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The article is devoted to a theoretical study of a non-stationary problem on
thermomechanical processes in snow taking into account the effects of melting and freezing.
Snow is modeled as a continuous medium consisting of water, air and porous ice skeleton.
The governing equations of snow are based on the fundamental conservation laws of
continuum mechanics. For the one-dimensional setting, the Rothe scheme is constructed
as an approximation of the considered problem and the Rothe method is formally justified,
i.e., convergence of approximate solutions to the solution of the considered problem is
established under some additional regularity requirements.
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Introduction

The great interest to mathematical modelling of thermomechanical processes in and
around snow is motivated by a large demand for an adequate description of snow behavior
in order to calculate and forecast spring flood hydrographs and water quality in receiving
reservoirs, to make assessment of the risk of avalanches in the mountains, etc. To date,
there exists a number of works devoted to modelling the filtration of water and air in
snow taking into account phase transitions, which use observational data and empirical
dependencies, and which are based on various approaches in continuum mechanics and
thermodynamics. A fairly extensive review on this topic can be found in [1|. The present
article is devoted to a study of the mathematical model of air and water filtration in a
snowpack in the presence of “ice-water” phase transitions. The snowpack is modeled as
a three-phase continuum consisting of water, air and porous ice skeleton. In the article,
the full model is posed in Section 1 and is called Model A. In Section 2, the reduction
of Model A is given in the spatially one-dimensional case under some additional physical
assumptions and the initial-boundary value problem is formulated for it, which is called
Problem B. Section 3 is devoted to a study of this problem. Because of nonlinearity and
high inter-connection between equations, the rigorous mathematical results on existence
and uniqueness of classical or generalized solutions to Problem B are unavailable, at least,
so far. Therefore, in this article we concentrate on building a reasonable approximation.
At first, we construct the Rothe scheme for the problem and prove its local in time well-
posedness, see Theorem 1. In fact, the classical solution of the Rothe scheme exists and
is unique until the moment when the volumetric saturation of water either exceeds unity
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or drops below zero at some physical position, which is unacceptable from the physical
viewpoint, see Remark 2 in Section 3. Secondly, we introduce the globally (in time) well-
posed regularized version of the Rothe scheme and give a formal justification of the Rothe
method for this scheme, see Theorems 2 and 3. In order to cimplete this introduction, it
is worth to notice that the present study is rather close to a set of recent works devoted
to the mathematical modelling of processes in snowpack, see [2-4|, and can be regarded
to as their extension.

1. Mathematical Model of Snow: Multi-Dimensional Setting

At temperatures close to the freezing point of water, snow can be described as a
three-phase medium consisting of water, air (water vapor) and ice. In this case, ice is a
solid porous skeleton, and a mixture of water (in liquid form) and air is a two-component
continuous medium filtering through the pores. We introduce a mathematical description
of the balance of mass, momentum and heat based on the fundamental conservation laws
in continuum mechanics, following the presentation from the monographs [5,6].

We denote the phases of snow such that index ¢ = 1 corresponds to water (in liquid
form), index i = 2 corresponds to air (water vapor), and index i = 3 corresponds to ice.

The mass balance equation for each of the phases has the form

3

8pi . .
875 + dlvx(pzuz) = Z Ijia 1 = 1, 2, 3, (1)

j=1

where p; = p;(x,t) is the reduced density of the i th phase, u; = u;(x,t) is the velocity of
the 7 th phase and [j; is the intensity of mass transition from the j th phase to the ¢ th phase.
The reduced density p; is related to the genuine density p? and volumetric concentration

3

a; by the formulas p; = a;p, a; > 0,7 = 1,2,3; ZO"' = 1. The intensities of phase
i=1

transitions I;; meet the requirements I;; = —1I;;. Further, we consider that filtration of

water and air obeys to Darcy’s law and that the porous ice skeleton is immovable, i.e.,

kOi(Si)

i

v; = —K0(¢) (prz + p?g), 1=1,2, u3z=0, Vit > 0, (2)

where v; = wv;(x,t) is the velocity of filtration, s; = s;(x,t) is saturation, i.e., the
part of porous space occupied by the ith phase, p; = p;(@,t) is the hydraulic pressure,
koi = koi(s;) > 0 is the phase permeability such that ky;(0) = 0, u; = const; > 0 is
the dynamical viscosity of the ith phase; Ky = Kq(¢) is a nonnegative symmetric porous
skeleton permeability tensor such that Kq(0) = 0, ¢ = ¢(x, t) is the snow porosity, i.e., the
volumetric part of pores in the specific volume of snow, and g = —ge; is the gravitational
acceleration (g = const > 0, e; = (1,0,0)*). The velocity of filtration v; is related to the
medium velocity u; by the formula v; = «a;u; and the volumetric concentration «; is related
to the saturation s; and the porosity ¢ by the formula a; = ¢s;, © = 1, 2. Introducing the
3

notation s := s; and taking into account that Zai = 1, we write out these relations
i=1
in the form v; = ¢suy, vy = ¢(1 — s)us, a1 = ¢s, and as = ¢(1 — s). Here note that
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so=1—s,a3=1—¢,0<s<1,and 0 < ¢ < 1. The difference between the pressures
of the filtering phases is determined by Laplace’s law p; — p1 = pc(s), where the capillary
pressure p. = p.(s) is the given function that has the properties p.(s) > 0, p.(0) = oo,
p:(1) =0, and p.(s) <0 [5, Ch.5, Sec. 1.1].

Equations (2) describe the balance of momentum in the snowpack. Finally, assuming
that the temperatures in all three phases coincide, i.e., 0;(x,t) = 0(x,t) (i = 1,2,3), we
write out the equation of balance of heat in the snowpack as follows:

3 o0 3 3 3
<; PiCz') ot + <; PiCiUi) Vot — div, ()\c(S, ¢)Vx9) = - Z a cif0ly;. (3)

=1 j=1

Here ¢; = const; > 0 is the specific heat capacity of the i th phase at constant volume and
Ac(s, @) is the heat conductivity of snow such that A\.(s,¢) > A_ = const > 0, Vs, ¢ € R,
which is given according to experimental data.

The result of the above considerations is the formulation of the following model of
heat and mass transfer in the snowpack.

Model A. Equations of balance of mass (1), momentum (2) and heat (3) together with
the set of the above stated physical hypotheses and restrictions on coefficients constitute
the basic multidimensional model of dynamaics of the snowpack.

Remark 1. Note that the formulations based on modifications of Model A were considered
by various authors. For example, in [2|, a numerical study of a one-dimensional (in x)
formulation of an initial-boundary value problem for a system of the form of Model A was
carried out, in which, on the right-hand side of equation (3), the sum —wvI3 takes place

3 3
instead of the sum — Z Z c;01;;, where v = const > 0 is the given specific latent heat of
i=1 j=1

the “ice-water” phase transition and the intensity of the phase transition I13 = I13(¢, 0, s)
is a given function of a very special form. Looking ahead, we note that in the setting
considered in the present article, the value I3 is a sought function rather than a given
one. The same model (with minor changes) as in [2] was considered earlier in [7]|, where
the unique solvability was proved for the one-dimensional self-similar setting.

In the next section, based on the available phenomenological studies, we introduce
the main assumptions regarding the coefficients and nonlinearities of Model A, make a
reduction of this model in the spatially one-dimensional case, and formulate the initial-
boundary value problem for the reduced 1D model.

2. Reduction of Model A. The 1D Model of Snowpack

Further, we restrict our considerations to the one-dimensional case such that Ox;-axis
becomes the only spatial axis; we denote z := 1. Accordingly, all vector quantities in (1)
— (3) become scalar ones, in particular, g = —ge; = —g. Matrix Kq in (2); also becomes
scalar, Ko = Ky, and the operators V, and div, become the derivative 9/0z.

We accept some additional phenomenological hypotheses. Namely, taking into account
natural observations (see, for example, [6, page 105]), we neglect sublimation, i.e., we
impose the conditions Iy = I1o = 0 and I3y = Is3 = 0. We postulate the model law of
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dependence of porosity on temperature following the article [7]: we assume that ¢ = ¢(x, )
is a given continuous piece-wise differentiable function such that

d(x,0) =¢ for 0 <0, ¢y(x,0) >0for 6l ,0%], o¢(x,0)=0¢" for 6 >0, (4)

where ¢, ¢ = const € (0,1], 67,07 = const, 0 < §~ < 6% and 67 is the temperature of
ice melting. We impose the physically reasonable requirements p9 < p3 < p? on the genuine
densities of phases and ¢; > c¢3 on specific heat capacities. Denote by I the intensity of the
“ice-water” phase transition I3;. We assume that p? (i = 1,2, 3) are constants.

Now, following the ideas from [5, Ch. V, §1, Sec. 1|, using the above hypotheses on
Lj, ¢, pi and ¢;, we reduce Model A to a system of five differential equations for the five
sought functions s, 6, v, I, and p, where v is the total filtration velocity determined by the
formula v := v; + vo = s¢uy + (1 — s)pus, and p is the reduced pressure, which is defined
below after formula (5e).

We introduce the new physical characteristics of a snowpack by the formulas

o(6,0) 1= ~Fafe) MU= D) g = B0 =), (50

o) = —of) | (P2 B2 ) g g Bl Bl

K(5.0)i= K Ka(0), Flsvo)i= =220 = p6s,0) = mofo) |20 =t (50
RO g

()i [RREae Qeo) = o i so el =0k (50

V(v,5,0,¢) = cipi[(1 = b(s))v—a(s, §)¢ = F (s, d) [+ capy [a(s, §)C+b(s)v+ F(s,9)]. (5e)

With the help of (5d), the reduced pressure is defined by the formula p := py + 7(s).

Obviously, the introduced functions a, b, f, k, K, F', w, (), and V are uniquely defined
by the given coefficients and free terms of Model A. Therefore, they are the given functions
of their arguments rather than the sought ones. In turn, since ps is an unknown function
in Model A, p = p(z,t) is an unknown function as well.

Similarly to [5, Ch.5, Secs.1.1-1.2|, by rather lengthy but straightforward
transformations, from Model A we derive the reduced one-dimensional model of a snowpack
in terms of the unknown (sought) functions s, 6, v, I, and p and the given characteristics
a, b, f, k, K, F, Q, and V, see equations (6a) — (6e) below.

Finally, we suppose that Q = (0,[) is an open interval in R,, where the coordinate
x = 0 corresponds to the bottom surface of a snowpack bordering on a frozen base (ground,
ice, rooftop, etc.), and x = [ is the upper surface bordering on an open air.

Now we are in a position to formulate the initial-boundary value problem for the
reduced dynamical one-dimensional model of a snowpack.

Problem B. In the space-time domain Qr = Q x (0,7, where T" = const > 0 is a
given time moment, find the water saturation in pores s = s(x,t), the reduced pressure
p = p(z,t), the intensity of the “ice-water” phase transition I = I(z,t), the temperature
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of snow 0 = 0(x,t), and the velocity of filtration v = v(x, t), satisfying the reduced mass
balance equations

8[(1 - S)¢(xv 0)] + g [G(S’ ¢(I, Q))% + b(S)U + F(S, gb(x, 0))} =0, (ZE, t) € QT; (6&)

ot ox
0 0 9\ 0 (x, 0
S (Koo T~ fsowo)] = (1-2) 250 @ con, (6b)
op(x,0 1
¢g ) = p—g, (z,t) € Qp, (6¢)
the reduced Darcy law
0
v=—K(s,0(2.0) 57 + f(s,6(2.6)). (2.8) € O, (6d)
the heat balance equation
00 os\ 00 0O 00
Qs o0 +V (0250000 5 ) 5 = o (Alsole )T ) = e - )01

(x,t) € Qp, (6e)

and the boundary and initial conditions

Sla=o = 50(0,1),  plazo =po(t), Oluszo =6(0,t), t e (0,17, (6f)
dp
Slamt = s0(1, 1), 5= 0 0, = 0o(1,t), te (0,7, (62)
T lx=l
S|t:0 = So(ZE, O), e‘t:() = 60(1‘, 0), S [0, l] (6h)

Here sq = so(z,t) and 0y = Oy(x,t) are given functions on Uy and pg = po(t) is a given
function on [0, T satisfying the boundedness and regularity conditions

s0 € [s_,54], 0 €[07,07] for (z,t) € Up, s, Oy € C*T(Ug), po € C*T*[0,T], (6i)

where a € (0,1), 6~ and §" are the same as in (4), s_, sy € (0,1) are given constants, and
Ur=({0<z <1} x{t=0}) U ({z =0,z =1} x(0,7]) is the U-shaped part of Q.

Note that, having the five sought functions s, p, I, 6§ and v found, we can determine
separately the velocity of filtration of air vy and the velocity of filtration of water v; by
the formulas

ve = a(s, (x, 0))% +b(s)v+ F(s,p(x,0)), v =v—10vg, (7)

the air pressure p, and the hydraulic pressure p; in pores by the formulas
pr=p—7(s), p1=Dps—pe(s), (8)
and the reduced densities of water (p;), air (p2) and ice (p3) by the formulas
pr=sop), pa=(1=s)ppy, ps=(1—9)ph. (9)
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3. Rothe Scheme for Problem B

3.1. Construction of Rothe Scheme

Problem B is an initial-boundary value problem for a system of essentially coupled
nonlinear differential equations having no definite type, which makes it very difficult to
study. In this regard, we study this system approximately, namely, we use the Rothe
method, also known as the line method. The essence of the method is that the temporal
interval [0,77] is divided into a set of subintervals [0, 7], [7,27],...,[(M — 1)7,T], where
7 is a small value (M = T/7 € N), derivative 0®/0t (for some & = P(t)) is formally
replaced by a finite-difference relation of the standard form A, ®(t) = (®(t+7)—®(t)) /7,
t€lkr,(k+1)7], k=0,..., M, and on each of the intervals [k7, (k + 1)7] the coefficients
in the equations are ‘frozen’ in a suitable way, that is, instead of the original coefficients,
we take approximate ones that do not depend on t. The resulting system of equations with
boundary conditions is called the Rothe scheme. It is approximated with respect to the
original problem and depends on 7 as on a parameter. Our closest aim is to build a Rothe
scheme for Problem B.

We start by finding the initial data for the pressure function p°(x) = p(z,0). We
substitute / from equation (6¢) into (6e), then combine the resulting relation with equation
(6b), namely, we express the derivative 00/0t in (6b) using (6¢) and (6e), and take into
account representation (5e). After quite lengthy, but simple technical transformations, we
derive the equation

0 dp 00\ Op ds 00
~ % [K(s,gb(x,@))%] + P <s,0, %)% =P <S, D %), (z,t) € Qr, (10)
where we denote
0 o0
ooy (1= 25 (@A1 = b(5)) + canlb() K (s, 62, 0))65 2, 0) 5
Pi(s0.57) = Q0,0 0) + (e2 = )02, 0) W
ds 90N\  Of(s,¢(x,0))
PQ(S,G,%,%) = _—895

0
(1= 55) o0 0)
T QG0 0) + (c1 — ca)8plon (. 0)

{ [(Clpg(l - b(S)) + Cngb(S))f(Sa ¢(l‘, 9))

S 0 0

+ (e — exs) (als, o0, 0) 5o+ F(s, 02, 00)) | 92 — (5,00, 0) 50 ) } (12)
Inserting s = sp(x,0) and 6 = 6y(z,0) into (10) and supplementing the resulting
equation with boundary conditions (6f); and (6g)2, we arrive at the formulation of the
boundary value problem for the linear ordinary differential equation for the sought function
p°(z). Due to the classical theory of ordinary differential equations [8, Ch.XI, Sec.?2],
this problem has a unique smooth solution. Indeed, due to (5d)s, (4) and inequalities
pS < pY < pY and ¢; > c3, we have that Q(s, ¢(x, 0))+(c1—c3)0p50,(x,0) > Q(s, ¢(z,0)) >
min{cepY, c3p3} > 0 for 5,6 € [0, 1]. Hence, according to (6i), both coefficients P;|;—o and
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Py~ are well defined and coefficient K|~y is bounded from above and below by some
positive constants independent of x. Inserting p°(z), so(z,0) and 6y(z, 0) into (6d), we find
v%(z) = v(z,0). Further in the Rothe scheme we consider that functions p°(z) and v°(z)
are given alongside so(z,0) and 6y(x,0). Now we are in a position to construct the Rothe
scheme itself.

We fix a small value 7 = T/M, M € N, insert I from (6¢) into (6e) and fulfill the
partial discretization of (6a), (6b), (6d), and (6e) following Rothe method. Therefore, we
construct the following scheme for finding an approximate solution to Problem B.

On the nth step (n =0,..., M — 1), on the temporal segment {n7T < t < (n+ 1)1},
we find the approximate temperature §"*! = §"*1(x) as a solution to the problem

n+l _ on
(Q(s", o(x, 0")) + (e1 — ¢3)0" s (, "))

ds™\ dontt  d dgn+t
w7 (st o), ) S (Aol 6 T ) =0, € (040, (130)
e)"“yxzoz 00 (0, (n + 1)7), e)"ﬂyx:l: bo(l, (n+1)7), (13b)

where s" = s"(z), 0" = 6"(x) and v" = v"(z) are either the initial data (for n = 0), or the
solutions of the Rothe scheme found on the preceding temporal segment (for n > 1).

Next, on {nT <t < (n+ 1)7} we find the approximate saturation s"** = s"*!(z) as
a solution to the problem

n+1l _ on n+1
o0 (o o) B b 1 (ol 0)| -
0n+1 — o
- (1 - Sn)gbg(m?Qn)fu S (O7l)7 (14&)
s o= 500, (n+ 1)7), 5" _ = so(l, (n+1)7), (14b)

where 0" is given as a solution to problem (13a) — (13b), and s™, 6" and v™ are the given
functions found on the (n — 1)th step. After this, on {n7 < t < (n + 1)7} we find the
approximate reduced pressure p" ™! = p"*!(z) as a solution to the problem

d d n+1
K5 ol )T — (5" 0=, 67)| = (15a)
pg / n gt —on
= (1 - _0) ¢9($,9 )77 YIS (Oal)a (15b)
P1 T
dpn+1

=0, (15¢)

=l

anrl‘x:O = pO((n + 1)7-)7

dx

where s", 0" and 0" are given the same as for problem (14a) — (14b).

Finally, on {n7 <t < (n+ 1)7} we find the approximate velocity of filtration v™**
from the reduced Darcy law (6d), in which the functions s"™!, "1 and p"*! found above
stand on respective places of the functions s, 6 and p. Also, the approximate intensity of
the phase transition I" on the segment {(n — 1)7 <t < nr} for n > 1 is defined from the
discrete approximation of equation (6¢), more certainly, we have

1" = gy, 0) (9" — 07) /7. (16)
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After this, we iterate the above constructed procedure with n := n + 1 and find
successively 6"72 s"t2 p"t2 and ™2 on the temporal interval {(n+1)7 <t < (n+2)7}
and I"™! on the temporal interval {nT <t < (n+ 1)7}.

Definition 1. The set of problems (13a) — (13b), (14a) — (14b), (15b) — (15c¢), (6d)
(for v™™1), and (16) to be solved successively forn = 0,1, ..., is called the Rothe scheme
for Problem B. The set of five functions {QT,ST,pT,UTI Qr = R, I,: Qp_, — ]R}
(Qr_, :=Q x (0,7 — 7)) defined via the Rothe scheme by the formulas

O, (x,t) = ®"(x) where ® :=0,s,p,v fort € (n—1)r,n7], 1 <n< M, or
I'(z) fort € (n—1)r,n7], 1 <n< M -1,

K
3
5
Nt

Il

is called an approximate solution to Problem B (according to the Rothe scheme).

3.2. On Justification of Rothe Method

The following result on local (in time) solvability of the Rothe scheme follows directly
from the classical theory of ordinary differential equations.

Theorem 1. The Rothe scheme has a unique solution {0, s, pr, vr, I;} belonging to the
space Step (0, (n + 1)7; C*+*|0, l])4 x Step (0, n7; C***[0,1]) provided that €, < s,(z,t) <
1 —e, forall (z,t) € [0,1] x (0,n7], where €, = const > 0, €, < 1 —e,. In particular, due to
(61)1, for any T > 0 the Rothe scheme has a unique solution at least on the first temporal
segment, i.e., there exists a unique solution {6", s*, p', v', I°} € (C**0, l])S.

Here by Step (0,ty; C*7[0,1]) we denote the subspace of L°°(0,ty; C?T[0,1])
consisting of step-functions (i.e., piece-wise constant functions) ¢ — ¢(-, ).

Proof. The both assertions of the theorem follow directly from the well-known facts of the
theory of linear second-order ordinary differential equations. O

Remark 2. Note that due to the structure of the equations of Problem B and the Rothe
scheme for it, we should not expect the fulfillment of the classical maximum principle for
saturation in the form 0 < s < 1 (resp., 0 < s, < 1) in the whole space-time continuum
Qr. In turn, due to representation (5a);, coefficient a remains finite and positive for s = 0
only if ko (s)pl(s) = Cys = const > 0, and for s = 1 the coefficient a vanishes, due to

which equations (6a) and (14a) become degenerate. For s ¢ [0, 1] the functions p., ko; and
koo are not defined at all. From a physical viewpoint, the possibility of violation of the
classical maximum principle is due to the very strong restrictions imposed in Section 2 on
the given data of Model A. In particular, the classical maximum principle may fail due to
the fact that the genuine densities of the components are considered to be constant and
unequal to each other but at the same time the ‘ice-water’ phase transition is allowed.
This, together with the law of conservation of the total mass, can in principle lead to the
fact that the masses of pure phases become (within the framework of the model) negative.
Accordingly, Problem B adequately describes real processes in a snowpack not more than
for a limited range of values of thermomechanical characteristics. If the values of these
characteristics are outside the range of reasonable values, for example, if s < 0 or s > 1
holds on some sets O C @), Problem B fails to describe any real process on O.
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Let us carry out an additional regularization of the Rothe scheme in order to obtain
a ‘global’ result in time. For the values s_ and s, defined in conditions (6i), we introduce
the regularized functions kg1, kg2, @0, and p, by the respective formulas

Koi(s) = kou(s_) fors < s_, koi(s) := kou(s) fors € [s_, s4], kor(s) := kor(s4) fors > sy

Foa(1 — ) i=koa(1 — s_) for s < s_, koa(1 — ) := koa(1 — s) for s € [s_, s,],

Foa(1 — ) := koa(1 — 54) for s > s,

Q(s,d(x,0) == Q(s_, d(x,0)) for s < s_, Q(s,d(x,0)) := Q(s, d(x, 0)) for s € [s_, s4],
Qs, 0(x,0)) == Q(s, ¢, 0)) for s > s;

De(8) i=pe(s—) +Dl(s—)(s —s_) for s < s_, De(s):=De(s) for s € [s_,s.],

u(s) 1= pels1) + B (52)(s — s4) for s > s,

Definition 2. Consider Problem B with function @ on the place of Q and with functions
a, b, f, k, K, F, m, and 'V defined by formulas (5a) — (5d) and (5e) with the functions
/1501, /1502 and p. on the places of ko1, koo and p., resp. We call this problem the regularized
problem B and we say that the Rothe scheme for it is the regularized Rothe scheme.

Due to the form of the regularized functions %01, /1502 and p., we have that coefficients a
and K in the regularized Rothe scheme are uniformly positive, i.e., there exists a positive
constant C, independent of n such that a(s", ¢(x,0")) > C., K(s", ¢(x,0")) > C, for
all x € [0,1], n = 0,..., M. Due to this and the well-known facts of the theory of linear
ordinary differential equations, similarly to Theorem 1 the following result takes place.

Theorem 2. (On global solvability) For any given sq, po and 0y satisfying conditions
(61), for any fired T > 0 (T'/T € N) the regularized Rothe scheme has a unique solution
{0;, s+, pr, v, I} belonging to the space Step (0, T; C?T[0,1])* x Step (0, T—7; C*T¢[0,1]).

Note that, similar to the original Rothe scheme, the possibility of a violation of the
estimate 0 < s; < 1 on some subsets of O C Q7 is not excluded for the regularized Rothe
scheme. On such subsets, the solution to the regularized Rothe scheme cannot be regarded
to as some reasonable approximation of a real process in a snowpack.

Justification of the Rothe method, i.e., the passage to the limit as 7 — 0+, on a
rigorous mathematical level for Problem B or for the regularized problem B may not
be achievable for the most general input data, due to the complexity of the equations.
Therefore, we restrict ourselves to a formal justification for the regularized problem B,
based on the introduction of the following condition.

Condition 1. For all sufficiently small T > 0, there exists a constant C, independent of T
such that the solution of the reqularized Rothe scheme satisfies the uniform (in T) estimate

107l @z HlIsllo@r 17 lle@ry 1007 /02| oo gy + 1057 /02| oo (@) + 1097/ 02| oo )
2 2 2 2 2 2
+ ||6%6-/0x HLQ(QT)—i—Ha s, /0x HLQ(QT)—FHa p./0x HLQ(QT)—FHATQTHH(QT,T)

+ HATSTHLQ(QTfT) + HAT(aQT/ax)HLQ(QTq) + HAT(aST/ax)HLQ(QTq) < (. (17>
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Remark 3. It is worth noticing that Condition 1 fully corresponds to the case when
porosity ¢ does not depend on 6 (i.e., ¢ = ¢(x)) and, as a consequence, there exist
no phase transitions due to (6¢), i.e., I = 0. Indeed, in this case, from (6b), (6d) and
(6g) we easily deduce that v = v(t) = f(so(l,t),#(l)). Substituting now v(t) and ¢(x)
into (6a), (6b) and (6e), we find that the system of equations in the formulation of the
regularized problem B splits into a sequence of linear equations of uniformly parabolic
and elliptic types, which should be solved successively to find first s, and then p and 6.
Accordingly, the form of the Rothe regularized scheme is greatly simplified and estimate
(17) is constructed for its solutions in a quite standard way, see, for example, [9, Ch. III,
§5].

In cases where ¢ depends on #, Condition 1 is postulated and the passage to the limit
as 7 — 0+ is carried out for arbitrarily given ¢ satisfying requirement (4).

The following theorem gives a formal justification to the Rothe method.

Theorem 3. Let {0,, S, Dr, Ur, I }r>0 be the family of solutions to the reqularized Rothe
scheme (in the sense of Definitions 1 and 2) satisfying Condition 1; then there exist a
sequence {T — 04} and five limiting functions {0, s, p,v, I} such that

0, — 0, s, —s, pr—p
T—0 T—0 T—0
strongly in L*(0,T; Wy (0,1)) N C(Qr), weakly in L*(0,T;W3(0,1)),  (18)
A0, — 00/0t, Ars, — Os/0t, I. — 1 weakly in L*(Qr_s), V34 >0, (19)
7—0 7—0 7—0

Ur v strongly in L*(0,T; W, (0,1)), (20)
T—

and the five limiting functions {6,s,p,v,I} are a strong generalized solution to the
reqularized problem B.

Proof. Limiting relations (18) — (20) follow from (17) due to the Alaoglu, Ascoli — Arcel
and Kolmogorov — Riesz theorems. In turn, these limiting relations allow to pass to the
limit in the regularized Rothe scheme and thus establish that the limit functions serve as
a solution to the regularized problem B. O

Conclusion

For a highly nonlinear one-dimensional problem of description of thermomechanical
processes in a snowpack, the approximate Rothe scheme is constructed. This scheme is
uniquely solvable locally in time and its regularized version is uniquely solvable globally
in time. Under additional condition, it is established that the family of solutions to the
regularized Rothe scheme converges to the solution of the original problem strongly in
suitable functional spaces.
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NCCJIEJOBAHUWE MOAEJIVT ®NJIBTPAIINN BO3AYXA I BO/IbI
B TAIOIITIEM MJIN SAMEP3AIOIIIEM CHET'E

C.B. Aaexceesa'?, C.A. Cascenros'”

L Anrajickuiit rocynapeTBeHHbIN yHuBepenTeT, . Bapnayin, Poccuiickag ®eepanust
2Hosocubupckuii HallmoOHAJIBHBII HCC/IeI0BATeILCKIAN roCyIapCTBeHHbI YHIBEPCUTET,
r. HoBocubupck, Poccniickas @enepanus

SUncturyr rugpomuuamuku uM. M.A. Jlappenthesa CO PAH, r. Hosocubupcek,
Poccuiickas @eiepartiust

CraTbst MOCBSIIIEHA TEOPETUIECKOMY HCCJIEIOBAHUIO HECTAIIMOHAPHOM 381891 ONMCAHS
TEPMOMEXaHUIECKHUX [TPOIECCOB B CHErY ¢ y4ueToM 3hdeKTOoB TasHus u npoMepsanust. Crer
MOJIeJIUpYeTCsd KaK CILIOIIHAsS Cpejia, COCTOAIIAas U3 BOABI, BO34yXa U IIOPUCTOI'O JIEIASHOT'O
ckejieta. BasoBble ypaBHEHUsI, OIUCHIBAIONINE COCTOSIHUE CHEra, OCHOBAaHBI Ha (DYHIIaMeH-

TaJIbHBIX 3aKOHAX COXPaHEHNA MEXaHHUKH CIIJIOINIHBIX CPEII. ﬂﬂﬂ O,ILHOMepHOfI IIOCTaHOBKHA
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B KadecTBe MPUOIMKEHNS PACCMATPUBAEMOM 3a1adu cTpouTcs cxema Pore. Jlaercsa dpop-
MaJIbHOE 000CHOBaHMEe MeTona Pore, T.e. yCTaHABIMBAETCS CXOIUMOCTH TPUOIMKEHHBIX Pe-
[IIEHNt K PEIeHUI0 PacCMaTPUBaEMON 3a/1a9n TP HEKOTOPBIX JIOMOJTHUTEIHHBIX TPeHOBa-
HUSIX PEryJIsipHOCTH.

Karouesvie caosa: gurvmparus; $asosvili nepexod; cnez; 3aKoHbL COTPAHEHUS 6 META-
nuke; memod Pome.
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