then, due to constraints (16 ; >0, we have

K
i j41, ktk Z 5i,j,ktznd'a Jj=1j"-1,

Mxv

k=1
T,;>0, j=75,J.
Since there is the minimization problem, then the last constraints are active. This leads
to the fact that the second term in (17) characterizes the total parking time of trains at
intermediate stations (for the i-th train there are j* — 1 intermediate stations).

One or another part of criterion (17) may be more prioritized for a person who makes
the transportation plan. Therefore, we modify criterion (17) and solve the problem

I J+1 K be I J
s 20 2 ikt =) + e X YT+
=1 j=1 k=1 =131
| J (18)
ror (3 8 st - 3ott) min
=1

i=1 k=1 t1,t0,0; j k. T; 520, =11, j=T,J+1,j= Jk::K

subject to constraints (1)-(16), where ¢y, o, ¢ are some nonnegative constants. For ¢; =
co = c3 = 1, we get criterion (17), for ¢; = 1, ¢ = ¢3 = 0, we get the problem to minimize
the total time of trains at railway hauls (in other words, the problem to minimize quantity
of energy at transportation), for ¢; = co = 1, ¢3 = 0, we get the problem to minimize total
time of trains at the railway network segment from departure, for ¢; =0, co =1, c3 =0
we get the problem to minimize usage of resources at stations. For ¢; = 1, ¢ = ¢3 = 0 and
1 =1, ¢ =1, c3 = 0, problems to make the transportation plan were formulated in [13]
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earlier. In such a way, criterion (18) is more universal than criterion from [13]. At the same
time, the quantity of variables in problem (18) with constraints (1) — (16) is about 2 times
less than the quantity of variables in [13], and the quantity of constraints at the present
paper is about K/7 + 1 times less than in [13].

4. Algorithm to Find a Suboptimal/Initial Solution

We significantly reduced the quantity of constraints and variables in comparison
with [13]. Nevertheless, it is still complicated to find the solution to problem (18) with
constraints (1) — (16). Therefore, we propose the algorithm for finding suboptimal /initial
solution to this problem.

Let us solve problem (18) with constraints (1) — (16) for some subset of trains. To this
end, we consider sets

def
Iml ma —

{iEZClSiSI,U?ep' =mq, v =ma}, my =1, M,my =1, M,

)

characterizing numbers of trains having departure station index m; and arrival station
index my. Obviously, some of these sets are empty. For example, Z,,,, ,,, = &, since for
trains the departure vertex can not coincide with the destination vertex. Also, we note
that

M M
1€{iez:1<i<I}= ) U Zom
mi=1mo=1
Let S be a total quantity of nonempty sets among all sets Z,,, ,,,. Let us arrange nonempty
sets Ly, m, in ascending order of the quantity of elements in these sets (if two or more
sets have the same quantity of elements then ordering occurs by minimal element in these
sets). Renumbering these sets from 1 to S according to the introduced order, we obtain
sets of indices 7y, ..., Zg. Further, we solve the problem

J+1 K

I
e 3 S S St — ) e ST+

i€l j=1 k=1 i€y 3:1

K
+cs3 (Z Z 5i717kt26g. — Z t?ep.) — min
1)

i€Th k=1 = igides T3, >04€T0,j=1,7+1,5=1,J k=1,K

with constraints (1) — (16). If solution to this problem does not exist, then the process of
finding suboptimal solution is completed unsuccessfully. If solution exists, then we form the
set IC; that is the set of numbers of “subthreads” taken for traffic by trains with numbers
from the set Z;. Further, these “subthreads” will be excluded from scheduling by imposing
additional constraints

Sijk=0,1€Ly, j=1,J+ 1,k € Ky,

where s € [2,S]. Thus, at the s-th step of the iterative procedure for finding suboptimal
solution, we solve the problem

J+1 K J
end beg. i
c1 ZI ZMZ 0 k(TR — 1) + c2 ZI: > T+
i€Zs j=1 k=1 1€ZLs 3:1
K ) ) (19)
+cs3 0; 1t 8 — P — min
sty k‘ (2 - i _
i€Ts k=1 i€Zs 0;,5,k,11,5 20, 1€Ls, j=1,J+1,j=1,J,k=1,K
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with constraints (1) — (16) and

s—1
5i7j7k:O7iEIS7 j:17j+17 ke Ule’

p=1

where C, is the set of “subthreads” taken by trains with numbers from the set Z,, obtained
at the p-th step of the iterative procedure, p = 1,s — 1. If at some step of the iterative
procedure there is no solution to the optimization problem, then the process to find
suboptimal solution is terminated. At the same time, it is impossible to make conclusion
about the absence of the solution to original problem (18) with constraints (1) — (16).

Based on reasonings above, we formulate the algorithm to find a suboptimal solution
to problem (18) with constraints (1) — (16).

1. Form sets Zy m, = {1 € Z:1 <1 < ],v?ep' = my, v = mo}, my =1, M, my =
1, M.

2. Compute S that is the quantity of nonempty sets Z,,, ,. Nonempty sets Z,,, m,
should be arranged in ascending order of the quantity of elements in these sets (if two or
more sets have the same quantity of elements then ordering occurs by minimal element in
these sets).

3. Renumber the sets Z,,, ., from 1 to S according the order from Step 2 of this
algorithm, after that get sets of indices 71, ..., Zs.

4. Initialize the parameter s = 1. Form the set Ky = .

5. Solve problem (19) with constraints (1) — (16) and the constraints

s—1
5’57]7]9:0726187 j:17j+17k6 UICp

p=0

If a solution exists, then form the set of “subthreads” Ky taken by trains with numbers
from the set Z, and go to Step 6. If a solution does not exist, then the process to find the
suboptimal solution is terminated unsuccessfully.

6. If s = S, then the process to find the suboptimal solution is terminated successfully.
If s < S, then increase the parameter s by 1 and go to Step 5.

The specified algorithm is based on the work [15] in which it was proposed to construct
a train timetable for a railway station sequentially, separately for each train.

5. Example

Let us consider the railway network segment represented as the multigraph G shown
in Figure. Some of edges are drawn with a dotted line in order to show a multilevel
intersection of two railway tracks. The numeration of tracks in the figure is omitted: if two
adjacent vertices are connected by two edges, i.e. two tracks, then the edge represented by
a straight line has number 1, while the other has number 2.

Suppose that it is required to make the transportation plan for I = 62 trains. We
indicate the vertices of the departure and destination of these trains in Table 1.
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Multigraph G of the railway network segment
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Table 1
Train direction
Train direction . . Train direction . .
(departure — destination) Quantity of trains (departure — destination) Quantity of trains

2 —-10 13 10 — 2 13
2 — 22 8 22 —» 2 8
34 — 42 7 42 — 32 7
34 — 33 2 2 — 33 1
10 — 42 1 42 — 10 1
5 — 34 1

Assume that there are K = 1249 “subthreads” for scheduling transportation plan.

Let the parameter J be equal to 12. At first, we compare time of searching for solution
to problem (18) with constraints (1) — (16) when ¢; = 1, ¢o = 0, ¢3 = 0 and similar problem
statement from [13] (when t; = to = A = 0). We set the minimal and maximal possible
duration of stay at intermediate stations to be equal to 0 and 1440 minutes, respectively.

The experiment showed that if we consider the search for an optimal solution only for
the first five trains in the list of trains, then the optimal solution to problem (18) with
constraints (1) — (16) was found in 19 seconds. At the same time, for problem statement
from [13], the iterative process of finding at least some feasible solution was not terminated
in 2 hours. If we consider the search for an optimal solution only for the first train in the
list of trains, then the optimal solution to problem (18) with constraints (1) — (16) was
found in 3 seconds. For problem statement from [13], the iterative process of finding at
least some solution was not terminated in 2 hours again.

Let us consider a problem to make the transportation plan for all of I trains (consider
the case when ¢; = ¢, = ¢3 = 1). Suppose that d; = 180, ¢34, ™™ = 0 and ™ = 120, i =
1,1, k =1, K. Also, suppose that Tyax. = 1440. In view of the large quantity of variables
and constraints in problem (18) with constraints (1) — (16) and associated computational
difficulties when searching for a solution, we use the presented above algorithm. As a result
of applying the algorithm, we obtain train routes shown in Table 3.

As follows from Table 3, almost all trains with the same departure and destination
vertices follow the same route. The only exception is movement between vertices with
indices 2 and 10. The solution is reasonable from the point of view of traffic along the
multigraph of the railway network segment. Namely, movement from the vertex with the
index 34 to the vertex with the index 33 is not carried out through some intermediate
stations, there are no “circular” routes for movement from 34 to 42 and back (for example,
the vertex with the index 16 is not involved at the movement).

As follows from Table 2 and Table 3, 468 of 1249 “subthreads” are involved in the
transportation plan. However, it is difficult to answer the question of how much more
trains can be transported. It is caused by the fact that the possibility to transport an
additional train depends not only on quantity of available “subthreads” but also on the
time: the time when the train is ready for departure and the time of movement along a
particular “subthread”.

The search time for the suboptimal solution was 18 minutes. All results were obtained
using ILOG CPLEX mathematical package on the personal computer (Intel Core i5 4690,
3,5 GHz, 8 GB DDR3 RAM).
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Set of “subthreads”

Table 2

Direction Quantity of Direction Quantity of Direction Quantity of
(begin — end) | “subthreads” (begin — end) | “subthreads” (begin — end) | “subthreads”
1—2 22 1—3 21 1— 12 3
1— 23 b) 1—24 3 21 21
2 =11 5 2 — 12 22 3—1 22
3—4 21 33— 25 3 4—=3 22
4 =5 21 5 —4 22 5—=6 21
6 —5 22 6 —7 21 6 — 26 3
7T—6 22 7T —8 21 7 — 28 4
8§ =17 22 8§ —=+9 21 9—+38 22
9 — 10 21 9 — 30 b) 10—+ 9 22
10 — 30 4 11— 2 5 11 — 32 5
12 =1 3 12 — 2 23 12 —+ 13 22
13 — 12 23 13 —» 14 22 13 — 23 3
14 — 13 23 14 — 15 22 14 — 23 3
15— 14 23 15 — 16 22 15 — 25 3
16 — 15 23 16 — 17 22 16 — 26 4
16 — 35 3 17 — 16 23 17 — 18 3
17 — 20 22 18 — 17 3 18 =+ 19 7
18 — 20 6 18 — 27 4 18 — 35 4
19 — 18 7 20 — 17 23 20 — 18 6
20 — 21 22 20 — 27 4 21 — 20 23
21 — 22 22 21 — 29 3 22 —» 21 23
22 — 29 5 22 —+ 31 8 23 =+ 1 5
23 — 13 3 23 — 14 3 23 — 24 4
24 — 1 3 24 — 23 4 24 — 25 3
25— 3 3 25 =+ 15 3 25 — 24 3
25 — 26 4 26 — 6 3 26 — 16 4
26 — 25 4 26 — 28 3 27 — 18 4
27 — 20 4 27 — 28 3 28 =7 4
28 — 26 3 28 — 27 3 29 — 21 3
29 — 22 b) 29 — 30 b) 29 — 31 7
30— 9 6 30 — 10 4 30 — 29 5
31 — 22 8 31 — 29 7 31 — 38 8
32 =+ 11 ) 32 —+ 33 5 33 — 32 5
33— 34 15 34 — 33 15 34 — 35 5
34 — 37 15 35 — 16 3 35 — 18 4
35— 34 5 37— 34 15 37 — 40 15
38 =+ 31 8 38 — 41 6 40 — 37 15
40 — 41 15 41 — 38 6 41 — 40 15
41 — 42 15 42 — 41 15
Conclusion

In this paper, we considered the problem to construct the optimal train timetable on
the multigraph of the railway network segment. The new mathematical model of traffic on
the multigraph of the railway network segment was proposed. An universal criterion was
proposed to form the optimal timetable. The problem of constructing optimal timetable
was reduced to a mixed integer linear programming problem that contains several times
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Table 3

Train routes

Direction Quant-lty of Train route
trains

2 510 12 251—-3—24—-5—-6—-7T—-8—>9—10

1 2—-512—-513—-514—->15—->16—> 17— 20— 21 — 22 — 29 — 30 — 10
10 — 2 12 100-9—-8—>7—-26—-5—24—-3—>1—2

1 10—+30—+29—>22—-521—-20—>17— 16— 15—>14 - 13 > 12 — 2
2 — 22 8 2—>512—->13—->14—-15—16 - 17— 20 — 21 — 22
22 — 2 8 22 521 —>520—-17—16—15—14—> 13 > 12— 2
34 — 42 7 34 — 37— 40 — 41 — 42
42 — 34 7 42 =541 - 40 - 37 — 34
34 — 33 2 34 — 33
2 — 33 1 2—>11—32—33
10 — 42 1 10 —-+9—30—>29 — 22— 31 — 38 =41 — 42
42 — 10 1 42 - 41 - 38—+ 31 —-22—-29—30—9— 10
5— 34 1 5—26—+26—16— 17— 18 - 35— 34

fewer variables and constraints than the similar problem from [13]. This reduction in
dimension made it possible to find the solution to the problem of constructing optimal
timetable much faster. The algorithm to find a suboptimal solution was proposed. Its
applicability (in terms of time to find a solution) was demonstrated with a meaningful
example. In the future, it is possible to construct other algorithms for finding suboptimal
solution in order to accelerate the search for a suboptimal timetable, as well as joint
search for train timetables and “track possession” within the framework of the proposed
mathematical model of traffic along the multigraph of the railway network segment.
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O BAJTAYE COCTABJIEHUN A PACIIMCAHUNS I'PY3OIIEPEBO3O0OK
HA YUYACTKE 2KEJIE3HOJOPOXKHOI1 CETU
n AJITOPUTMAX EE PEINTEHN A

A.H. Uenamos, MockoBcKuil aBualimoHHbIii nHCTUTYT, . MockBa,
Poccuiickas @enepariust

PaccmarpuBaercs 3agada cocTaBieHUS PACIUCAHUS IPY30IEPEBO30K HA yUIACTKE 2Ke-

JIE3HOJIOPOKHOM ceTu. 2Kee3HOMOpOKHAS CeTh IMPEJCTABIACTCS HEOPUEHTHUPOBAHHBIM
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myabTurpacdom. Ismxkenne mo pedbpam MyabTUrpada OCYIECTBIISETCA TOJBKO B OMpEIe-
JIEHHBIE TTPOMEXKYTKHU BPEMEHU — C HCIOJb30BAHUEM <IOJHUTOK>. DOpMYIUpPyeTCcs: HOBast
MaTeMaTUIecKast MOJIeJIb JBUKeHus 1o pebpam rpada. [Ipeanaraercs yHuBepcaabHbIi KPH-
Tepuii ONITUMAJIBHOCTH JIJIs 38/Ia91 COCTaBjeHns paciucanus. [Ipemaraercs ajropurM mo-
HCKa CyOOIITUMAJIBHOIO PellleHusi. PaccMaTpuBaeTcst CoaepKaTe IbHBIN IIPUMep.

Karouesvie crosa: myasvmuepad; epy3onepesosku; HCease3HodopoNCHAA CEMb; PACTUCA-
HUE; CMEULAHNOE YEAOYUCAEHHOE AUNETHOE NPOLPAMMUPOSAHUE.
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