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The article is devoted to a review of the author’s results in studying the stability
of semilinear Sobolev type equations with a relatively bounded operator. We consider the
initial-boundary value problems for the Hoff equation, for the Oskolkov equation of nonlinear
fluid filtration, for the Oskolkov equation of plane-parallel fluid flow, for the Benjamin—-Bon—
Mahoney equation. Under an appropriate choice of function spaces, these problems can be
considered as special cases of the Cauchy problem for a semilinear Sobolev type equation.
When studying stability, we use phase space methods based on the theory of degenerate
(semi)groups of operators and apply a generalization of the classical Hadamard—Perron
theorem. We show the existence of stable and unstable invariant manifolds modeled by
stable and unstable invariant spaces of the linear part of the Sobolev type equations in the
case when the phase space is simple and the relative spectrum and the imaginary axis do
not have common points.

Keywords: Sobolev type equations; invariant manifolds; Oskolkov equations; Hoff

equation; Benjamin—Bon—Mahoney equation.
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Introduction

Currently, a fairly large number of models of engineering and natural science are
described by problems for equations (systems of equations) in which the operator at the
time derivative is not invertible. Some classes of these equations can be considered as linear

Li = Mu, (1)
semilinear
Li= Mu+ N(u) (2)
and nonlinear
Li = F(u) (3)

Sobolev type equations. Here all the operators L, M, N, F are defined in Banach spaces,
L, M are linear operators, while N, F' are nonlinear operators, and ker L # {0}.

The Cauchy problem
u(0) = ug (4)

for equations (1), (2) and (3) may not have a solution, and if a solution exists, then the
solution may not be unique. Therefore, various approaches were developed to study these
equations. We prefer the phase space method, the foundations of which were laid down
in [24] and continued in [2-5] and others.

At present, Sobolev type equations are studied in various aspects. For example, the
papers [6-8| are devoted to optimal control problems for Sobolev type equations, while
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the solvability of a multipoint initial-final value problem for a Sobolev-type equation is
considered in [39], and Sobolev type equations in spaces of differential forms are studied
in [17]. In the works [11-14], high-order Sobolev type equations are studied. The solvability
of the Cauchy problem and the Showalter—Sidorov problem for a linear Sobolev type
equation in spaces of “noises” was studied in [1] in the case of (L, p)-sectoriality of the
operator M and in [2] in the case of (L, p)-radiality of the operator M. A stochastic linear
Sobolev type equation on a manifold is considered in [17, 18] and in quasi-Banach spaces
— in [38]. In the paper [3], a multipoint initial-finite value problem for a stochastic Sobolev
type equation is studied. The paper [23| is devoted to dynamical measurements in spaces
of “noises”.

This article is of a survey nature and contains results on the local stability of semilinear
Sobolev type equations, which we formulate using the concepts of stable and unstable
invariant manifolds. In the study, first of all, we use the phase space method. Here we
define the set of initial values ug for which there exists a unique local solution to problem
(1), (4) or a solution to problem (2), (4). Then it is assumed that the given set (called the
phase space) is a simple smooth manifold in a neighborhood of some point wug. In this case,
by virtue of the Cauchy theorem, problem (2), (4) (and, as a special case, problem (1), (4))
has a unique solution. Second, due to the assumptions about the simplicity of the phase
space, we transfer the results of the classical Hadamard—Perron theorem to equation (2).

In this paper, we review the results, which are a continuation of the results on the
stability of equations of the form (2) in the case of (L, p)-boundedness of the operator
M, see [30]. The article consists of Introduction, five sections and References. Section 1
considers the construction of projectors, the splitting of spaces, and the actions of operators
on these spaces; in addition, conditions for the existence of invariant spaces of equation
(1) and invariant manifolds of equation (2) are indicated. The next four sections are
devoted to applications of the results of Section 1. Namely, results on the existence of
stable and unstable invariant manifolds of the Hoff equation are presented in Section 2; of
the Oskolkov equation for nonlinear filtration — in Section 3; of the Oskolkov equation for
a plane-parallel fluid flow — in Section 4; of the Benjamin—-Bona—Mahoney equation — in
Section 5.

1. Invariant Manifolds of Sobolev Type Equations

Consider the operators L, M € L(F), where 4 and § are Banach
spaces. By a L-resolvent set of the operator M we mean the set pf(M) =
{peC:(uL — M)t e L(F;.)}, while by a L-spectrum of the operator M we mean
ol(M) = C\ p"(M). If the set o“(M) is bounded, then the operator M is said to be
a (L, o)-bounded operator.

Let the operator M be (L, c)-bonded. Construct the projectors

1
P=_— L—M™L =— [ L(pL — M) !
o [wr a0 trawe L. Q= o [ Lipn - a0 due £)
Y Y
which split the spaces 4 = °@U and §F = F'BF', where U° (U') = ker P (imP), F° (F') =

ker Q (im@), while the contour v C C bounds a domain containing o*(M). Denote by
Ly (My) the restriction of L (M) on U*, k = 0,1. By virtue of the splitting theorem
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(see, for example, [28]), the operators L, (M) € L(U*;F*), there exist the operators
Myt e £(F%U%) and L7t € £(FHUb).

A vector-function u € C*((—7,7);4), k € NU {oo} satisfying equation (2) for some
T € R, is said to be a solution to this equation. A solution u = u(t) to equation (2) is said
to be a solution to problem (2), (4), if equality (4) holds for some ug € 4.

Definition 1. [28] The set P € i is said to be the phase space of equation (2), if

(1) any solution u = u(t) to equation (2) belongs to P, i.e. u(t) € P for each t €
(_7-7 7->7'

(ii) for any ug € B, there exists a unique solution u € C*((—7,7);4), k € NU{oo} to
problem (2), (4).

Denote H = Ly' My € L£(4°) and S = L' M, € L(4'). The operator M is said to be
(L, p)-bounded operator, if M is (L, o)-bounded operator and H = O, p = 0 or H? # O,
HP* = Q. Consider the set

M={uvel: (I-Q)(Mu+ N(u))=0}.

Theorem 1. |[28] Let the operator M be (L,p)-bounded, p € {0} UN, the operator
N € CHU,F), and the set M be a simple Banach C'-manifold at the point ug. Then,
for some T € Ry, there ezists a unique solution u € C™((—7,7);9M), m = min{k,l}, to
equation (2) passing through the point uy.

Definition 2. [30] A subspace P C B is called an invariant space of equation (1), if, for
any uy € P, a solution u = u(t) to problem (1), (4) belongs to P, i.e. u(t) € B for any
teR.

Definition 3. [30] Let U' be a phase space, and U*, k = 1,2, be invariant spaces of
equation (1), where ' = U" @ U2, We say that the solutions u = u(t) to equation (1)
have an exponential dichotomy (e-dichotomy) if

(i) [u' )]y < Nie™CONul(s)la - s>t 11 >0,

(i) [u?(t)lla < Noe™2juP(s)[ly  t>s, 12 >0,

where uF € W* k=12

Theorem 2. [30] Let the operator M be (L, p)-bounded, p € {0}UN and o (M) N{iR} = 0.

Then the solutions uw = u(t) to equation (1) have an exponential dichotomy.
Suppose that the following condition holds:

) oH(M) = £ (M) Yo (M), and } | 5
oty (M) = { € a*(M) s Rep > ()0}, o, (M) £ 2
Then we can construct the projectors

1 1
Py = 5— | Ry(M)dp, sz:Q—m/LfZ(M)d“’

2mi
Yi(r) Ti(r)

where the contour 7,y belongs to the left (right) half-plane and bounds a domain
containing the part of the L-spectrum of the operator M that belongs to the given half-
plane.
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Definition 4. [35] By a stable (unstable) invariant manifold of the equation (2) we mean
the set
M) = fug €8s | Pyuolla < R, [lult, u)llu < R, t € Ry}
such that
(i) M) s diffeomorphic to a closed ball in I+ ();
(i3) M+ touches I+ at the origin;
(iii) for any ug € M) and for t — +(—)oo, ||u(t, uo)|ly — 0.

Theorem 3. (35| Let the operator M be (L,p)-bounded, p € {0} UN, condition (5) be
satisfied, and the operator N € C*°(U,§) be such that N(0) =0, Nj = Q. Then, for some
R;, 7 = 1,2, there exist stable and unstable invariant manifolds of equation (2). Moreover,
if, for some ug € M, we have ||Pypyuolly < Ri and ||u(t, uo)|ly < Ry fort — +(—)oo, then
Ug € m+(_)

2. Invariant Manifolds of Hoff Equation

Let 2 C R™ be a bounded domain with the boundary 0€2 of the class C'"°. In the
cylinder 2 x R, consider the Hoff equation

A+ Ay = ay + By’ (6)
which models the buckling dynamics of an I-beam in the case of n = 1 [4]. The desired
function y = y(x,t), (z,t) € Q x R, has physical meaning of the deviation of the beam
from the vertical, the parameter A € R, characterizes the load, and the parameters «,
£ € R characterize the material properties.

Reduce equation (6) to equation (2). Let = L,, § = W, ' (hereinafter, all function
spaces are defined on the domain 2). Define the operators L, M and N by the formulas
o1

(Lu,v) = /()\uv — Uy, Vg, )dT YU, v € Wy,
Q

(Mu,v) = oz/uvdx, (N(u),v) = B/u?’vdx Vu,v € Ly,
Q
where (-, ) is the scalar product in Ls. For n < 4 the operators L, M € L(Y;F) due to

the continuity and densﬂ:y of the embedding I/V2 — L4 and continuity of the embedding
Ly — (L4)* = Lg — W2

Lemma 1. [34] (i) Let n < 4, then, for any A € Ry, a € R\ {0}, the operator M is
(L,0)-bounded;

(ii) Let n < 4, then, for any B € R, the operator N € C*®(; §), where N(0) =0 and
N{ = Q.

Theorem 4. [34] (i) Let =\ & {\¢}, af > 0 andn < 4. Then the phase space of equation
(6) coincides with the space L.

(ii) Let —\ € {M\¢}, af > 0 and n < 4. Then the phase space of equation (6) is a
simple Banach C*-manifold

M= {ueil: /(oz—i—&f)ucpldx =0, N=-\}
Q

104 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2022, vol. 15, no. 1, pp. 101-111



OB30OPHBIE CTATBHI

modeled by the subspace ' = {u € 4L : (u, ;) =0, N, = —A}.

The continuation of these results is the work [4], in which the question of the stability
of equation (6) is studied. The paper [36] studies equation (6) on graphs, [18] deals with
equation (6) on manifolds, and [11] — in spaces of random K-values.

Theorem 5. [4] Letn <4, a, 5, A € Ry. Then if

(i) A < —\q, then, in a neighborhood of the zero point, equation (6) has only a stable
wwvariant manifold, which coincides with 9N ;

(i) =X\ < A, then, in a neighborhood of the zero point, equation (6) has the finite-
dimensional unstable invariant manifold M*, dim IM* = max{\, : =N < A}, and the
infinite-dimensional stable invariant manifold 9, codim 9M® = dim IM"* + dim ker L.

3. Invariant Manifolds of Oskolkov Equation
of Non-Linear Filtration

The non-classical equation
([ —@A)g: = vAg —|g["%g, p> 2, (7)

describes dynamics of the pressure of an incompressible viscoelastic fluid filtering in a
porous medium [13]. The parameters @, v characterize elastic and viscous fluid properties,
respectively. Let 2 C R"™ be a bounded domain with the boundary 0f2 of the class C°.
Reduce equation (7) defined in the cylinder Q x R to semilinear Sobolev type equation (2)

ol
defined in the Banach spaces { and §. Let & = W,, § = Wy '. Define the operators L, M
and N by the formulas

< Lu,v >= /(uv + Uy, vy, )dr, < Mu,v >= —I//uxivxidx,
Q Q

< N(u),v >= —/\u\p_2uvdx, u,v € 4l
Q

Forn > 3,2 <p<4/(n—2)+2, the operators L, M € L(L;F), the operator N : il — §.

Lemma 2. [32]| (i) Forn >3 and2 < p < 4/(n—2)+2, the operator M is (L,0)-bounded;
(ii) the operator N € C*(84;F), N(0) =0, N, = Q.

Consider the set 99t C U of the form

g% if 7t & {\};
Tl {ued:< Mu+ N(u),p >=0}, Ny =a!

and the space 4! of the form
ol = s if et @ {\ )
{lueld:<u, o >=0}, ="' [’

Theorem 6. [32] For any &e € R\ {0}, v € R, n >3, 2<p<4/(n—2)+2, the phase
space of equation (7) is the set M, which is a simple Banach C*-manifold modeled by the
space 1.
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Theorem 7. [5| Foranyse e R_, v € Ry, n > 3,2 <p<4/(n—2)+2, in a neighborhood
of the zero point, equation (7) has at most a finite-dimensional stable invariant manifold
e, dim M* = max{l : \;* < &}, and an infinite-dimensional unstable invariant manifold

M, codimM™ = dim M?® + dim ker L.

4. Invariant Manifolds of Oskolkov Equation
of Plane-Parallel Flow

Let Q2 € R(Qxlm) be a bounded domain with the boundary 0f2 of the class C'*°. In the
cylinder 2 x R, consider the Oskolkov equation

(A = A)Ayy, = vA*Y — %, (8)

which models a plane-parallel flow of a viscoelastic incompressible fluid [14].
In order to reduce equation (8) to equation (2), we set

U={uec Wi ulwy,m) = Aula,25) =0, (21,25) € 0N}, F = La(Q),
and define the operators L, M and N by the formulas
L:u—(A—=A)Au, M:u— vA%u,

O(u, Au)

N:u———-—=.
a(xla 33'2)
By construction, L, M € L(;F).

Lemma 3. [29] (i) Forn >3 and2 < p < 4/(n—2)+2, the operator M is (L,0)-bounded;
(ii) the operator N € C*(84;F), N(0) =0, N, = O.

Theorem 8. [29] For any A € R, v € R\ {0}, the phase space of equation (8) is the set

_ 4, Agé{)‘k}?
m_{ {u € tl: (Mu+ N(u), o) =0, A= N},

which 1s a stimple Banach C*°-manifold modeled by the space

L [ A E
U :{ {ue: (u,@) =0, A= \}.

Theorem 9. For any A € R, v € R, in a neighborhood of the zero point, equation (8)
has a finite-dimensional unstable invariant manifold 9", dim M* = max{l : \; > A}, and
an infinite-dimensional stable invariant manifold M*, codimM® = dim M* + dim ker L.

5. Invariant Manifolds of Benjamin—Bona—Mahoney Equation

The equation
N2 — Zggt = VZgpg — 2% 9)
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models long waves in dissipative and dispersive media [15]. In order to reduce equation
(9) to equation (2), we set

U={ue W (—m,x): u(-7r) =u(r) =0}, §=W,(-m,m),
where [ € {0} UN, p € [2,4+00). Define the operators L, M, N : 4 — § by the formulas

0 0?

L:)\_E’ M:]j@’ N :u— —ugu.

Since the embeddings 4l < § are continuous, the operators L, M € L(L;F).

Lemma 4. [33] (i) For any A, v € R\ {0}, the operator M is (L,0)-bounded.
(11) For any v, A € R\ {0}, the operator N € C*(; §F), where N(0) = 0 and Nj = O.

Construct the set 91 and the space . In this case, they have the form

N # —n?;
Mm = T - 2
{uel: [ (Vug —uzu)sinlede =0, X =17},
U N # —n?;

1 _ s
W= {ued: [ wu(x)sinlede =0, =1}
Theorem 10. [33] For all A\, v € R\ {0}, the phase space of equation (9) is the union
of two simple Banach C*®-manifolds modeled by the space 4.

Therefore, it is shown that the phase space of equation (9) is the union of two connected
components. In what follows, we denote by 2 the component of this set that contains the
zero point.

Theorem 11. For any A € R\ {0}, v € R, in a neighborhood of the zero point, equation
(9) has a finite-dimensional unstable invariant manifold M* and an infinite-dimensional
stable invariant manifold IM* modeled by the spaces ° and U*, respectively.

Conclusion

Numerical experiments on the solvability of linear stochastic Sobolev type equations
are discussed in [19-21], and on stability — in [9-13]. We intend to carry out similar studies
on the stability of semilinear stochastic equations.

Acknowledgments. The author expresses his sincere gratitude to Professor
G.A. Sviridyuk for setting tasks and fruitful discussions.
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OB30OPHBIE CTATBHI

YAK 517.9 DOI: 10.14529/mmp220106

MHBAPUAHTHBIE MHOTOOBPA3USA ITIOJIVJIMHENHBIX
YPABHEHII COBOJIEBCKOT'O TUIIA

O.I'. Kumaesa, Hxno-Ypaabckuit TOCyIapCTBEHHBIN YHUBEPCUTET, T. e/ IsTOnHCK,
Poccuiickas Pejiepartiust

Crarbs mocBsIena 0630py Pe3y/aIbTATOB ABTOPA 110 MCCJICIOBAHUIO YCTONIMBOCTU O~
JIyJIMHEWHBIX ypaBHEHUIT COO0JIEBCKOIO TUIA, C OTHOCUTEIBHO OrPAHUYEHHBIM OIEPATOPOM.
Paccmorpenbl HavaabHO-KpaeBble 3a1a49u s ypaBaeHuit Xodda, OCKoIKOBa HEJIMHENHOM
dutbrparnun kugrocTr, OCKOJIKOBA MIOCKOMAPAJIeJbHOIO TEUeHUsT KUIKOCTH, BeHkaMu-
Ha — borna — Maxonu. 91u 381291 IPU MOIXOISIIEM BBIOOpE DYHKITMOHAIBHBIX ITPOCTPAHCTB
MOT'YT OBITh PACCMOTPEHBI KAK YACTHBIE CIydan 3aa9u Ko [1i1st oIy InHEeTHOTO ypaBHe-
HuUsi cobosieBckoro Tuma. [Ipu uccegoBanun yCTONINBOCTH MbI MIOJIB3YEMCsI MeTOIaMu (a-
30BOI'0 IPOCTPAHCTBA, OCHOBAHHBIMU Ha TEOPUM BLIPOXKIEHHBIX (IIOJIY )IPYII OIEPATOPOB,
u upuMeHsieM 0000IIeHre Kiaccuieckoit Teopembl Anamapa — Ileppona. ITokasano cymie-
CTBOBAHME YCTOINYMBOIO W HEYCTONYNBOIO MHBAPHAHTHBIX MHOI000Da3uUil, MOIEIMPYEMBIX
YCTOIMYUBBIM U HEYCTONYMBBIM HWHBAPUAHTHBIMU IPOCTPAHCTBAMU JIMHEHHON 4aCcTU ypaBHe-
HUsI, B CJIydae, KOorjaa (pasoBoe IMPOCTPAHCTBO SIBJISIETCSI IPOCTHIM U OTHOCUTE/IbHBINA CITIEKT]
U MHUMAasl OCh HE UMEIOT OOIIUX TOYEK.

Karouesvie caosa: ypashenus cobone8cko20 muna; UHEAPUGHMMHOLE MHO2000PG3USM;

ypasnenusa Ockonrosa; ypasuernue Xogga; ypasnenue Bendorcamuna — Bona — Maxoru.
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