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The article is devoted to the study of optimal control for one mathematical model of the
Sobolev type, which is based on the model equation, which describes various processes (for
example, deformation processes, processes occurring in semiconductors, wave processes,
etc.) depending on the parameters and can belong either to the class of degenerate (for
A > 0) equations or to the class of nondegenerate (for A < 0) equations. The article is
the first attempt to study the control problem for mathematical semilinear models of the
Sobolev type in the absence of the property of non-negative definiteness of the operator at
the time derivative, i.e. the construction of a singular optimality system in accordance with
the singular situation caused by the instability of the model. Conditions for the existence
of a control-state pair are presented, and conditions for the existence of an optimal control
are found.
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Introduction

Currently, most of modern research is developing at the junction of several areas
of knowledge, various processes in engineering, economic, physical phenomena are
investigated using methods of mathematical modelling. Briefly characterizing modelling,
we note that modelling consists in replacing a real system (process, phenomenon) with a
model that is in some correspondence with it (with them) and is able to reproduce the
properties or characteristics of a real system. Therefore, the role of mathematical modelling
in science, in the research of engineering, economic objects and systems is very large.
Note also that carrying out production experiments requires a lot of financial, time and
labor costs. Conducting full-scale experiments is sometimes impossible due to a number
of reasons, for example, there is no way to control individual parameters (temperature,
pressure, the course of processes, or other factors). Therefore, the creation and study of
mathematical models describing these processes is of great applied importance.

In most cases, for various physical processes, it is important not only to implement
modelling, but also to control the components of the system, in which this process takes
place. It is assumed that any dynamical system (i.e. a system that develops in a certain
way, evolves in time) at each moment of time can be in a state that belongs to a certain
(finite or infinite) set of possible states. In this case, control is understood as an impact
that can change the current state, as well as the subsequent development of the system.
This raises the question of finding the best control to the process. Consider the optimal

control problem
J(z,u) — inf (1)

for a mathematical model of Sobolev type, which is based on the Showalter—Sidorov—
Dirichlet problem
(L + A)(a(5,0) — 20(3)) = 0, 5 € O, (2)
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x(s,t) =0, (s,t) € 02 x R, (3)
for the partial differential equation
%(AH+A)I‘+O&AI‘+6|ZEV)_2ZE =u, p>2 (4)

where the function = = x(s,t) is the state of the system; a, 3, A € R are the parameters
of the system, the free term u = u(s,t) corresponds to the external impact.

The derivation and physical description of equation (4) are presented in the work [1]
by M.O. Korpusov and A.G. Sveshnikov. Note also that equation (4) is a model equation,
which describes various processes (for example, deformation processes, processes occurring
in semiconductors, wave processes, etc.) depending on the parameters and can belong
either to the class of degenerate (for A > 0) equations or to the class of nondegenerate (for
A < 0) equations. The system under consideration belongs to singular distributed systems,
i.e. includes “ features” such as instability, break phenomenon, or multiple solutions.

The work [1] considered the case of destruction of the solution to the initial-boundary
value problem for equation (1) in a finite time. In other words, the moment of time Tj
depending on the parameters of the problem was found, up to which a solution to the
problem under consideration belongs to some functional class, and for ¢ > T the solution
does not belong to the class anymore. Note that equation (4) belongs to the class of Sobolev
type semilinear equations, i.e. depending on the parameters of the equation, the operator
for the time derivative can degenerate. One of the main methods for studying equations
of this type is the phase space method, which was first proposed by G.A. Sviridyuk in [2].
This method allows to investigate the structure of the phase manifold and to identify
the domains of existence of the solution. This method consists in reducing the original
equation to the nondegenerate equation

T = F(x)
defined on some set of the original space (or in the whole space), which is understood
as the phase space of the original equation (phase manifold). Therefore, the study of
initial-boundary value problems for various linear and semilinear Sobolev type equations
is primarily reduced to the study of their phase spaces. The phase space method was
applied in studies of various semi-linear models of mathematical physics [3-5].

As classical works in the theory of optimal control, we note works written
by J.-L. Lions. For example, the work [6] systematically studies optimal control problems
for partial differential equations. Optimal control problems for linear [7] and nonlinear [8]
Sobolev type equations were widely studied. Namely, the optimal control problems for
linear equations of Sobolev type were first studied by G.A. Sviridyuk and A.A. Efremov |7].
Currently, various statements of linear control problems were considered and various
initial conditions for them were studied. An abstract theory was constructed to study
the problems of optimal control to solutions to the Showalter—Sidorov problem with s-
monotone and p-coercive nonlinear operator and a nonnegative definite operator for the
time derivative [8,9]. In [10] the necessary and sufficient conditions for the existence
and uniqueness of the solution of optimal control problems for high-order Sobolev type
equations with an initial-final condition were obtained. In [11] proposed to use methods of
the theory of optimal control for solutions problem of recovering adynamically distorted
signal. The review [12| is devoted to description mathematical model of the optimal
dynamic measurement.
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This work is the first attempt to study the control problem for mathematical models
of the Sobolev type in the absence of the property of non-negative definiteness of the
operator for the time derivative, i.e. following the terminology proposed by J.-L. Lions [13],
to construct a singular optimality system in accordance with the singular situation caused
by the instability of the model. The article is organised as follows. In Section 1, conditions
for the existence of a control-state pair are found. Then, in Section 2, conditions for the
existence of an optimal control are constructed.

1. Investigation of Question of Non-Emptiness of Set of Admissible
Pairs of Control Problem

Before proceeding to the study of the control problem, we find the conditions under
which there exists a set of pairs (x,u) satisfying problem (2) — (4). In order to use the
existing approaches to solving problem (2) — (4), we represent equation (4) in the form

0
_E(AH + A)x — alAx = Bl %z +u, p > 2, (5)

and reduce problem (2) — (4) to the abstract semilinear equation

%LI—}-MI:N(I‘)-FU. (6)

Consider the functional spaces £ =1 2(Q), B = L,(Q), H = Ly(Q). Let the space
9 = W5 HQ), B* = L,(Q), %+é =1.Forn>2and 2 < p <2+ L or for n = 2, there
are dense and continuous embeddings of the spaces

H =B H— B — H" (7)
Note that, forn > 2 and 2 <p <2+ ﬁ or for n = 2, the embedding of the spaces
H—B (8)
is compact. Define the operators L, M and N by the formulas:

(Lx,y) = /(—/\my +Vz-Vy)dsV z,y €9,
Q

(Mx,y}z&/Vx~Vy dsV x,y € 9,

Q
(N(z),y) = 6/ 2P %2y ds V x,y € B,
Q

where (-,-) is the scalar product in H. Therefore, taking into account the choice of
functional spaces and the construction of operators, problem (2) — (4) is reduced to the
Showalter—Sidorov problem

L(x(0) = x9) = 0 (9)

for abstract semilinear Sobolev type equation (6).
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Denote by {¢x} a sequence of eigenfunctions of the homogeneous Dirichlet problem
for the Laplace operator (—A) in the domain 2, and denote by {A;} the corresponding
sequence of eigenvalues numbered in non-decreasing order, taking into account the
multiplicity. The operators constructed are already well studied. Let us present their main
properties.

Lemma 1. (i) For all A € R, the operator L € L (9, 9*) is self-adjoint and Fredholm.
(ii) For all X € (—o0, \1], the operator L € L ($,$*) is nonnegative defined.
(iii) For all a € R, the operator M € L(H;9H*) is symmetric and 2-coercive.
(iv) For all B € Ry, the operator N € C*(*B;B*) is s-monotone and p-coercive.

Since the operator L is self-adjoint and Fredholm, we identify £ D ker L = coker L C

H*. At that,
— {0}, if A # Ag;
ker L = { span{ ey}, if A = A,

{z € 9" : (x,pr) =0}, if A=)\,

9, 1A F A
{z €H:(x,pr) =0}, it A=A

Hence $ = ker L @ coim L, §* = coker L @ im L. Further, denote ker L = §°, coim L = $'.
Due to the existence of the resulting splitting, we construct the projectors

coim L = {

T if A £ Ay
R=91- 3 (o), if A=\
A=A
Since problem (2) — (4) belongs to the class of Sobolev type problems, then, in

order to study the question of solvability, we use the phase space method proposed by
G.A. Sviridyuk [2]. To this end, we construct the set (hereinafter called the phase manifold)

M = {ren:ad fxsigoksi ds = f(,é’mp*% +u)pr ds}, if A=Ay,
=10 Q
and assume
(I — Q)u does not depend on t € (0,T). (10)

Definition 1. A vector-function x € C'([0,T]; $) is said to be

— a classical solution to equation (6), if x satisfies the equation for allt € (0,T);

— a weak generalized solution to equation (6), if, for some T € R, the vector-function
T satisfies

T T

d
/<ELx+Mx,y>dt:/<N(a:)+u,y>dtVyeL2(O,T;5§).

0 0

A solution x = xz(t) to equation (6) is called a solution to the Showalter—Sidorov problem
if x also satisfies the initial condition (9).
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In the works of G.A. Sviridyuk and A.A. Efremov [7], it was proposed to consider the
space H'(9) = {z € L,(0,T;9) : © € Ly(0,T;$)} and it was noted that, due to the
continuity of the embedding H'($)) < C([0,T]; §), if there exists a classical solution to
problem (6), (9), then the solution is both a strong solution to this problem, and, in our
case, a weak generalized solution.

Remark 1. In the works of G.A. Sviridyuk and T.G. Sukacheva [14], the concept of
a quasistationary (semi) trajectory was first introduced for solving the Cauchy problem
for a semilinear Sobolev type equation. In our work, the solution z = z(t) to equation
(6) is called a quasistationary semitrajectory of the equation, if x(t) € 9 for all ¢t €
(0, T, where the phase manifold M ={z € H: (I - Q)M = (I - Q)N + (I — Q)u}, which
is a special case of the concept introduced earlier. If a quasi-stationary semi-trajectory
satisfies condition (9), then the semi-trajectory is called a quasi-stationary semitrajectory
of equation (6) passing through the point x.

To investigate the solvability of problem (2) — (4), following the phase space method,
we show the simplicity of the phase manifold. From the simplicity of the phase manifold,
based on the classical theorem of existence and uniqueness of a solution to the Cauchy
problem for a non-degenerate equation [15], we obtain the conditions for the existence of
a classical local solution to the problem under study.

Definition 2. Fiz o € M, define x} = Pxy, then xj € H'. The set M is a Banach
Ck-manifold at the point o, if there exist neighborhoods OFF C M and Of C H of the
points xo and x}, respectively, and C*-diffeomorphism 6 : O — OF such that 5~ is equal
to the restriction of the projector P to OF'. The set M is called a Banach C*-manifold
modeled by the subspace $H', if M is a Banach C*-manifold at every point. A connected
Banach C*-manifold is called simple if any of its atlas is equivalent to an atlas, containing
a single map.

Based on abstract results, the following statement is true.

Theorem 1. |[3] If, for A € R, condition (10) is satisfied and o € R, 5 € R, moreover
af <0, andn>2,2<p<2+ -4 orn=2, then

(1) the set M is a simple Banach C'-manifold modeled by the subspace $H';

(ii) there exist T(xo) and a unique quasistationary semitrajectory x € C*(0, T (xq); M)
of equation (4) passing through the point x.

Theorem 1 formulates conditions for the existence of a classical local solution to
problem (2) — (4). In the works of G.A. Sviridyuk [5,16], conditions were found under which
a nonlocal solution to the problem exists. But in this case, additional conditions of positive
definiteness are imposed on the operator L. This condition, together with the conditions
of the s-monotonicity and p-coercivity of the operator N, allow to obtain conditions under
which a solution is extended in time. Note the importance of the requirement that each
term on the right-hand side of the equation is positive definite, that is,

< Lzx,x >>0and < Mz,z >> 0and < N(z),z >>0Vzx € §.

If this condition is not satisfied, then the phenomena of destruction of the solution are
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observed. Let us impose additional conditions on the parameter A and obtain conditions
under which a solution is extended in time. Consider the following theorem, the proof of
which is similar [16].

Theorem 2. Suppose that condition (10) holds for A\ € (—oo, \i], the parameters are
aceR,, eR_andn > 2,2 §p§2+$ orn = 2. Then, for any T > 0, there exists
a unique quasistationary semitrajectory x € C1((0,T); M) of equation (4) passing through
the point xg.

2. Control Problem

In the cylinder Q7 = Q x (0, T), consider optimal control problem (1) — (4) in the case
of specifying the objective functional in the form

T T
J(z,u) :%/Hx—de%dth(l—%)/Hu\q%*dt. (11)
0 0

Introduce a space of controls 4l = L, (0, T’;B*) and choose a non-empty, closed, convex set
$loq. Also, note that by a solution to problem (1) — (4) we mean a pair of functions (&, @)
that satisfies the following condition:

J(z,4) = inf J(z,u),

(z,u)
where the pairs (2, 4) € X X L, satisfy problem (2) — (4).

Remark 2. Let X = {z € Ly(0,7;9) : & € Ly(0,T;coim L)}. Denote by 2 the set of
pairs (z,u) C X X .4 satisfying problem (2) — (4). The non-emptiness of the set 2 is
guaranteed by the results of the previous section. If ,; = &, then, for any v € U,y C U,
the set of admissible pairs (x,u) is not empty.

Theorem 3. Suppose that A € R, the parameters are « € R, 5 € R, moreover aff < 0, and
n>22<p<2+ ﬁ orn =2, and condition (10) holds. Then, for any xo € $, T € R,
such that the set A # (), there exists a solution to optimal control problem (1) — (4).

Proof. Since the set 2 # ) is nonempty, there exists a pair (Z, 1) € X X 4 such that
{Z,u} satisfy the problem. Then

inf J(z,u) < J(Z,0)

{zu}
there exists a minimizing sequence {x,,, u,,} C X X .4 such that
J (T, Up) < const.
Since functional (11) has the coercivity property, then
[Zm |y 0,75) < const, |um||L,0,r:m+) < const (12)

for all m € N. By virtue of (12) (passing, if necessary, to subsequences), we extract
sequences, which are weakly converging in the corresponding spaces:

2™ — 2 is weak in L,(0,T;*B);
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u™ — 4 is weak in L,(0,T;B").
Due to the p-coercivity of the operator N, we obtain

T T
(N (@), ) dT < Of IN (@) [ 2m]lwdT < Cof e E E e

and, therefore, N(z,,) are bounded in L,(0,7;B*). Then, we use (4) to obtain that

0
—a(/\]l + Ay, — @Az, = BlTm [P 220 + U, (13)
and, taking into account that the right-hand side of (13) is bounded in L,(0,T’;B8*), we
arrive at the boundedness
|Tm||x < const.

We extract the weakly convergent subsequence
™ — Zis weak in X.

By Mazur’s theorem and the sequential weak closedness of the set U,;, the point
@ € Yyq. Let us pass to the limit in equation of state (4) and obtain
dz . .
By virtue of reflexivity of the space L,(0,7;%8*) and compactness of embeddings
(Aubin — Lions lemma)

we obtain that
N(z) =

p.
Therefore, & = &(u) and liminf J(z,,, u,,) > J(Z,u). Hence, @ is the optimal control
in problem (2) — (4). O
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N CCJIEJJOBAHUE 3AJJAYY OIITUMAJIBHOI'O YIIPABJIEHU S
PEINIEHUSMUA OJHO MATEMATUYECKOM MOJIEJIN

K.B. Ilepesosuuxosa', H.A. Manaxosa'
Ok m0-Ypasbekuit rocyapeTBenHbIi YHIBEPCUTET, I. e Ia0nHCK,
Poccuiickas @enepariust

Crarhst MOCBAIIEHA UCCIIEOBAHUIO OITUMAJIBHOTO YIIPABJIEHUS JIJIs OJHON MaTeMaTH-
YECKOI MOJIESIN CODOJIEBCKOIO THUIIA, 0A3UPYIOIAsiCsd Ha MOJIEILHOM yPaBHEHUH, KOTOPOE
OLMCHIBAET PA3JIMIHBIE TIPOIECCH (HAPUMED, IPOIECCH JAeOPMAIHH, IIPOIECChI, TPOUCKO-
JEIIHE B OJIyIPOBOJHUKAX, BOJHOBBIE IIPOIECCHl U T. J.) B 3aBUCHUMOCTHU OT IIAPAMETPOB
U MOXKeT HpUHAJIeXKATh Jub0 K KJIACCY BBIPOXKIEHHLIX (pu A > 0) ypaBuenuii, su6o
K KJIACCY HEBBIPOXKJIEHHBIX (miag A\ < 0) ypasuenuil. CraTbs sBJISETCs II€PBOil MONBITKOM
HCCJIeJOBaHUs 3a/1a9U yIIPABJIEHUS JIJIsI MaTeMaTUIeCKUX TOJIyIMHERHBIX MoJIesieil coboieB-
CKOI'0O THIIA B CJIydae OTCYTCTBHU:A CBOICTBA HEOTPUIATE/ILHONU ONPEIE/ICHHOCTH OIIEpPaTOpa
IIPX IIPOU3BOJHON II0 BPEMEHU, T.e. IIOCTPOEHUIO CHUHIYJISIPHOU CHCTEeMBI ONTHUMAaJIbHOCTU B
COOTBETCTBUU C CHHTYJISIPHON CATyaIneil, 00yCIOBJIEHHOM HEYCTONINBOCTHIO Motesn. 1Ipe-
CTaBJIEHBI YCJIOBUS CYIIECTBOBAHUA IIapbl yIIPABJIEHUA-COCTOAHNS, a TaKxKe HallJIeHbl yCJI0-
BHU4 CYIIECTBOBAHUA OITUMAJILHOTO YIIPDABJICHU.

Karoueswie caosa: ypasHenus coboaesckozo muna; memod @aszo6020 npocmpaHcmea;

300640 ONMUMANDHO20 YynpasaerHUA.
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