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The article contains a review of the results obtained in the scientific school of Georgy

Sviridyuk in the field of semilinear Sobolev type mathematical models. The paper presents

results on solvability of the Cauchy and Showalter–Sidorov problems for semilinear Sobolev

type equations of the first, the second and higher orders, as well as examples of non-classical

models of mathematical physics, such as the generalized Oskolkov model of nonlinear

filtering, propagation of ion-acoustic waves in plasma, propagation waves in shallow water,

which are studied by reduction to one of the above abstract problems. Methods for studying

the semilinear Sobolev type equations are based on the theory of relatively p-bounded

operators for equations of the first order and the theory of relatively polynomially bounded

operator pencils for equations of the second and higher orders in the variable t. The paper

uses the phase space method, which consists in reducing a singular equation to a regular one

defined on some subspace of the original space, to prove existence and uniqueness theorems,

and the Galerkin method to construct an approximate solution.
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Introduction

Mathematical models based on semilinear Sobolev type equations are called semilinear
Sobolev type mathematical models.

The necessity to study semilinear Sobolev type mathematical models caused by the
need to study applied problems related to the dynamics of viscoelastic fluids [16], vibrations
in the DNA molecule [6], the theory of metal creep [5], wave propagation in shallow water
[25], the propagation of ion-acoustic waves in plasma [1], the theory of electric circuits [14],
the theory of heat conduction with two temperatures [4], filtration in a fractured-porous
medium [2, 28] and others [19, 39].

The study of semilinear Sobolev type equations was initiated in [29,37] and the concept
of a quasistationary trajectory was introduced. Later, on the basis of abstract results, the
Oskolkov [33, 35] and Hoff [32] mathematical models were investigated, and the structure
of the phase space of the Hoff and Oskolkov equations was studied. In parallel with the
solution of the problem of existence and uniqueness, the theory of optimal control of
solutions to the semilinear Sobolev type equations arose and was developed [23, 36, 44],
the theory of stability of solutions to the semilinear Sobolev type equations [22, 34] was
studied and the phenomenon of non-uniqueness of solutions was explained [18, 31].

Probably, the first work devoted to the study of equations unsolvable with respect
to the highest time derivative belongs to A. Poincare (1885) [20]. However, the regular
study of initial-boundary value problems for such equations began with the works of
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S.L. Sobolev [27]. At present, the theory of Sobolev type equations is actively developing
both in breadth and in depth, as evidenced by many scientific directions around which
the scientific schools have developed [1, 7, 10, 14, 15, 21, 24, 26]. In this paper, we trace the
stages in the development of the theory of semilinear Sobolev type equations and consider
its applications to the study of three semilinear Sobolev type mathematical models.

The first one is the Oskolkov mathematical model (a mathematical model of nonlinear
filtration in a fractured-porous medium). Let Ω ⊂ Rn be a bounded domain with boundary
∂Ω of class C∞. In a cylinder Ω× R, consider the equation

ut − æ∆ut = ν∆u −K(u) (1)

with the Cauchy–Dirichlet conditions

u(x, 0) = u0(x), x ∈ Ω, (2)

u(x, t) = 0, (x, t) ∈ ∂Ω × R. (3)

Equation (1) describes many processes and phenomena occurring with the
participation of a viscoelastic fluid, including filtration. It was obtained by A.P. Oskolkov
[19]. The nonlinear term in (1) is such that K(0) = 0, 〈K(u), u〉 ≥ 0 (〈·, ·〉 is an inner
product in L2(Ω)). In particular, it can take the form K(u) = u2m+1 or K(u) = sh u.
Generally speaking, the nonlinearity can be represented by the series

K(u) =

∞
∑

m=0

amu
2m+1, am ∈ R+.

The parameters æ, ν ∈ R+ characterize the elastic and viscous properties of the fluid,
respectively.

The second one is a mathematical model of ion-acoustic waves in plasma. Let Ω =
(0, a)× (0, b)× (0, c) ⊂ R3. In a cylinder Ω× R consider the equation

(∆− λ)utttt + (∆− λ′)utt + α
∂2u

∂x2
3

= ∆(u3) (4)

with the Cauchy–Dirichlet conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x),
utt(x, 0) = u2(x), uttt(x, 0) = u3(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × R.
(5)

Equation (4) describes the ion-acoustic waves in a plasma in an external magnetic field.
Here function u is a generalized potential of the electric field, the constants λ, λ′, α
characterize ion gyrofrequency, Langmuir frequency and Debye radius.

The third one is a mathematical model of wave propagation in shallow water. It is
based on a modified Boussinesq equation. Let Ω ⊂ Rn be a domain with boundary ∂Ω of
class C∞, T ∈ R+. In a cylinder C = Ω×(0, T ), consider the modified Boussinesq equation

(λ−∆)utt − α2∆u+ u3 = 0, (x, t) ∈ Ω× (0, T ) (6)
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with the Cauchy–Dirichlet conditions

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ) (7)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (8)

where λ, α ∈ R. Other modifications of the Boussinesq equation with nonlinearities of the
form ∆|u|pu have also become widespread [4, 5, 17]. The equation has many applications
in various fields of natural science. For example, it models the propagation of waves in
shallow water, taking into account capillary effects. In this case, the function u = u(x, t)
determines the height of the wave.

The article, in addition to the Introduction, Conclusion and References, includes
seven paragraphs. The first section contains the main results of the theory of p-bounded
operators obtained by G.A. Sviridyuk, necessary for further presentation. The second
section presents results on the solvability of the Cauchy problem for semilinear first-order
equations obtained by V.O. Kazak. The third paragraph contains some results of the
study of Oskolkov generalized mathematical model. The fourth section presents the main
statements of the theory of relatively polynomially bounded operator pencils, obtained
by A.A. Zamyshlyaeva. The fifth section contains results on the solvability of the Cauchy
problem for high-order semilinear Sobolev-type equations obtained in the authors’ papers.
The sixth paragraph is devoted to the study of the semilinear model of ion-acoustic waves.
The seventh paragraph contains the results of the study of the mathematical model of
shallow water wave propagation.

1. Relatively p-Bounded Operators

A detailed exposition of the theory of relatively p-bounded operators can be found
in [30]. Let U, F be Banach spaces and operators L, M ∈ L(U;F).

Definition 1. The set

ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(F;U)}

is called a resolvent set of the operator M with respect to operator L (in short, L-resolvent
set of the operator M). The set C\ρL(M) = σL(M) is called a spectrum of the operator
M with respect to the operator L (in short, the L-spectrum of the operator M).

Definition 2. Operator-functions

(µL−M)−1, RL
µ = (µL−M)−1L, LL

µ = L(µL−M)−1

with domain ρL(M) are called respectively resolvent, right resolvent, left resolvent of the
operator M with respect to the operator L (in short, the L-resolvent, right L-resolvent,
left L-resolvent of the operator M).

Theorem 1. [30] Let the operator L ∈ L(U,F), and the operator M : dom M ⊂ U → F

be linear and closed. Then the L-resolvent, the right and the left L-resolvent are analytic
in the set ρL(M).

Definition 3. The operator M is said to be spectrally bounded with respect to the
operator L (in short, (L, σ)-bounded), if

∃a > 0 ∀µ ∈ C : (|µ| > a) ⇒ (µ ∈ ρL(M)).
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Lemma 1. [30] Let the operator M be (L, σ)-bounded. Then the operators

P =
1

2πi

∫

Γ

RL
λ (M)dλ and Q =

1

2πi

∫

Γ

LL
λ(M)dλ

are projectors. Here Γ = {λ ∈ C : |λ| = r > a}.

Set U0 = kerP , F0 = kerQ, U1 = imP , F1 = imQ. Denote by Lk(Mk) the restriction
of the operator L (M) to the subspace Uk, k = 0, 1.

Theorem 2. [30] Let the operator M be (L, σ)-bounded. Then
(i) Lk,Mk : Uk → Fk, k = 0, 1;
(ii) M−1

0 ∈ L(F0,U0);
(iii) operator L−1

1 ∈ L(F1,U1) exists;
(iv) operator M1 ∈ L(U1,F1) exists.

Let ϕ0 ∈ kerL\{0} be an eigenvector of the operator L.

Definition 4. An ordered set {ϕ1, ϕ2, . . .} ⊂ imL is called a chain of M-adjoined vectors
of an eigenvector ϕ0 if

Lϕq+1 = Mϕq, q = 0, 1, 2 . . . , ϕq 6∈ kerL for q = 1, 2, . . .

The chain is said to be finite if there exists an M-adjoined vector ϕp such that either
ϕp 6∈ domM or Mϕp 6∈ imL. The power of the final chain is called its length. The linear
span of all eigenvectors and M-adjoined vectors of the operator L is called the M-root
lineal of the operator L. Under the conditions of the theorem 2, we construct the operators
H = M−1

0 L0 ∈ L(U0) and S = L−1
1 M1 ∈ L(U1). Since the operator-function (µL0 −M0)

−1

is an entire function, it can therefore be expanded into a Taylor series

(µL0 −M0)
−1 = (µH − I)−1M−1

0 =

(

−
∞
∑

k=0

µkHk

)

M−1
0 ,

absolutely and uniformly convergent on any compact set in C. Let’s do the same with the
operator-function (µL1 −M1)

−1.

(µL1 −M1)
−1 = (µI− S)−1L−1

1 = µ−1(I− µ−1S)−1L−1
1 =

= µ−1

(

∞
∑

k=0

µ−kSk

)

L−1
1 ,

where µ ∈ ρ(S) or what is the same as µ ∈ ρL(M). Hence, for the (L, σ)-bounded operator,
by virtue of the last two expansions, we have

(µL−M)−1 =

(

−

∞
∑

k=0

µkHk

)

M−1
0 (I−Q) +

∞
∑

k=1

µ−kSk−1L−1
1 Q. (9)

Let the operator M be (L, σ)-bounded.
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Definition 5. The infinity point of the L-resolvent of the operator M is called

• a removable singular point if H ≡ O;

• a pole of order p if Hp 6= O, Hp+1 ≡ O, p ∈ N;

• an essentially singular point if Hq 6= O, ∀q ∈ N.

Further the removable singular point will be called a pole of order zero.

Remark 1. In what follows the (L, σ)-bounded operator M will be called (L, p)-bounded,
if the point ∞ is a pole of order p ∈ {0} ∪ N of its L-resolvent.

Theorem 3. [30] Let L be a Fredholm operator (that is, ind L = 0). Then the following
statements are equivalent:

1. The operator M is (L, 0)-bounded;

2. Any eigenvector of the operator L does not have M-adjoined vectors.

2. Semilinear Sobolev Type Equations of the First Order

Let the operators L,M ∈ L(U;F), N ∈ Ck(U;F), k ∈ N ∪ {∞}, and the operator M
be (L, p)-bounded, p ∈ {0} ∪ N. Consider the Cauchy problem

u(0) = u0 (10)

for a semilinear Sobolev type equation

Lu̇ = Mu +N(u). (11)

The vector-function u ∈ Ck((−T, T );U) is called a solution to equation (11) if for some
T ∈ R+ it satisfies this equation. The solution u = u(t) of equation (11) is called a solution
to problem (10), (11) if it satisfies the initial condition (10).

Example 1. Let U ≡ F ≡ R2
(ξ,η), the operators L, M , and N be defined by formulas

L =

(

0 1
0 0

)

, M = I, N : u →

(

0
−ξ2

)

, u = (ξ, η).

Then the Cauchy problem with u0 = (0, 0), for equation (11) will have two solutions (0, 0)
and (t/2, t2/4). If instead of the operator N in this case we take the operator N : u →
(

1
−ξ2

)

, then the same problem will not have a solution at all. This simple example

shows the need to narrow down the definition of a solution to equations (11).

By virtue of theorem 2 equation (11) can be reduced to an equivalent system

Hu̇0 = u0 +M−1
0 (I−Q)N(u), (12)

u̇1 = Su1 + L−1
1 QN(u), (13)

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (Вестник ЮУрГУ ММП). 2022. Т. 15, № 1. С. 43–59

47



A.A. Zamyshlyaeva, E.V. Bychkov

where u1 = Pu, u0 = u− u1.

Definition 6. Solution u = u(t) of problem (10), (11) is called a quasi-stationary trajectory
for equation (11) passing through the point u0, if Hu̇(t) ≡ 0 for all t ∈ (−T, T ).

Obviously, any stationary solution of problem (10), (11) is a quasi-stationary
trajectory, however the opposite is not true. In example 1 a stationary solution is the
only quasi-stationary trajectory passing through the point (0, 0), and in this sense such
solution is unique. Further only quasi-stationary trajectories are considered.

To this end, introduce a set which is called the phase space of the equation (11):

M = {u ∈ U : (I−Q)(Mu+N(u)) = 0}.

By virtue of theorem 2 and (12) any quasi-stationary trajectory u = u(t) lies in M, that
is u(t) ∈ M for all t ∈ (−T, T ).

Let the point u0 ∈ M, put u1
0 = Pu0 ∈ U1. The set M at the point u0 is a Banach

Ck-manifold if there are neighborhoods OM
0 ⊂ M and O1

0 ⊂ U1 of the points u0 and
u1
0, respectively, and a Ck-diffeomorphism δ : O1

0 → OM
0 such that δ−1 is equal to the

contraction of P onto OM
0 . The set M is called a Banach Ck-manifold modelled by the

space U1, if it is a Banach Ck-manifold at each point of U1.

Theorem 4. [29] Let the set M be a Banach Ck-manifold at the point u0. Then there is
a unique quasi-stationary trajectory of equation (11) passing through the point u0.

3. Mathematical Model of Oskolkov

Reduce problem (1) – (3) to the Cauchy problem (10) for the semilinear Sobolev type

equation (11). To do this, put U = Wm+2
2 ∩

◦

W1
2, F = Wm

2 , m ∈ N. All functional spaces are
defined on the domain Ω. The operators L and M are defined by the formulas L = 1−æ∆,
M = ν∆. Obviously, L,M ∈ L(U;F), and L is a Fredholm operator for all æ ∈ R \ {0}.

Lemma 2. [33] For all æ, ν ∈ R \ {0} the operator M is (L, 0)-bounded.

Denote by {λk} the set of eigenvalues of the homogeneous Dirichlet problem for the
Laplace operator ∆ in the domain Ω, numbered in non-increasing order, taking into
account multiplicity, and by {ϕk} denote the set of orthonormal (in the sense of L2)
of the corresponding eigenvectors. Then

kerL =

{

{0}, if æ−1 /∈ {λk},
span{ϕl : æ

−1 = λl}.

In case kerL = {0} there is an operator L−1 ∈ L(F;U), and so the operator M ∈ L(U;F)
(L, 0)-bounded. If kerL 6= {0} take the vector ϕ ∈ kerL \ {0}, i.e.

ϕ =
∑

æ−1=λl

alϕl, al ∈ R,
∑

æ−1=λl

|al| > 0.

Since
Mϕ = ν

∑

æ−1=λl

λlalϕl /∈ imL,
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then the vector ϕ has no M-adjoint vectors, and the assertion follows from theorem 3.
In what follows, we need regularity theorem [12]:

Lemma 3. Let f ∈ C∞(R) and m > n/2. Then F ∈ C∞(Wm
2 ), where the operator

F : u → f(u).

Lemma 4. Let the function K ∈ C∞(R) and let m+2 > n/2. Then the operator N : u →
K(u) belongs to the class C∞(U;F).

By virtue of lemma 3 the operator N ∈ C∞(U), and in view of the continuity of
embedding U →֒ F , N ∈ C∞(U;F).

So, reduction of problem (1) – (3) to (10), (11) is finished. By lemma 1 construct a
projector

P =











I, if æ−1 /∈ {λl},

I−
∑

æ−1=λl

〈·, ϕl〉ϕl,

where 〈·, ·〉 is an inner product in L2. The projector Q has the same form, but is defined
on the space F. Fix m > n/2− 2 and construct the set

M =

{

U, if æ−1 /∈ {λl},
{u ∈ U : 〈Mu−N(u), ϕl〉 = 0, æ−1 = λl}

and the space

U1 =

{

U, if æ−1 ∈ {λl},
{u ∈ U : 〈Mu −N(u), ϕl〉 = 0, æ−1 = λl}.

In the case of æ−1 /∈ {λl} the set M is obviously a smooth Banach C∞-manifold. In
the case of æ−1 ∈ {λl} this is yet to be proven.

Theorem 5. [33] (i) For any æ−1 /∈ {λk}, ν ∈ R \ {0}, m > n/2 − 2, u0 ∈ U and some
T ∈ R+ there exists a unique solution u ∈ C∞((−T, T );U) of problem (1) – (3).

(ii) Let for æ ∈ {λk}, ν ∈ R \ {0}, m > n/2 − 2 set M at the point u0 be a Banach
C∞-manifold. Then for some T ∈ R+ there exists a unique solution u ∈ C∞((−T, T );M)
of problem (1) – (3).

Theorem 5 follows directly from theorem 4. We only note that in our case the operator
H ≡ O, and therefore, any solution to problem (1) – (3) necessarily turns out to be
quasi-stationary trajectory.

4. Relatively Polynomially Bounded Operator Pencils

The statements presented in this paragraph were obtained in the works of
A.A. Zamyshlyaeva [38, 45]. Let U,F be Banach spaces and operators A,B0, B1, . . . , Bn−1

∈ L(U;F). By ~B denote the pencil formed by operators Bn−1, . . . , B1, B0. The sets ρA(
−→
B )

= {µ ∈ C : (µnA−µn−1Bn−1 − . . .−µB1−B0)
−1 ∈ L(F;U)} and σA(

−→
B ) = C \ ρA( ~B) are

called an A-resolvent set and an A-spectrum of the pencil
−→
B respectively. The operator-

function of a complex variable RA
µ (
−→
B ) = (µnA− µn−1Bn−1 − . . .− µB1 − B0)

−1 with the

domain ρA(
−→
B ) is called an A-resolvent of the pencil

−→
B .
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Definition 7. The operator pencil ~B is called polynomially bounded with respect to an
operator A (or polynomially A-bounded) if

∃a ∈ R+ ∀µ ∈ C (|µ| > a) ⇒ (RA
µ (

~B) ∈ L(F;U)).

Remark 2. If there exists an operator A−1 ∈ L(F;U) then the pencil ~B is A-bounded.

Lemma 5. [38] Let the operator pencil ~B be polynomially A-bounded and condition

∫

γ

µkRA
µ (

~B)dµ ≡ O, k = 0, 1, . . . , n− 2, (14)

where the circuit γ = {µ ∈ C : |µ| = r > a}, be fulfilled. Then the operators

P =
1

2πi

∫

γ

RA
µ (

~B)µn−1Adµ, Q =
1

2πi

∫

γ

µn−1ARA
µ (

~B)dµ

are projectors in spaces U and F respectively.

Denote U0 = kerP, F0 = kerQ, U1 = im P, F1 = im Q. According to lemma 5
U = U0 ⊕ U1, F = F0 ⊕ F1. By Ak (Bk

l ) denote restriction of operators A (Bl) onto
Uk, k = 0, 1; l = 0, 1, . . . , n− 1.

Theorem 6. [38] Let the operator pencil ~B be polynomially A-bounded and condition (14)
be fulfilled. Then

(i) Ak ∈ L(Uk;Fk), k = 0, 1;
(ii) Bk

l ∈ L(Uk;Fk), k = 0, 1, l = 0, 1, . . . , n− 1;
(iii) operator (A1)−1 ∈ L(F1;U1) exists;
(iv) operator (B0

0)
−1 ∈ L(F0;U0) exists.

Using theorem 6 construct operators H0 = (B0
0)

−1A0 ∈ L(U0), H1 = (B0
0)

−1B0
1 ∈

L(U0),. . ., Hn−1 = (B0
0)

−1B0
n−1 ∈ L(U0) and S0 = (A1)−1B1

0 ∈ L(U1), S1 = (A1)−1B1
1 ∈

L(U1), . . ., Sn−1 = (A1)−1B1
n−1 ∈ L(U1).

Definition 8. Define the family of operators {K1
q , K

2
q , . . . , K

n
q } as follows:

Ks
0 = O, s 6= n, Kn

0 = I,
K1

1 = H0, K
2
1 = −H1, . . . , K

s
1 = −Hs−1, . . . , K

n
1 = Hn−1,

K1
q = Kn

q−1H0, K
2
q = K1

q−1 −Kn
q−1H1, . . . , K

s
q = Ks−1

q−1 −Kn
q−1Hs−1, . . . ,

Ks
q = Kn−1

q−1 −Kn
q−1Hn−1, q = 1, 2, . . . .

The A-resolvent can be represented by a Laurent series

(µnA− µn−1Bn−1 − . . .− µB1 − B0)
−1 = −

∞
∑

q=0

µqKn
q (B

0
0)

−1(I−Q)+

+

∞
∑

q=1

µ−q(µn−1Sn−1 + · · ·+ µS1 + S0)
qA1−1

Q.
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Using this representation we classify the character of the infinity point of the A-resolvent
of the operator pencil ~B.

Definition 9. The point ∞ is called

• a removable singular point of an A-resolvent of the pencil ~B, if Ks
1 ≡ O, s =

1, 2, . . . , n;

• a pole of order p ∈ N of an A-resolvent of the pencil ~B, if ∃ p such that Ks
p 6≡ O, s =

1, 2, . . . , n, but Ks
p+1 ≡ O, s = 1, 2, . . . , n;

• an essential singular point of an A-resolvent of the pencil ~B, if Kn
q 6≡ O for all q ∈ N.

Further a removable singular point of an A-resolvent of the pencil ~B will be called a
pole of order 0, for brevity. If the operator pencil ~B is polynomially A-bounded and the

point ∞ is a pole of order p ∈ {0}∪N of an A-resolvent of the pencil
→

B then the operator

pencil ~B is called polynomially (A, p)-bounded.

Theorem 7. [42] Let A, Bn−1, . . ., B1, B0 ∈ L(U,F) and A be a Fredholm operator.
Then the following statements are equivalent:

(i) The lengths of all chains of the ~B-adjoined vectors of the operator A are bounded
by number (p+ n− 1) ∈ {0} ∪ N and the chain of length (p+ n− 1) exists.

(ii) The operator pencil ~B is polynomially (A, p)-bounded.

5. Semilinear Sobolev Type Equations of Higher Order

Consider the Cauchy problem

u(k)(0) = uk, k = 0, 1, . . . , n− 1, (15)

for a semilinear Sobolev type equation of higher order

Au(n) = Bn−1u
(n−1) +Bn−2u

(n−2) + . . .+B0u+N(u), (16)

where operators A,Bn−1, Bn−2, . . . , B0 ∈ L(U;F), N ∈ C∞(U;F), and U,F are Banach
spaces.

Definition 10. If a vector-function u ∈ C∞((−τ, τ);U), τ ∈ R+ satisfies equation (16)
then it is called a solution of this equation. If the vector-function satisfies in addition
condition (15) then it is called a solution of problem (15), (16).

Definition 11. The set P is called a phase space of (16), if
(i) for all (u0, u1, . . . , un−1) ∈ T n−1P there exists a unique solution of (15), (16);
(ii) a solution u = u(t) of (16) lies in P as a trajectory, i.e. u(t) ∈ P for all t ∈ (−τ, τ).

If kerA = {0} then equation (16) can be reduced to an equivalent equation

u(n) = F (u, u̇, . . . , u(n−1)),

where F (u, u̇, . . . , u(n−1)) = A−1(Bn−1u
(n−1)+Bn−2u

(n−2)+ . . .+B0u+N(u)) is a mapping
of class C∞ by construction. The existence of a unique solution u of (15), (16) for all
(u0, u1, . . . , un−1) follows from the classical Cauchy theorem.
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Let kerA 6= {0} and operator pencil ~B be (A, 0)-bounded, then by theorem 6
equation (16) can be reduced to an equivalent system of equations







0 = (I−Q)(B0 +N)(u0 + u1),
dn

dtn
u1 = A−1

1 Q(Bn−1
dn−1

dtn−1
+Bn−2

dn−2

dtn−2
+ . . .+B0 +N)(u0 + u1),

(17)

where u1 = Pu, u0 = (I − P )u.
Now consider a set M = {u ∈ U : (I − Q)(B0u + N(u)) = 0}. Let the set M be not

empty, i.e. there is a point u0 ∈ M. Denote u0
1 = Pu ∈ U1. The set M is called a Banach

Ck-manifold at point u0 if there exist neighborhoods O ⊂ M and O1 ⊂ U1 of points u0

and u1
0 respectively and a Ck-diffeomorphism δ : O1 → O such that δ−1 is a restriction of

projector P on O. The set M is called a Banach Ck-manifold modelled by the space U1 if
it is a Banach Ck-manifold at any point.

Let the following condition be fulfilled

(I−Q)(B0 +N ′

u0
) : U0 → F0 is a toplinear isomorfism. (18)

According to the implicit function theorem there exist neighborhoods O0 ⊂ U0 and
O1 ⊂ U1 of points u0

0 = (I−P )u0, u
1
0 = Pu0 respectively and the operator B ∈ C∞(O1;O0)

such that u0
0 = B

(

u1
0

)

. Lets construct an operator δ = I+B : O1 → M, δ
(

u1
0

)

= u0. Then
the operator δ−1 together with the set O1 makes a map of M and is a restriction of P on
δ[O1] = O ⊂ M. Thus, we proved

Lemma 6. [42] The set M = {u ∈ U : (I−Q)(B0u+N(u)) = 0} under condition (18) is
a C∞-manifold at point u0.

Lets act with the Frechet derivative δ
(n)

(u1

0
,u1

1
,...,u1

n−1
)
of order n on the second equation of

system (17). Since δ(u1) = u and

δ
(n)

(u1

0
,u1

1
,...,u1

n−1
)
u1(n) =

dn

dtn
(

δ(u1)
)

we obtain equation u(n) = F (u, u̇, . . . , u(n−1)), where

F (u, u̇, . . . , u(n−1)) = δ
(n)

(u1

0
,u1

1
,...,u1

n−1
)
A−1Q(Bn−1u

(n−1) +Bn−2u
(n−2) + . . .

+B0u+N(u)) ∈ C∞(U).

Therefore, we get

Theorem 8. [42] Let the operator pencil ~B be (A, 0)-bounded, N ∈ C∞(U;F) and condition
(18) be fulfilled. Then for any (u0, u1, . . . , un−1) ∈ T n−1M there exists a unique solution
of problem (15), (16) lying in M as trajectory.

6. Mathematical Model of Ion-Acoustic Waves in Plasma

As a model example, consider problem (4), (5). In order to reduce mathematical model
(4), (5) to problem (15), (16) set

U = {u ∈ W l+2
2 (Ω) : u(x) = 0, x ∈ ∂Ω}, F = W l

2(Ω).
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Define operators A = ∆ − λ, B2 = (λ′ − ∆), B0 = −α ∂2

∂x2

3

, B3 = B1 = O. Operators

A,B3, B2, B1, B0 are ∈ L(U;F) for all l ∈ {0}∪N. Denote the eigenvectors of the Dirichlet

problem (5) for the Laplace operator by ϕkmn =

{

sin
πkx1

a
sin

πmx2

b
sin

πnx3

c

}

, where

k, m, n ∈ N and denote the eigenvalues by λkmn = −

√

(

πk

a

)2

+
(πm

b

)2

+
(πn

c

)2

. The

spectrum σ(∆) is negative, discrete, finite and tends only to −∞. Since {ϕkmn} ⊂ C∞(Ω)
we obtain

µ4A− µ3B3 − µ2B2 − µB1 − B0 =

=

∞
∑

k,m,n=1

[(λkmn − λ)µ4 + (λkmn − λ′)µ2 − α
(πn

c

)2

] < ϕkmn, · > ϕkmn,

where < ·, · > is an inner product in L2(Ω).

Remark 3. In the case when (i) λ 6∈ σ(∆) the A-spectrum of pencil ~B σA( ~B) = {µj
rmn :

r,m, n ∈ N, j = 1, ..., 4}, where µj
rmn are the roots of equation

(λrmn − λ)µ4 + (λrmn − λ′)µ2 − α
(πn

c

)2

= 0. (19)

In the case when (ii) (λ ∈ σ(∆)) ∧ (λ 6= λ′) the A-spectrum of pencil ~B σA( ~B) = {µj
l,k :

k ∈ N}, where µj
l,k are the roots of equation (19) with λ = λl. In the case when (iii)

(λ ∈ σ(∆)) ∧ (λ = λ′) the A-spectrum of pencil ~B σA( ~B) = {µj
l,k : k ∈ N, k 6= l}.

Check condition (14). In case (i) there exists A−1 ∈ L(F1;U1) therefore condition (14)
is fulfilled.

In case (ii)

1

2πi

∫

γ

∞
∑

k,m,n=1

µr < ϕkmn, · > ϕkmndµ

(λkmn − λ)µ4 + (λkmn − λ′)µ2 − α(πn
c
)2

=

=
1

2πi

∫

γ

∞
∑

k,m,n=1

µr < ϕkmn, · > ϕkmndµ

(λkmn − λ′)µ2 − α(πn
c
)2

6= 0,

when r = 1, therefore condition (14) is not fulfilled and this case is excluded from further
considerations. In case (iii) (λ ∈ σ(∆)) ∧ (λ = λ′) condition (14) is fulfilled.

Lemma 7. [42] Let (i) λ 6∈ σ(∆)) or (ii) (λ ∈ σ(∆)) ∧ (λ = λ′). Then the pencil ~B is
polynomially (A, 0)-bounded.

In case (i) kerA = {0} that is, the operator A has no eigenvectors and, by remark 2

the pencil ~B is (A, 0)-bounded.

In case (ii) λ ∈ σ(∆) and λ = λ′ construct the chain of ~B-adjoined vectors of an
eigenvector ϕ0 =

∑

λ=λkmn

akmnϕkmn ∈ kerA \ {0}. Since B3 = B1 = O the first three

~B-adjoined vectors can be taken equal to zero. On the fourth we obtain

B0ϕ0 = B0(
∑

λ=λkmn

akmnϕkmn) = −α
(πn

c

)2 ∑

λ=λkmn

akmnϕkmn 6∈ imA,
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since
∑

λ=λkmn

|akmn| > 0.

Therefore the eigenvector ϕ0 doesn’t have a ~B-adjoined vector of order four, the length
of the chains of ~B-adjoined vectors of operator A is bounded by three, and the chain of
length three exists.

Construct projectors. In case (i) P = I and Q = I. In case (ii)

P = I−
∑

λ=λkmn

< ϕkmn, · > ϕkmn,

and the projector Q has the same form but it is defined on space F. Construct the set

M = {u ∈ U :
∑

λ=λkmn

< α
(πn

c

)2

u+∆(u3), ϕkmn > ϕkmn = 0}.

By theorem 8 we have

Theorem 9. [42] (i) Let λ 6∈ σ(∆), (u0, u1, . . . , un−1) ∈ Un. Then for some τ = τ(u0,
u1, . . . , un−1) > 0 there exists a unique solution u ∈ Cn

(

(−τ, τ),U
)

of problem (4), (5).
(ii) Let (λ ∈ σ(∆)) ∧ (λ = λ′), (u0, u1, . . . , un−1) ∈ T n−1M and condition (18) be
fulfilled. Then for some τ = τ(u0, u1, . . . , un−1) > 0 there exists a unique solution
u ∈ Cn

(

(−τ, τ),M
)

of problem (4), (5).

7. Mathematical Model of Waves Propagation in Shallow Water

In some particular cases of a non-linear term in equation, one can not only answer
the question of the existence and uniqueness of a solution, such as [41], but also find this
solution. A detailed algorithm is described in [3], in this section we present only the main
steps in finding a solution to problem (6) – (8).

For the solution, we need several function spaces. Let Ω ⊂ Rn be a domain with the
boundary ∂Ω of class C∞, denote Q = Ω× (0, T ). Define spaces L4(Ω), H1

0 (Ω) and denote
B = L4(Ω) ∩H1

0(Ω), D = H1(Ω) ∩ coimL (where coimL = H1(Ω)⊖ kerL).
The operator ∆ : H1(Ω) → H−1(Ω) is given by formula

〈∆u, v〉 = −

∫

Ω

(∇u∇v)dx.

Introduce the notation of the operators

〈Lu, v〉 =

∫

Ω

(∇u∇v + λuv)dx, 〈Mu, v〉 = α2

∫

Ω

(∇u∇v)dx, 〈N(u), v〉 =

∫

Ω

u3vdx.

In addition, define distribution spaces (functions with values in a Banach space)
L∞(0, T ;B) and L∞(0, T ;L2(Ω)). Construct dual spaces using the Dunford–Pettis

theorem: (L∞(0, T ;B))∗ ≃ L1(0, T ;L
4

3 )(Ω) ∪H−1(Ω)) and (L∞(0, T ;D))∗ ≃ L1(0, T ;D∗).
Let λk be the eigenvalues of the homogeneous Dirichlet problem (7)) for the operator

∆, numbered in nonincreasing order with multiplicity taken into account, and ϕk be the
corresponding eigenvectors. Moreover, the linear span span{ϕ1, ϕ2, . . . , ϕm} is dense in B
for m → ∞ and is orthonormal (in the sense of an inner product in L2(Ω)).
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Theorem 10. [3] Let λ ∈ [λ1,+∞), (u0, u1) ∈ TP, where u0 ∈ B = H1
0 (Ω) ∩ L4(Ω) and

u1 ∈ L2(Ω) ∩ coimL. Then there exists a solution u = u(x, t) of problem (6) – (8) such
that u ∈ L∞(0, T ;H1

0(Ω) ∩ L4(Ω)) and u̇ ∈ L∞(0, T ;L2(Ω) ∩ coimL).

Below we give a sketch of the proof. The solution of problem (6) – (8) will be sought
in the form of the Galerkin approximation

um(t) =

m
∑

k=1

amk (t)ϕk. (20)

Substituting the approximate solution (20) into equation (6) and multipliyng scalarly by
the basis functions {ϕk}

m
k=1, we get

〈Lüm, ϕk〉 − α2〈∆um, ϕk〉+ 〈(um)3, ϕk〉 = 0, 1 ≤ k ≤ m. (21)

Using the series expansions of the initial functions in terms of basis functions, we
obtain the initial conditions for the system of algebraic differential equations (21)

amk (0) = βm
k , ȧmk (0) = γm

k , 1 ≤ k ≤ m, (22)

where um
0 =

m
∑

k=1

βm
k ϕk → u0 in B for m → ∞, and um

1 =
m
∑

k=1

γm
k ϕk → u1 in L2(Ω) as

m → ∞. The existence of a unique local solution um = um(t, x), t ∈ [0, tm] was proved.
After that, a priori estimates were obtained as follows. Multiplying equation (21) by

ȧmk (t) (1 ≤ k ≤ m) and summing over k from 1 to m, we get

〈Lüm, u̇m〉 − α2〈∆um, u̇m〉+ 〈(um)3, u̇m〉 = 0.

Introduce a norm in the space D (L2(Ω) = coimL ⊕ kerL) |u̇|2H1 = 〈Lu̇, u̇〉. By the
Courant principle, this norm is equivalent to the norm induced by the space H1(Ω). Using
the self-adjointness of L, ∆ and integrating it on the segment [0, t], t ≤ tm we obtain

|u̇m|2 + α2‖um‖2H1

0

+
1

2
‖um‖4L4 ≤ C. (23)

The constant C does not depend on tm and hence tm = T .

Remark 4. Due to inequality (23) for m → ∞, the sequence of functions u̇m is bounded
in the space L∞(0, T ;L2(Ω)) and u is bounded in L∞(0, T ;B).

Since the sequence {(uml)3} is bounded in the space L∞(0, T ;L4/3(Ω)), we have

(uml)3 → z *-weakly in L∞(0, T ;L4/3(Ω)). (24)

Moreover, it can be shown that z = u3.
Now we can pass term by term to the limit in equality (21), setting ml = l. Let k be

fixed and l > k, we get
(i) due to the density of the system of functions {ϕk}

m
k=1 in the space B for m → ∞,

and the arbitrariness of the choice of ϕk, we have equality for arbitrary v ∈ B

d2

dt2
〈Lu, v〉+ α2〈∇u,∇v〉+ 〈u3, v〉 = 0. (25)
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(ii) u(0) = u0;
(iii) 〈u̇(0), ϕk〉 = 〈u1, ϕk〉, ∀ k.

Remark 5. Under the conditions of the theorem 10 and the Rellich–Kondrashov theorem,
the solution to problem (6) – (8) is unique.

Conclusion

Instead of the Cauchy condition in all mathematical models, one can consider the
Showalter–Sidorov condition

P (u(k)(0)− uk) = 0, k = 0, 1, . . . , n− 1, (26)

where P is a projector along the kernel of the operator at the highest derivative with respect
to t. Condition (26) is a natural generalization of the Cauchy condition for Sobolev type
equations.

Further directions of development are seen in the study of semilinear Sobolev type
equations with additive “white noise” [8, 9, 13], nonlinear inverse problems [43], as well as
the study of multipoint initial-final problems [11, 23, 40].
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ПОЛУЛИНЕЙНЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ
СОБОЛЕВСКОГО ТИПА

А.А. Замышляева1, Е.В. Бычков1

1Южно-Уральский государственный университет, г. Челябинск,
Российская Федерация

Статья содержит обзор результатов, полученных в научной школе Георгия Анато-

льевича Свиридюка, в области полулинейных математических моделей соболевского

типа. В работе приведены результаты о разрешимости задачи Коши и Шоуолтера –

Сидорова для полулинейных уравнений соболевского типа первого, второго и высо-

кого порядков, а также примеры неклассических моделей математической физики,

такие, как обобщенная модель нелинейной фильтрации Осколкова, распространения

ионно-акустических волн в плазме, распространения волн на мелкой воде, которые

исследуются путем редукции к одной из вышеперечисленных абстрактных задач. Ме-

тоды исследования полулинейных уравнений соболевского типа базируется на теории

относительно p-ограниченных операторов для уравнений первого порядка по перемен-

ной t и теории относительно полиномиально ограниченных пучков операторов для

уравнений второго и высокого порядка по переменной t. В работе применяется ме-

тод фазового пространства, заключающийся в редукции сингулярного уравнения к

регулярному, определенному на некотором подпространстве исходного пространства,

для доказательства теорем существования и единственности и метод Галеркина для

построения приближенного решения.

Ключевые слова: уравнение Осколкова; модифицированное уравнение Буссинеска;

уравнение ионно-звуковых волн в плазме; полулинейные уравнения соболевского типа;

относительно p-ограниченные операторы; относительно полиномиально ограничен-

ные пучки операторов; метод Галеркина; *-слабая сходимость.
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