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The article contains a review of the results obtained by the author both independently
and in collaboration with other members of the Chelyabinsk scientific school founded by
G.A. Sviridyuk and devoted to Sobolev-type equations in specific spaces, namely the spaces
of differential forms defined on some Riemannian manifold without boundary. Sobolev
type equations are nonclassical equations of mathematical physics and are characterized
by an irreversible operator at the highest derivative. In our spaces, we need to use
special generalizations of operators to the space of differential forms, in particular, the
Laplace operator is replaced by its generalization, the Laplace-Beltrami operator. We
consider specific interpretations of equations with the relatively bounded operators: linear
Barenblatt—Zheltov—Kochina, linear and semilinear Hoff, linear Oskolkov ones. For these
equations, we investigate the solvability of the Cauchy, Showalter—Sidorov and initial-final
value problems in different cases. Depending on the choice of the type of equation (linear
or semi-linear), we use the corresponding modification of the phase space method. In the
spaces of differential forms, in order to use this method based on domain splitting and
the actions of the corresponding operators, the basis is the Hodge-Kodaira theorem on the
splitting of the domain of the Laplace-Beltrami operator.
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Introduction

Consider the following equations:
— the linear Barenblatt—Zheltov—Kochina equation [1]

(A = Ay, = aAu, (1)

which is a model of dynamics of a fluid filtering in a fractured-porous environment;
— the Oskolkov linear equation [29]

(1 — kA)Ap; = vA?p, (2)

which is a model of flow of a viscous-elastic incompressible zero-order Kelvin—Voigt fluid
in the first approximation;
— the semilinear Hoff equation [5,24]

(A — Ay = au + Bu?, (3)

which is a model of buckling of an I-beam.
In the functional spaces 4, § chosen by us, (1), (2) are reduced [22] to the linear
equation of Sobolev type
Li = Mu (4)
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with the irreversible operator L, while equation (3) is reduced to the semilinear equation
of Sobolev type

Li = Mu+ N(u). (5)
For these equations, the Cauchy problem |[28|
u(0) = wo, (6)

the Showalter—Sidorov problem [30]
P(u(0) = ug) =0, (7)
and the initial-final value problem [32]
Py(u(0) —ug) =0, Pr(u(T) —ug) =0 (8)

were considered.

Introduction indicates the range of equations and systems that are included in
our review. Section 1 (“Introductory Information”) is divided into two subsections.
Subsection 1.1 (“Terminology of Sobolev Type Equations and Phase Space Method”)
contains information from the theory of Sobolev type equations about the relatively
bounded operators and the phase space method developed by G.A. Sviridyuk and
T.G. Sukacheva. In Subsection 1.2 (“Spaces of Differential Forms and Splitting of
Action of Abstract Operators”), we construct spaces in which solvability is studied,
namely, orthogonal to harmonic smooth differential k-forms defined on a n-dimensional
connected smooth compact oriented Riemannian manifold without boundary [31]. In each
of subsections of Section 2 (“Investigation of Linear Equations”), one of the three linear
equations is analyzed. Section 3 (“Investigation of Semilinear Equations”) describes the
phase space of the semilinear equation in Subsection 3.1 (“Phase Space for Semilinear
Equations of Sobolev Type”) and the structure of the phase space containing a solution to
the Cauchy problem for the semilinear Hoff equation in Subsection 3.2 (“Semilinear Hoff
Equation”). In Conclusion, we describe other areas of research of Sobolev-type equations,
which were considered earlier or are of interest for future study in spaces of differential
forms.

1. Introductory Information

1.1. Terminology of Sobolev Type Equations and Phase Space Method

Let {4 and § be Banach spaces, the operators L, M € L(4; ). Consider the L-resolvent
set pt(M) = {pu € C: (uL — M)™' € L(F; L)} and the L-spectrum o*(M) = C\ p*(M)
of the operator M. If the L-spectrum (M) of the operator M is bounded, then the
operator M is said to be (L, o)-bounded. If the operator M is (L, o)-bounded, then there
exist the projectors

1 1
P= o [ BEOMdu e L), Q= %/L/’;(M)dp € L(F).
i il

Here R);(M) = (uL—M )" L and L} (M) = L(uL—M)~" are the right and left L-resolvents
of the operator M, respectively, while the closed contour v C C bounds a domain that
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contains ¥ (M). Let 4° (U) = ker P (imP), F° (F') = ker Q (im@Q) and denote by Ly, (Mj)
the restriction of the operator L (M) onto {4*, k =0, 1.

Theorem 1. (22| Let the operator M be (L, o)-bounded, then
(i) the operators Lj, (My) € L(UF:FF), k=0,1;
(i1) there exist the operators My "' € L(F%U0) and LT € L(FHUY).

Corollary 1. (22| Let the operator M be (L, o)-bounded, then
(WL — M) == p* S Q+ > p Tt EN M (1 - Q),
k=0 k=1

the operator H = Ly' My € L(U°), S = L7'M, € L(UY).

Hereinafter, the (L, o)-bounded operator M is said to be (L, p)-bounded, p € {0} U
N, if co is a removable singular point (H = O, p = 0) or a pole of the order p € N
(i.e. H? #£ O, HP™ = Q) of the L-resolvent (uL — M)~' of the operator M. We consider
the vector-function u € C*(R; ) to be a solution to equation (4), if when substituting u
into (4), this equation turns into an identity. A solution u = u(t) to equation (4) is said
to be a solution to the Cauchy problem

u(0) = uo (9)
for equation (4), if equality (9) holds for some u, € 4L

Definition 1. The set P C L is said to be a phase space of equation (4), if

(i) any solution u = u(t) to equation (4) belongs to P pointwise, i.e. u(t) € B for all
teR;

(ii) for any ug € B there exists a unique solution u € C1(R; ) to Cauchy problem
(9) for equation (4).

Theorem 2. |[22] Let the operator M be (L,p)-bounded, p € {0} UN. Then the phase
space of equation (4) is the subspace L.

Note that if the operator L' € L(F;4l) exists, then the phase space of equation (4)
is the space Ll

1.2. Spaces of Differential Forms and Splitting of Action of Abstract Operators

Let M be a smooth compact oriented Riemannian manifold without boundary with
the local coordinates x1, xs, ..., z,. Denote the spaces of smooth differential k-forms, k& =
0, 1, 2, ., n, by Hk = Hk (M)

The differential forms have the form

Xi17i2 ..... i (t,l’l,l'g, ,ZEn) = Z ail,ig ..... ik(t,l‘n,l‘m, ,ZEZk)dZE“ /\dl’z2 N ... /\dl‘zk,
li1,02,...,ix|=k

where a;, i, i (t, iy, Tiy, ..., ;) ave coefficients depending on time as well, and |71, ia, ..., ix|
is a multi-index.
The spaces Hj, are endowed with the standard scalar product

€oh=[enee geet (10)
M
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Here x is the Hodge operator and A is the operator of the inner multiplication of k-forms.
Completing the space Hj, by continuity in the norm || - ||, corresponding to scalar
product (10), we obtain the space $)?. Introducing scalar products in spaces of one or twice
differentiable k-forms and completing spaces according to the norms corresponding to these
scalar products, we construct the spaces $;, H7. There exist continuous embeddings of
the resulting Hilbert spaces
95 C H; C 9.

In these spaces, we can use a generalization of the Laplace—Beltrami operator
Au = (do + dd)u,

where d is the operator of external multiplication of differential forms, and the operator
0 = *dx* is the adjoint operator of d.
For the resulting spaces, a generalization of the Hodge—Kodaira theorem takes place.

Theorem 3. [31] Consider the spaces $,1 =0,1,2. Then
D = Hia s & Hias 1 =0,1,2.
Here $rq, Dirs and Hia are potential, solenoidal, and harmonic forms, respectively.

Corollary 2. [18] Under the conditions of Theorem 3, there exists the decomposition
's:jl = (f)gﬁA)L D ﬁi}A?l = 07 17 2.

As the main space in which we study the solvability of the corresponding problems,
we take (see Subsection 1.1) = (£2,)*.

The spectrum of the Laplace-Beltrami operator o(A) is discrete, finite multiple, and
condenses only to +oo. Next, {\;} is a sequence of eigenvalues of the Laplace—Beltrami
operator numbered non-increasingly, taking into account their multiplicity, and {¢;} is the
corresponding sequence of orthonormal (in sense of i) eigenfunctions.

2. Investigation of Linear Equations

2.1. Barenblatt—Zheltov—Kochina Equation

Consider the Barenblatt—Zheltov—Kochina equation (A — A)u; = aAw in the space
of differential forms 4 = ($?,)* from Subsection 1.2. For fixed a, A € R, introduce the
operators

L=(\+A), M=aA. (11)

Remark 1. Hereinafter, A is the Laplace-Beltrami operator generalizing the ordinary
Laplace operator up to sign. Therefore, the sign on the right side in brackets changes to
'+/, and the sign on the left side goes into the coefficient of the Laplace-Beltrami operator.

We obtain the linear equation of Sobolev type
Li = Mu. (12)
The initial Cauchy condition has the form

u (0) = wo. (13)

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 115
u nporpammupoBanue> (Bectuuk FOYpI'Y MMII). 2022. T. 15, Ne 1. C. 112-122



D.E. Shafranov

Lemma 1. [26] For any a, A € R\ {0}, the operator M is (L, p)-bounded with p = 0.

Based on the sequences from Subsection 1.2, construct a projector P € L(4l) onto the
phase space U! C 4l

H— Z <',(pj> (pl,lf)\ = )\l'

A=\

{ I, A# \foralll € N;
P:

Theorem 4. [26] For any \,a € R\ {0} and ug € {', there exists a unique solution
u = u(t) to problem (12), (13), which has the form

u@ZZZ'Fw(;fo@mwmw} (14)

Here, the prime at the sum sign means the absence of terms for which A = \,.
If we consider the inhomogeneous equation
Lu= Mu-+f (15)
with the Showalter—Sidorov initial condition
[REQD]™™ (1 (0) —uo) =0, (16)
then we arrive at the following theorem.

Theorem 5. [26] For any A € R\ {0}, « € R\ {0}, f € § and ug € ', there exists a
unique solution v = u(t) to problem (15), (16).

2.2. Oskolkov Equation

Consider the linear Oskolkov equation (1—rA)Ap; = vA?p in the space of differential
forms 4 = (H2,)* from Subsection 1.2. For fixed coefficients v, x € R\ {0}, introduce
operators taking into account Remark 1:

L=(\+A), M =aA. (17)
Let u = Ay, then we arrive at the linear equation of Sobolev type
Liu = Mu. (18)
The initial Cauchy condition has the form
u (0) = uo. (19)
The operator L constructed above is Fredholm and the following lemma takes place.
Lemma 2. [26] For any a, A € R\ {0}, the operator M is (L, p)-bounded with p = 0.

Based on the sequences from Subsection 1.2, construct a projector P € L(4l) onto the
phase space U':

H— Z <',(pj> (pl,lf)\ = )\l'

A=\

{ T, A # \forall € N;
P f—
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Theorem 6. [26] For any \,a € R\ {0} and ug € ', there exists a unique solution
u = u(t) to problem (18), (19), which has the form

u(t) = i [exp ( Aof;l t) (uo, @l)m} . (20)

=1

Here, the prime at the sum sign means the absence of terms for which A = \,.

2.3. Linear Hoff Equation

Consider the linear Hoff equation (A — A)u; = au in the space of differential forms
U= (H2,)* from Subsection 1.2. For fixed coefficients A\, € R\ {0}, we introduce the
operators taking into account Remark 1:

L=(\+A), M=aA. (21)
The initial-final value conditions have the form
Py(u(0) — ug) = 0, Pr(u(T) — ur) = 0. (22)
We arrive at the linear equation of Sobolev type
Li = Mu. (23)
The operator L constructed above is Fredholm and the following lemma takes place.

Lemma 3. [33] For all a, A € R\ {0}, the operator M is (L, p)-bounded with p = 0.

Due to (21) and the form of the spectrum of the Laplace—Beltrami operator as a
sequence from Subsection 1.2, the L-spectrum of the operator M has the form

Loy =4y = —2 .
o” (M) ] )\Jr/\l,GN

Let the L-spectrum of the operator M be represented as o“(M) = ol (M)Uck(M), where
ol (M) is a nonempty set (such a representation is ambiguous). In this case, we require
the existence of a closed contour 7; € C bounding a domain D; such that ok(M) C D,
and D; N ok(0) is an empty set. Then there exist the relatively spectral projectors Py =

> (eeprand Pr= > (-, ¢1)o¢r, while conditions (22) have the form

€y (M) €ag(M)

Y @) —uo, @opr =0, Y (w(T)—ur, p)opr = 0. (24)

o (M) u€ag (M)

By virtue of Lemma 3, we have
Theorem 7. [33] For any o € R\{0}, A # \;, initial-final value problem (24) for equation
(23) has a unique solution of the form

ut) = Y eap(ut)(w(0), o+ Y exp(u(t —T))(w(T), @)ogr. (25)

e (M) pu€ag(M)
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3. Investigation of Semilinear Equations

3.1. Phase Space for Semilinear Equations of Sobolev Type

Let & and § be Banach spaces, the operators L, M € L(,F), while the operator
N € C*(U,F). Consider the semilinear equation of Sobolev type

Li = Mu+ N(u). (26)

The vector-function u € C*((—7, 7),4) is said to be a solution to equation (26), if for
some 7 € Ry the function satisfies this equation. The solution u = u(t) to equation (26)
is called a solution to Cauchy problem

u(0) = wug (27)
for equation (26), if (27) holds for some ug € 4.

Definition 2. [18]| The set B C i is said to be the phase space of equation (26), if
(i) any solution u = u(t) to equation (26) belongs to P as a trajectory, i.e. u = u(t) C

(,B, le (_7—7 T);'

(17) for any uy € B, there exists a unique solution to problem (26), (27).

If there exists the operator L™! € L(i,F), then (26) is trivially reduced to the
equivalent equation
i = F(u), (28)

where the operator F' = L™'(M + N) € C*°(4). Local solvability of problem (27), (28)
and, therefore, problem (26), (27) for any ug € 4l is the classical Cauchy theorem. Hence,
in this case, the phase space of equation (26) is the whole space 4.

Let ker L # {0} and the operator M be (L,0)-bounded, then (26) is reduced to the
pair of equivalent equations

0=(I—-Q)(Mu+ N(u)), (29)

u' = Su' + QN (u° + u'), (30)

where u* € U* k = 0,1. Consider the set MM = {u € U: (I — Q)(Mu+ N(u)) = 0} that is
a candidate for the role of the phase space of equation (26) in this case.

Theorem 8. [18] Suppose that ker L # {0}, the operator M is (L, 0)—-bounded, there exists
ug € M, and
I+ My (I — Q)Ny : 4° — 81 (31)

is a topline isomorphism. Then some neighborhood O C 9M of the point ug is a Banach
O -manifold modeled by a subspace ', and also belongs to the phase space of equation

(26).
3.2. Semilinear Hoff Equation

Let 4 = & (D)5 1T = & (914)%, where the direct sums are assumed to be
k=0 k=0

“orthogonal”, and the space ((},)*) " is formally dual to ($},)*. Introduce the operator
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[ = diag{l;}, where I : (9i)" — ((Hia)H)7Y, k& = 0,1,...,n, are the operators of
embedding.
For the Hoff equation (A — A)u; = au + Su?, define the operators

L=(\=A)LM=al, (32)

where A is the Laplace-Beltrami operator, and L, M € L(4, F), while the formulas

N = diag{Ne}, (Ne(€), m)o = A / €8 n s, €€ (Bha)* (33)
Qp

define the operator N. Here €3 is a k—form &, all coefficients of which are cubed. As a
result, we obtain

Li = Mu+ N(u). (34)

Lemma 4. [18|
(i) For any A\, € R\ {0}, the operator M is (L, p)-bounded with p = 0.
(ii) For anyn =1,2,....4, B € R, the operator N € C*>(L,§).

Suppose that o(A) are the eigenvalues of the Laplace-Beltrami operator A (see
Subsection 1.2), while {¢;} is the corresponding set of eigenfunctions on 4l.
Let us introduce into consideration the sets

_ il,/\%O’(A);
”B—{ (west: (wp)o=0 A=}

and
_ U Ada(D);
= { {u € th:au, @j)o+ BN (u),pj)o =0, A=A}

Theorem 9. [18] For any n = 1,4, a € R\ {0}, B3, \ € R, the phase space of equation
(34) is a simple Banach manifold 9 modeled by the subspace B.

Conclusion

In addition to the studies presented in the review, the author wrote a number of
papers on the solvability of the equations in spaces of differential forms with stochastic
coefficients 10,11, 16, 17| based on studies for stochastic equations [2,3,25|. Results on
the stability of solutions in spaces of differential forms with stochastic coefficients were
obtained in [6-11,17]. Also, the studies [13-15] on numerical solutions to these equations
were published by the author. In addition to these studies, there exist other areas of
study of Sobolev-type equations: high-order Sobolev-type equations [34]; equations on
graphs [27]; in areas of optimal control and measurement [12,19,23|; multipoint initial-
final value problems [4]; complex physical models [20,21]. These areas are of interest for
future study in spaces of differential forms.

Acknowledgments. The paper is dedicated to my supervisor, Professor Georgy
Anatolyevich Sviridyuk.

Bectauk FOVYpI'Y. Cepusa <Maremarndeckoe MOAeJIMPOBAHUE 119
u nporpammupoBanue> (Bectuuk FOYpI'Y MMII). 2022. T. 15, Ne 1. C. 112-122



D.E. Shafranov

References

1.

10.

11.

12.

13.

14.

Barenblatt G.I., Zheltov Iu.P., Kochina I.N. Basic Concepts in the Theory of Seepage of
Homogeneous Liquids in Fissured Rocks. Journal of Applied Mathematics and Mechanics,
1960, vol. 24, iss. 5, pp. 852-864. DOI: 10.1016/0021-8928(60)90107-6

. Favini A., Sviridyuk G.A., Manakova N.A. Linear Sobolev Type Equations with Relatively

p-Sectorial Operators in Space of “Noises”. Abstract and Applied Analysis, 2015, article
ID: 69741, 8 p. DOI: 10.1155/2015/697410

Favini A., Sviridyuk G.A., Sagadeeva M.A. Linear Sobolev Type Equations with Relatively
p-Radial Operators in Space of “Noises”. Mediterranean Journal of Mathematics, 2016, vol. 13,
no. 6, pp. 4607-4621. DOI: 10.1007/s00009-016-0765-x

Favini A., Zagrebina S.A., Sviridyuk G.A. Multipoint Initial-Final Value Problems for
Dynamical Sobolev-Type Equations in the Space of Noises. Electronic Journal of Differential
FEquations, 2018, vol. 2018, no. 128, pp. 1-10.

Hoff N.J. Creep Buckling. Journal of Aeronautical Sciences, 1956, no. 1, pp. 1-20.

Kitaeva O.G. Exponential Dichotomies of a Non-Classical Equations of Differential Forms
on a Two-Dimensional Torus with “Noises”. Journal of Computational and Engineering
Mathematics, 2019, vol. 6, no. 3, pp. 26-38. DOI: 10.14529 /jcem190303

Kitaeva O.G. Dichotomies of Solutions to the Stochastic Ginzburg—Landau Equation on a
Torus. Journal of Computational and Engineering Mathematics, 2020, vol. 7, no. 4, pp. 17-25.
DOTI: 10.14529/jcem200402

Kitaeva O.G. Exponential Dichotomies of a Stochastic Non-Classical Equation on a Two-
Dimensional Sphere. Journal of Computational and Engineering Mathematics, 2021, vol. 8,
no. 1, pp. 60-67. DOI: 10.14529/jcem210105

Kitaeva O.G. Invariant Spaces of Oskolkov Stochastic Linear Equations on the Manifold.
Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2021,
vol. 13, no. 2, pp. 5-10. DOI: 10.14529/mmph210201

Kitaeva O.G., Shafranov D.E., Sviridyuk G.A. Exponential Dichotomies in Barenblatt—
Zheltov—Kochina Model in Spaces of Differential Forms with “Noise”. Bulletin of the South

Ural State University. Series: Mathematical Modelling, Programming and Computer Software,
2019, vol. 12, no. 2, pp. 47-57. DOI: 10.14529/mmp190204

Kitaeva 0O.G., Shafranov D.E., Sviridyuk G.A. Degenerate Holomorphic Semigroups
of Operators in Spaces of K-“Noises” on Riemannian Manifolds. Springer Proceedings
i Mathematics and Statistics, Springer, Cham, 2020, vol. 325, pp. 279-292.
DOI: 10.1134/S0012266121040078

Sagadeeva M.A., Zagrebina S.A., Manakova N.A. Optimal Control of Solutions of
a Multipoint Initial-Final Problem for Non-Autonomous FEvolutionary Sobolev Type
Equation. FEwvolution Equations and Control Theory, 2019, vol. 8, no. 3, pp. 473-488.
DOI: 10.3934 /eect.2019023

Shafranov D.E. Numeral Solution of the Barenblatt—Zheltov—Kochina Equation with Additive
“White Noise” in Spaces of Differential Forms on a Torus. Journal of Computational and
Engineering Mathematics, 2019, vol. 6, no. 4, pp. 31-43. DOI: 10.14529 /jcem190403

Shafranov D.E. Numerical solution of the Dzektser Equation with “White Noise” in the Space
of Smooth Differential Forms Defined on a Torus. Journal of Computational and Engineering
Mathematics, 2020, vol. 7, no. 2, pp. 58-65. DOI: 10.14529/jcem200206

120

Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2022, vol. 15, no. 1, pp. 112-122



OB30OPHBIE CTATBHI

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Shafranov D.E., Adukova N.V. Solvability of the Showalter—Sidorov Problem for Sobolev
Type Equations with Operators in the Form of First-Order Polynomials from the

Laplace—Beltrami Operator on Differential Forms. Journal of Computation and Engineering
Mathematics, 2017, vol. 4, no. 3, pp. 27-34. DOI: 10.14529/jcem170304

Shafranov D.E., Kitaeva O.G. The Barenblatt—Zheltov—Kochina Model with the Showalter—
Sidorov Condition and Additive “White Noise” in Spaces of Differential Forms on Riemannian
Manifolds without Boundary. Global and Stochastic Analysis, 2018, vol. 5, no. 2, pp. 145-159.

Shafranov D.E., Kitaeva O.G., Sviridyuk G.A. Stochastic Equations of Sobolev Type with
Relatively p-Radial Operators in Spaces of Differential Forms. Differential Equations, 2021,
vol. 57, no. 4, pp. 507-516. DOI: 10.1134/S0012266121040078

Shafranov D.E., Shvedchikova A.I. The Hoff Equation as a Model of Elastic Shell. Bulletin of
the South Ural State University. Series: Mathematical Modelling, Programming and Computer
Software, 2012, no. 18 (277), pp. 77-81. (in Russian)

Shestakov A.L., Sviridyuk G.A. On the Measurement of the “White Noise”. Bulletin of the
South Ural State University. Series: Mathematical Modelling, Programming and Computer
Software, 2012, no. 27 (286), pp. 99-108. (in Russian)

Sviridyuk G.A. A Problem of Generalized Boussinesq Filtration Equation. Sowiet
Mathematics, 1989, vol. 33, no. 2, pp. 62-73.

Sviridyuk G.A. Solvability of a Problem of the Termoconvection of a Viscoelastic
Incompressible Fluid. Soviet Mathematics, 1990, vol. 34, no. 12, pp. 80-86.

Sviridyuk G.A. On the General Theory of Operator Semigroups. Russian Mathematical
Surveys, 1994, vol. 49, no. 4, pp. 45-74. DOI: 10.1070/RM1994v049n04ABEH002390

Sviridyuk G.A., Efremov A.A. Optimal Control Problem for a Class of Linear Equations of
Sobolev Type. Russian Mathematics, 1996, vol. 40, no. 12, pp. 60-71.

Sviridyuk G.A., Kazak V.0O. The Phase Space of a Generalized Model of Oskolkov. Siberian
Mathematical Journal, 2003, vol. 44, iss. 5, pp. 877-882. DOI: 10.1023/A:1026080506657

Sviridyuk G.A., Manakova N.A. The Dynamical Models of Sobolv Type with Showalter—
Sidorov Condition and Additive “Noise”. Bulletin of the South Ural State University.
Series: Mathematical Modelling, Programming and Computer Software, 2014, vol. 7,
no. 1, pp. 90-103. DOI: 10.14529/mmp140108 (in Russian)

Sviridyuk G.A., Shafranov D.E. The Cauchy Problem for the Barenblatt—Zheltov—Kochina
Equation on a Smooth Manifold. Vestnik Chelyabinskogo gosudarstvennogo universiteta, 2003,
vol. 9, pp. 171-177. (in Russian)

Sviridyuk G.A., Shemetova V.V. Hoff Equations on Graphs. Differential FEquations, 2006,
vol. 42, no. 1, pp. 139-145. DOI: 10.1134/S0012266106010125

Sviridyuk G.A., Sukacheva T.G. Cauchy Problem for a Class of Semilinear Equations
of Sobolev Type. Siberian Mathematical Journal, 1990, vol. 31, iss. 5, pp. 794-802.
DOTI: 10.1007/BF00974493

Sviridyuk G.A., Yakupov M.M. The Phase Space of the Initial-boundary Value Problem for
the Oskolkov System. Differential Equations, 1996, vol. 232, no. 11, pp. 1535-1540.

Sviridyuk G.A., Zagrebina S.A. The Showalter—Sidorov Problem as a Phenomena of the
Sobolev Type Equations. The Bulletin of Irkutsk State University. Series Mathematics, 2010,
vol. 3, no. 1, pp. 104-125.

Warner F.W. Foundations of Differentiable Manifolds and Lie Groups. New York, Springer
Science and Business Media, 1983.

Bectauk FOVYpI'Y. Cepusa <Maremarndeckoe MOAeJIMPOBAHUE 121
u nporpammupoBanue> (Bectuuk FOYpI'Y MMII). 2022. T. 15, Ne 1. C. 112-122



D.E. Shafranov

32.

33.

34.

Zagrebina S.A. The Initial-Finite Problems for Nonclassical Models of Mathematical Physics.
Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming
and Computer Software, 2013, vol. 6, no. 2, pp. 5-24.

Zagrebina S.A.; Sviridyuk G.A., Shafranov D.E. The Initial-Final Problem for Measuring the
Bending of a Beam, Which Is an Elastic Shell. Proceedings of the 24th National Scientific
Symposium with International Participation Metrology and Metrology Assurance, Sozopol,
2014, pp. 144-147. (in Russian)

Zamyshlyaeva A.A., Bychkov E.V. The Cauchy Problem for the Sobolev Type Equation
of Higher Order. Bulletin of the South Ural State University. Series: Mathematical
Modelling, Programming and Computer Software, 2018, vol. 11, no. 1, pp. 5-14.
DOI: 10.14529/mmp180101

Received December 27, 2021

YAK 517.9 DOI: 10.14529 /mmp220107

YPABHEHUN{ COBOJIEBCKOT'O TUIIA B ITIPOCTPAHCTBAX
JANOPEPEHIIMAJIBHBIX ®OPM HA PUMAHOBBIX
MHOTI'OOBPA3BUNAX BE3 KPAA

. E. Illagparos, KOxno-Ypaibckuii rocyIapCTBEHHBI YHUBEPCUTET, T. UeIsa0MHCK,
Poccniickas ®enepariust

Crarbs cofepKUT 0630p Pe3yJILTATOB, TOJYYEHHBIX ABTOPOM KaK CAMOCTOSITEHLHO, TAK
U B COABTOPCTBE C JIDYTUMU MpejcTaBuTesisiMu densgbuuckoit nayaHoit mkosst A, Cupn-
JIIOKA, TI0 < Y PaBHEHUSAM COOOJIEBCKOIO TUIA> B CIENUMUIECKAX TPOCTPAHCTBAX, 8 UMEHHO
npocTpancTBax AuddepeHnuaabHbpIX (GOpM, 33JJaHHBIX HAa KAKOM-JITHO0 PUMAaHOBOM MHOT'O-
obpasun 6e3 Kpasi. ¥ paBHEHUsI CODOJIEBCKOI'O THUITA, OTHOCATCS K HEKJIACCUIECKUM YPABHEHU-
sIM MaTeMATHIeCKOM (DU3UKHU U XapAKTEPU3yI0TCst HeOOPATHMBIM OITEPATOPOM IIPH CTapIeit
npousBoHOiL. [Ipn paccMoTpeHnE B HAIIUX MPOCTPAHCTBAX MPHUIILIOCH MCIOJIb30BATH CITe-
raJbHbIe ODODIINEHNSI OTEPATOPOB Ha MPOCTPAHCTBO mud depeHnnaibHbIXx GOpM, B 9acT-
HOCTH, orieparop Jlamiaca 3aMeHu N Ha, ero 06061eHue — onepaTop Jlamraca — Beabrpamu.
PaccMmoTpeHbl KOHKpETHBIE WHTEPIPUTAINN yPABHEHUII C OTHOCUTE/BHO OrpaHMYEHHBIMU
oneparopamu: juneitnoe Bapentaarra — 2Kenrosa — Kounnoit, ureitHOE 1 IOy THHEHHOE
Xodda, muneitnoe OckoskoBa. st 9TUX ypaBHEHUI UCCIIEIOBAHBI B PAIUIHBIX CJIydasiX
paspemumoctsb 3a1a4 Ko, [Tloyosrrepa — CumopoBa n HadabHO-KOHEYHOH. B 3aBucuMo-
CTH OT BBIOOPA THIIA ypaBHEHUs (JIMHEHHOe W [OJIy/INHEHOe ) IPUMEHSIIACH COOTBETCTBY-
folast MOIUPUKAIUS METOAa Pa30BOro IPOCTPaHCTBA. s NCIIOIb30BAHUS 9TONO METO/IA,
OCHOBaHHOI'O Ha PAaCIIeILIEHUU 00JIACTH OIpele/ieHnsl U JefiCTBUS COOTBETCTBYIOIIUX OIle-
paTopoB, B MpPOCTpaHCTBaX aAnddepeHITnaabHbIX (POpM 0a30it CIIyKHUT TeopeMma XOKa —
Kognaupsr o pacmiemiennn obnactu onpeesenus oneparopa Jlamnaca — Besxprpamu.

Karoueswie caosa: ypasuerus coboresckozo muna; memod @azoeo20 npocmpancmea;

Jupdeperyuanvroie Gopmol; PUMAHO080 MH02000pasue 6e3 Kpas.
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