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The article is devoted to a theoretical study of a non-stationary problem on

thermomechanical processes in snow taking into account the effects of melting and freezing.

Snow is modeled as a continuous medium consisting of water, air and porous ice skeleton.

The governing equations of snow are based on the fundamental conservation laws of

continuum mechanics. For the one-dimensional setting, the Rothe scheme is constructed

as an approximation of the considered problem and the Rothe method is formally justified,

i.e., convergence of approximate solutions to the solution of the considered problem is

established under some additional regularity requirements.
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Introduction

The great interest to mathematical modelling of thermomechanical processes in and
around snow is motivated by a large demand for an adequate description of snow behavior
in order to calculate and forecast spring flood hydrographs and water quality in receiving
reservoirs, to make assessment of the risk of avalanches in the mountains, etc. To date,
there exists a number of works devoted to modelling the filtration of water and air in
snow taking into account phase transitions, which use observational data and empirical
dependencies, and which are based on various approaches in continuum mechanics and
thermodynamics. A fairly extensive review on this topic can be found in [1]. The present
article is devoted to a study of the mathematical model of air and water filtration in a
snowpack in the presence of “ice-water” phase transitions. The snowpack is modeled as
a three-phase continuum consisting of water, air and porous ice skeleton. In the article,
the full model is posed in Section 1 and is called Model A. In Section 2, the reduction
of Model A is given in the spatially one-dimensional case under some additional physical
assumptions and the initial-boundary value problem is formulated for it, which is called
Problem B. Section 3 is devoted to a study of this problem. Because of nonlinearity and
high inter-connection between equations, the rigorous mathematical results on existence
and uniqueness of classical or generalized solutions to Problem B are unavailable, at least,
so far. Therefore, in this article we concentrate on building a reasonable approximation.
At first, we construct the Rothe scheme for the problem and prove its local in time well-
posedness, see Theorem 1. In fact, the classical solution of the Rothe scheme exists and
is unique until the moment when the volumetric saturation of water either exceeds unity
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or drops below zero at some physical position, which is unacceptable from the physical
viewpoint, see Remark 2 in Section 3. Secondly, we introduce the globally (in time) well-
posed regularized version of the Rothe scheme and give a formal justification of the Rothe
method for this scheme, see Theorems 2 and 3. In order to cimplete this introduction, it
is worth to notice that the present study is rather close to a set of recent works devoted
to the mathematical modelling of processes in snowpack, see [2–4], and can be regarded
to as their extension.

1. Mathematical Model of Snow: Multi-Dimensional Setting

At temperatures close to the freezing point of water, snow can be described as a
three-phase medium consisting of water, air (water vapor) and ice. In this case, ice is a
solid porous skeleton, and a mixture of water (in liquid form) and air is a two-component
continuous medium filtering through the pores. We introduce a mathematical description
of the balance of mass, momentum and heat based on the fundamental conservation laws
in continuum mechanics, following the presentation from the monographs [5, 6].

We denote the phases of snow such that index i = 1 corresponds to water (in liquid
form), index i = 2 corresponds to air (water vapor), and index i = 3 corresponds to ice.

The mass balance equation for each of the phases has the form

∂ρi
∂t

+ divx(ρiui) =
3∑

j=1

Iji, i = 1, 2, 3, (1)

where ρi = ρi(x, t) is the reduced density of the i th phase, ui = ui(x, t) is the velocity of
the i th phase and Iji is the intensity of mass transition from the j th phase to the i th phase.
The reduced density ρi is related to the genuine density ρ0i and volumetric concentration

αi by the formulas ρi = αiρ
0
i , αi ≥ 0, i = 1, 2, 3;

3∑

i=1

αi = 1. The intensities of phase

transitions Iji meet the requirements Iji = −Iij . Further, we consider that filtration of
water and air obeys to Darcy’s law and that the porous ice skeleton is immovable, i.e.,

vi = −K0(φ)
k0i(si)

µi

(∇xpi + ρ0ig), i = 1, 2, u3 ≡ 0, ∀ t > 0, (2)

where vi = vi(x, t) is the velocity of filtration, si = si(x, t) is saturation, i.e., the
part of porous space occupied by the i th phase, pi = pi(x, t) is the hydraulic pressure,
k0i = k0i(si) ≥ 0 is the phase permeability such that k0i(0) = 0, µi = consti > 0 is
the dynamical viscosity of the i th phase; K0 = K0(φ) is a nonnegative symmetric porous
skeleton permeability tensor such that K0(0) = 0, φ = φ(x, t) is the snow porosity, i.e., the
volumetric part of pores in the specific volume of snow, and g = −ge1 is the gravitational
acceleration (g = const > 0, e1 = (1, 0, 0)t). The velocity of filtration vi is related to the
medium velocity ui by the formula vi = αiui and the volumetric concentration αi is related
to the saturation si and the porosity φ by the formula αi = φsi, i = 1, 2. Introducing the

notation s := s1 and taking into account that

3∑

i=1

αi = 1, we write out these relations

in the form v1 = φsu1, v2 = φ(1 − s)u2, α1 = φs, and α2 = φ(1 − s). Here note that
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s2 = 1 − s, α3 = 1 − φ, 0 ≤ s ≤ 1, and 0 ≤ φ ≤ 1. The difference between the pressures
of the filtering phases is determined by Laplace’s law p2 − p1 = pc(s), where the capillary
pressure pc = pc(s) is the given function that has the properties pc(s) > 0, pc(0) = ∞,
pc(1) = 0, and p′c(s) < 0 [5, Ch. 5, Sec. 1.1].

Equations (2) describe the balance of momentum in the snowpack. Finally, assuming
that the temperatures in all three phases coincide, i.e., θi(x, t) = θ(x, t) (i = 1, 2, 3), we
write out the equation of balance of heat in the snowpack as follows:

( 3∑

i=1

ρici

)∂θ
∂t

+
( 3∑

i=1

ρiciui

)
· ∇xθ − divx

(
λc(s, φ)∇xθ

)
= −

3∑

i=1

3∑

j=1

ciθIji. (3)

Here ci = consti > 0 is the specific heat capacity of the i th phase at constant volume and
λc(s, φ) is the heat conductivity of snow such that λc(s, φ) ≥ λ− = const > 0, ∀ s, φ ∈ R,
which is given according to experimental data.

The result of the above considerations is the formulation of the following model of
heat and mass transfer in the snowpack.

Model A. Equations of balance of mass (1), momentum (2) and heat (3) together with
the set of the above stated physical hypotheses and restrictions on coefficients constitute
the basic multidimensional model of dynamics of the snowpack.

Remark 1. Note that the formulations based on modifications of Model A were considered
by various authors. For example, in [2], a numerical study of a one-dimensional (in x)
formulation of an initial-boundary value problem for a system of the form of Model A was
carried out, in which, on the right-hand side of equation (3), the sum −νI13 takes place

instead of the sum −
3∑

i=1

3∑

j=1

ciθIji, where ν = const > 0 is the given specific latent heat of

the “ice-water” phase transition and the intensity of the phase transition I13 = I13(φ, θ, s)
is a given function of a very special form. Looking ahead, we note that in the setting
considered in the present article, the value I13 is a sought function rather than a given
one. The same model (with minor changes) as in [2] was considered earlier in [7], where
the unique solvability was proved for the one-dimensional self-similar setting.

In the next section, based on the available phenomenological studies, we introduce
the main assumptions regarding the coefficients and nonlinearities of Model A, make a
reduction of this model in the spatially one-dimensional case, and formulate the initial-
boundary value problem for the reduced 1D model.

2. Reduction of Model A. The 1D Model of Snowpack

Further, we restrict our considerations to the one-dimensional case such that Ox1-axis
becomes the only spatial axis; we denote x := x1. Accordingly, all vector quantities in (1)
– (3) become scalar ones, in particular, g = −ge1 = −g. Matrix K0 in (2)1 also becomes
scalar, K0 = K0, and the operators ∇x and divx become the derivative ∂/∂x.

We accept some additional phenomenological hypotheses. Namely, taking into account
natural observations (see, for example, [6, page 105]), we neglect sublimation, i.e., we
impose the conditions I21 = I12 ≡ 0 and I32 = I23 ≡ 0. We postulate the model law of
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dependence of porosity on temperature following the article [7]: we assume that φ = φ(x, θ)
is a given continuous piece-wise differentiable function such that

φ(x, θ) = φ− for θ < θ−, φ′

θ(x, θ) ≥ 0 for θ ∈ [θ−, θ+], φ(x, θ) = φ+ for θ > θ+, (4)

where φ−, φ+ = const ∈ (0, 1], θ−, θ+ = const , 0 < θ− ≤ θ+ and θ+ is the temperature of
ice melting. We impose the physically reasonable requirements ρ02 < ρ03 < ρ01 on the genuine
densities of phases and c1 > c3 on specific heat capacities. Denote by I the intensity of the
“ice-water” phase transition I31. We assume that ρ0i (i = 1, 2, 3) are constants.

Now, following the ideas from [5, Ch. V, § 1, Sec. 1], using the above hypotheses on
Iij , φ, ρi and ci, we reduce Model A to a system of five differential equations for the five
sought functions s, θ, v, I, and p, where v is the total filtration velocity determined by the
formula v := v1 + v2 = sφu1 + (1− s)φu2, and p is the reduced pressure, which is defined
below after formula (5e).

We introduce the new physical characteristics of a snowpack by the formulas

a(s, φ) := −K0(φ)
k01(s)k02(1− s)

µ2k01(s) + µ1k02(1− s)
p ′

c(s), b(s) :=
k02(1− s)

µ2k(s)
, (5a)

f(s, φ) := −K0(φ)

[(
k01(s)

µ1

ρ01 +
k02(1− s)

µ2

ρ02

)]
g, k(s) :=

k01(s)

µ1

+
k02(1− s)

µ2

, (5b)

K(s, φ) := k(s)K0(φ), F (s, φ) := −
k02(1− s)

µ2k(s)
f(s, φ)−K0(φ)

[
k02(1− s)

µ2
ρ02 g

]
, (5c)

π(s) :=

1∫

s

k01(ξ)p
′

c(ξ)

µ1k(ξ)
dξ, Q(s, φ) := c1sφρ

0
1 + c2(1− s)φρ02 + c3(1− φ)ρ03, (5d)

V (v, s, φ, ζ) := c1ρ
0
1

[
(1− b(s))v−a(s, φ)ζ−F (s, φ)

]
+c2ρ

0
2

[
a(s, φ)ζ+b(s)v+F (s, φ)

]
. (5e)

With the help of (5d), the reduced pressure is defined by the formula p := p2 + π(s).
Obviously, the introduced functions a, b, f , k, K, F , π, Q, and V are uniquely defined

by the given coefficients and free terms of Model A. Therefore, they are the given functions
of their arguments rather than the sought ones. In turn, since p2 is an unknown function
in Model A, p = p(x, t) is an unknown function as well.

Similarly to [5, Ch. 5, Secs. 1.1–1.2], by rather lengthy but straightforward
transformations, from Model A we derive the reduced one-dimensional model of a snowpack
in terms of the unknown (sought) functions s, θ, v, I, and p and the given characteristics
a, b, f , k, K, F , Q, and V , see equations (6a) – (6e) below.

Finally, we suppose that Ω = (0, l) is an open interval in Rx, where the coordinate
x = 0 corresponds to the bottom surface of a snowpack bordering on a frozen base (ground,
ice, rooftop, etc.), and x = l is the upper surface bordering on an open air.

Now we are in a position to formulate the initial-boundary value problem for the
reduced dynamical one-dimensional model of a snowpack.

Problem B. In the space-time domain ΩT = Ω × (0, T ), where T = const > 0 is a
given time moment, find the water saturation in pores s = s(x, t), the reduced pressure
p = p(x, t), the intensity of the “ice-water” phase transition I = I(x, t), the temperature
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of snow θ = θ(x, t), and the velocity of filtration v = v(x, t), satisfying the reduced mass
balance equations

∂
[
(1− s)φ(x, θ)

]

∂t
+

∂

∂x

[
a(s, φ(x, θ))

∂s

∂x
+ b(s)v + F (s, φ(x, θ))

]
= 0, (x, t) ∈ ΩT , (6a)

∂

∂x

[
K(s, φ(x, θ))

∂p

∂x
− f(s, φ(x, θ))

]
=

(
1−

ρ03
ρ01

)
∂φ(x, θ)

∂t
, (x, t) ∈ ΩT , (6b)

∂φ(x, θ)

∂t
=

I

ρ03
, (x, t) ∈ ΩT , (6c)

the reduced Darcy law

v = −K(s, φ(x, θ))
∂p

∂x
+ f(s, φ(x, θ)), (x, t) ∈ ΩT , (6d)

the heat balance equation

Q(s, φ(x, θ))
∂θ

∂t
+ V

(
v, s, φ(x, θ),

∂s

∂x

)
∂θ

∂x
−

∂

∂x

(
λc(s, φ(x, θ))

∂θ

∂x

)
= −(c1 − c3) θ I,

(x, t) ∈ ΩT , (6e)

and the boundary and initial conditions

s|x=0 = s0(0, t), p|x=0 = p0(t), θ|x=0 = θ0(0, t), t ∈ (0, T ], (6f)

s|x=l = s0(l, t),
∂p

∂x

∣∣∣
x=l

= 0, θ|x=l = θ0(l, t), t ∈ (0, T ], (6g)

s|t=0 = s0(x, 0), θ|t=0 = θ0(x, 0), x ∈ [0, l]. (6h)

Here s0 = s0(x, t) and θ0 = θ0(x, t) are given functions on ⊔T and p0 = p0(t) is a given
function on [0, T ] satisfying the boundedness and regularity conditions

s0 ∈ [s−, s+], θ0 ∈ [θ−, θ+] for (x, t) ∈ ⊔T , s0, θ0 ∈ C2+α(⊔T ), p0 ∈ C1+α[0, T ], (6i)

where α ∈ (0, 1), θ− and θ+ are the same as in (4), s−, s+ ∈ (0, 1) are given constants, and
⊔T =

(
{0 ≤ x ≤ l} × {t = 0}

)
∪
(
{x = 0, x = l} × (0, T ]

)
is the ⊔ -shaped part of ∂ΩT .

Note that, having the five sought functions s, p, I, θ and v found, we can determine
separately the velocity of filtration of air v2 and the velocity of filtration of water v1 by
the formulas

v2 = a(s, φ(x, θ))
∂s

∂x
+ b(s)v + F (s, φ(x, θ)), v1 = v − v2, (7)

the air pressure p2 and the hydraulic pressure p1 in pores by the formulas

p2 = p− π(s), p1 = p2 − pc(s), (8)

and the reduced densities of water (ρ1), air (ρ2) and ice (ρ3) by the formulas

ρ1 = sφρ01, ρ2 = (1− s)φρ02, ρ3 = (1− φ)ρ03. (9)
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3. Rothe Scheme for Problem B

3.1. Construction of Rothe Scheme

Problem B is an initial-boundary value problem for a system of essentially coupled
nonlinear differential equations having no definite type, which makes it very difficult to
study. In this regard, we study this system approximately, namely, we use the Rothe
method, also known as the line method. The essence of the method is that the temporal
interval [0, T ] is divided into a set of subintervals [0, τ ], [τ, 2τ ], . . . , [(M − 1)τ, T ], where
τ is a small value (M = T/τ ∈ N), derivative ∂Φ/∂t (for some Φ = Φ(t)) is formally
replaced by a finite-difference relation of the standard form ∆τΦ(t) =

(
Φ(t+ τ)−Φ(t)

)
/τ ,

t ∈ [kτ, (k + 1)τ ], k = 0, . . . ,M , and on each of the intervals [kτ, (k + 1)τ ] the coefficients
in the equations are ‘frozen’ in a suitable way, that is, instead of the original coefficients,
we take approximate ones that do not depend on t. The resulting system of equations with
boundary conditions is called the Rothe scheme. It is approximated with respect to the
original problem and depends on τ as on a parameter. Our closest aim is to build a Rothe
scheme for Problem B.

We start by finding the initial data for the pressure function p0(x) = p(x, 0). We
substitute I from equation (6c) into (6e), then combine the resulting relation with equation
(6b), namely, we express the derivative ∂θ/∂t in (6b) using (6c) and (6e), and take into
account representation (5e). After quite lengthy, but simple technical transformations, we
derive the equation

−
∂

∂x

[
K(s, φ(x, θ))

∂p

∂x

]
+ P1

(
s, θ,

∂θ

∂x

)∂p
∂x

= P2

(
s, θ,

∂s

∂x
,
∂θ

∂x

)
, (x, t) ∈ QT , (10)

where we denote

P1

(
s, θ,

∂θ

∂x

)
:=

(
1−

ρ03
ρ01

)(
c1ρ

0
1(1− b(s)) + c2ρ

0
2b(s)

)
K(s, φ(x, θ))φ′

θ(x, θ)
∂θ

∂x

Q(s, φ(x, θ)) + (c1 − c3)θρ
0
3φ

′

θ(x, θ)
, (11)

P2

(
s, θ,

∂s

∂x
,
∂θ

∂x

)
:= −

∂f(s, φ(x, θ))

∂x

+

(
1−

ρ03
ρ01

)
φ′

θ(x, θ)

Q(s, φ(x, θ)) + (c1 − c3)θρ
0
3φ

′

θ(x, θ)

{[(
c1ρ

0
1(1− b(s)) + c2ρ

0
2b(s)

)
f(s, φ(x, θ))

+ (c2ρ
0
2 − c1ρ

0
1)
(
a(s, φ(x, θ))

∂s

∂x
+ F (s, φ(x, θ))

)]∂θ
∂x

−
∂

∂x

(
λc(s, φ(x, θ))

∂θ

∂x

)}
. (12)

Inserting s = s0(x, 0) and θ = θ0(x, 0) into (10) and supplementing the resulting
equation with boundary conditions (6f)2 and (6g)2, we arrive at the formulation of the
boundary value problem for the linear ordinary differential equation for the sought function
p0(x). Due to the classical theory of ordinary differential equations [8, Ch.XI, Sec. 2],
this problem has a unique smooth solution. Indeed, due to (5d)2, (4) and inequalities
ρ02 < ρ03 < ρ01 and c1 > c3, we have that Q(s, φ(x, θ))+(c1−c3)θρ

0
3φ

′

θ(x, θ) ≥ Q(s, φ(x, θ)) ≥
min{c2ρ

0
2, c3ρ

0
3} > 0 for s, θ ∈ [0, 1]. Hence, according to (6i), both coefficients P1|t=0 and
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P2|t=0 are well defined and coefficient K|t=0 is bounded from above and below by some
positive constants independent of x. Inserting p0(x), s0(x, 0) and θ0(x, 0) into (6d), we find
v0(x) = v(x, 0). Further in the Rothe scheme we consider that functions p0(x) and v0(x)
are given alongside s0(x, 0) and θ0(x, 0). Now we are in a position to construct the Rothe
scheme itself.

We fix a small value τ = T/M , M ∈ N, insert I from (6c) into (6e) and fulfill the
partial discretization of (6a), (6b), (6d), and (6e) following Rothe method. Therefore, we
construct the following scheme for finding an approximate solution to Problem B.

On the n th step (n = 0, . . . ,M − 1), on the temporal segment {nτ < t ≤ (n + 1)τ},
we find the approximate temperature θn+1 = θn+1(x) as a solution to the problem

(
Q(sn, φ(x, θn)) + (c1 − c3)θ

nρ03φ
′

θ(x, θ
n)
)θn+1 − θn

τ
+

+ V

(
vn, sn, φ(x, θn),

dsn

dx

)
dθn+1

dx
−

d

dx

(
λc(s

n, φ(x, θn))
dθn+1

dx

)
= 0, x ∈ (0, l), (13a)

θn+1
∣∣
x=0

= θ0
(
0, (n+ 1)τ

)
, θn+1

∣∣
x=l

= θ0
(
l, (n + 1)τ

)
, (13b)

where sn = sn(x), θn = θn(x) and vn = vn(x) are either the initial data (for n = 0), or the
solutions of the Rothe scheme found on the preceding temporal segment (for n ≥ 1).

Next, on {nτ < t ≤ (n + 1)τ} we find the approximate saturation sn+1 = sn+1(x) as
a solution to the problem

φ(x, θn)
sn+1 − sn

τ
=

d

dx

[
a(sn, φ(x, θn))

dsn+1

dx
+ b(sn)vn + F (sn, φ(x, θn))

]
−

− (1− sn)φ′

θ(x, θ
n)
θn+1 − θn

τ
, x ∈ (0, l), (14a)

sn+1
∣∣
x=0

= s0(0, (n+ 1)τ), sn+1
∣∣
x=l

= s0(l, (n+ 1)τ), (14b)

where θn+1 is given as a solution to problem (13a) – (13b), and sn, θn and vn are the given
functions found on the (n − 1) th step. After this, on {nτ < t ≤ (n + 1)τ} we find the
approximate reduced pressure pn+1 = pn+1(x) as a solution to the problem

d

dx

[
K(sn, φ(x, θn))

dpn+1

dx
− f(sn, φ(x, θn))

]
= (15a)

=

(
1−

ρ03
ρ01

)
φ′

θ(x, θ
n)
θn+1 − θn

τ
, x ∈ (0, l), (15b)

pn+1|x=0 = p0((n+ 1)τ),
dpn+1

dx

∣∣∣
x=l

= 0, (15c)

where sn, θn and θn+1 are given the same as for problem (14a) – (14b).
Finally, on {nτ < t ≤ (n + 1)τ} we find the approximate velocity of filtration vn+1

from the reduced Darcy law (6d), in which the functions sn+1, θn+1 and pn+1 found above
stand on respective places of the functions s, θ and p. Also, the approximate intensity of
the phase transition In on the segment {(n− 1)τ < t ≤ nτ} for n ≥ 1 is defined from the
discrete approximation of equation (6c), more certainly, we have

In = ρ03φ
′

θ(x, θ
n)
(
θn+1 − θn

)
/τ. (16)
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After this, we iterate the above constructed procedure with n := n + 1 and find
successively θn+2, sn+2, pn+2, and vn+2 on the temporal interval {(n+1)τ < t ≤ (n+2)τ}
and In+1 on the temporal interval {nτ < t ≤ (n + 1)τ}.

Definition 1. The set of problems (13a) – (13b), (14a) – (14b), (15b) – (15c), (6d)
(for vn+1), and (16) to be solved successively for n = 0, 1, . . ., is called the Rothe scheme
for Problem B. The set of five functions

{
θτ , sτ , pτ , vτ : ΩT 7→ R, Iτ : ΩT−τ 7→ R

}

(ΩT−τ := Ω× (0, T − τ)) defined via the Rothe scheme by the formulas

Φτ (x, t) = Φn(x) where Φ := θ, s, p, v for t ∈ ((n− 1)τ, nτ ], 1 ≤ n ≤ M, or

Φτ (x, t) = In(x) for t ∈ ((n− 1)τ, nτ ], 1 ≤ n ≤ M − 1,

is called an approximate solution to Problem B (according to the Rothe scheme).

3.2. On Justification of Rothe Method

The following result on local (in time) solvability of the Rothe scheme follows directly
from the classical theory of ordinary differential equations.

Theorem 1. The Rothe scheme has a unique solution {θτ , sτ , pτ , vτ , Iτ} belonging to the

space Step
(
0, (n+ 1)τ ; C2+α[0, l]

)4
× Step

(
0, nτ ; C2+α[0, l]

)
provided that ǫ∗ ≤ sτ (x, t) ≤

1−ǫ∗ for all (x, t) ∈ [0, l]× (0, nτ ], where ǫ∗ = const > 0, ǫ∗ < 1−ǫ∗. In particular, due to
(6i)1, for any τ > 0 the Rothe scheme has a unique solution at least on the first temporal

segment, i.e., there exists a unique solution {θ1, s1, p1, v1, I0} ∈
(
C2+α[0, l]

)5
.

Here by Step (0, t0; C
2+α[0, l]) we denote the subspace of L∞(0, t0; C

2+α[0, l])
consisting of step-functions (i.e., piece-wise constant functions) t 7→ φ(·, t).

Proof. The both assertions of the theorem follow directly from the well-known facts of the
theory of linear second-order ordinary differential equations.

Remark 2. Note that due to the structure of the equations of Problem B and the Rothe
scheme for it, we should not expect the fulfillment of the classical maximum principle for
saturation in the form 0 ≤ s ≤ 1 (resp., 0 ≤ sτ ≤ 1) in the whole space-time continuum
ΩT . In turn, due to representation (5a)1, coefficient a remains finite and positive for s = 0
only if k01(s)p

′

c(s) −→
s→+0

C∗∗ = const > 0, and for s = 1 the coefficient a vanishes, due to

which equations (6a) and (14a) become degenerate. For s /∈ [0, 1] the functions pc, k01 and
k02 are not defined at all. From a physical viewpoint, the possibility of violation of the
classical maximum principle is due to the very strong restrictions imposed in Section 2 on
the given data of Model A. In particular, the classical maximum principle may fail due to
the fact that the genuine densities of the components are considered to be constant and
unequal to each other but at the same time the ‘ice-water’ phase transition is allowed.
This, together with the law of conservation of the total mass, can in principle lead to the
fact that the masses of pure phases become (within the framework of the model) negative.
Accordingly, Problem B adequately describes real processes in a snowpack not more than
for a limited range of values of thermomechanical characteristics. If the values of these
characteristics are outside the range of reasonable values, for example, if s < 0 or s > 1
holds on some sets O ⊂ QT , Problem B fails to describe any real process on O.
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Let us carry out an additional regularization of the Rothe scheme in order to obtain
a ‘global’ result in time. For the values s− and s+ defined in conditions (6i), we introduce

the regularized functions k̂01, k̂02, Q̂, and p̂c by the respective formulas

k̂01(s) := k01(s−) for s < s−, k̂01(s) := k01(s) for s ∈ [s−, s+], k̂01(s) := k01(s+) for s > s+;

k̂02(1− s) := k02(1− s−) for s < s−, k̂02(1− s) := k02(1− s) for s ∈ [s−, s+],

k̂02(1− s) := k02(1− s+) for s > s+;

Q̂(s, φ(x, θ)) := Q(s−, φ(x, θ)) for s < s−, Q̂(s, φ(x, θ)) := Q(s, φ(x, θ)) for s ∈ [s−, s+],

Q̂(s, φ(x, θ)) := Q(s+, φ(x, θ)) for s > s+;

p̂c(s) := pc(s−) + p̂ ′

c (s−)(s− s−) for s < s−, p̂c(s) := p̂c(s) for s ∈ [s−, s+],

p̂c(s) := pc(s+) + p̂ ′

c (s+)(s− s+) for s > s+.

Definition 2. Consider Problem B with function Q̂ on the place of Q and with functions
a, b, f , k, K, F , π, and V defined by formulas (5a) – (5d) and (5e) with the functions

k̂01, k̂02 and p̂c on the places of k01, k02 and pc, resp. We call this problem the regularized
problem B and we say that the Rothe scheme for it is the regularized Rothe scheme.

Due to the form of the regularized functions k̂01, k̂02 and p̂c, we have that coefficients a
and K in the regularized Rothe scheme are uniformly positive, i.e., there exists a positive
constant C∗ independent of n such that a(sn, φ(x, θn)) ≥ C∗, K(sn, φ(x, θn)) ≥ C∗ for
all x ∈ [0, l], n = 0, . . . ,M . Due to this and the well-known facts of the theory of linear
ordinary differential equations, similarly to Theorem 1 the following result takes place.

Theorem 2. (On global solvability) For any given s0, p0 and θ0 satisfying conditions
(6i), for any fixed τ > 0 (T/τ ∈ N) the regularized Rothe scheme has a unique solution
{θτ , sτ , pτ , vτ , Iτ} belonging to the space Step (0, T ;C2+α[0, l])4×Step (0, T−τ ;C2+α[0, l]).

Note that, similar to the original Rothe scheme, the possibility of a violation of the
estimate 0 ≤ sτ ≤ 1 on some subsets of O ⊂ QT is not excluded for the regularized Rothe
scheme. On such subsets, the solution to the regularized Rothe scheme cannot be regarded
to as some reasonable approximation of a real process in a snowpack.

Justification of the Rothe method, i.e., the passage to the limit as τ → 0+, on a
rigorous mathematical level for Problem B or for the regularized problem B may not
be achievable for the most general input data, due to the complexity of the equations.
Therefore, we restrict ourselves to a formal justification for the regularized problem B,
based on the introduction of the following condition.

Condition 1. For all sufficiently small τ > 0, there exists a constant C∗ independent of τ
such that the solution of the regularized Rothe scheme satisfies the uniform (in τ) estimate

‖θτ‖C(Q̄T )+‖sτ‖C(Q̄T )+‖pτ‖C(Q̄T )+‖∂θτ/∂x‖L∞(QT )+‖∂sτ/∂x‖L∞(QT )+‖∂pτ/∂x‖L∞(QT )

+
∥∥∂2θτ/∂x

2
∥∥
L2(QT )

+
∥∥∂2sτ/∂x

2
∥∥
L2(QT )

+
∥∥∂2pτ/∂x

2
∥∥
L2(QT )

+‖∆τθτ‖L2(ΩT−τ )

+ ‖∆τsτ‖L2(ΩT−τ ) + ‖∆τ (∂θτ/∂x)‖L2(ΩT−τ ) + ‖∆τ (∂sτ/∂x)‖L2(ΩT−τ ) ≤ C∗. (17)
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Remark 3. It is worth noticing that Condition 1 fully corresponds to the case when
porosity φ does not depend on θ (i.e., φ = φ(x)) and, as a consequence, there exist
no phase transitions due to (6c), i.e., I ≡ 0. Indeed, in this case, from (6b), (6d) and
(6g) we easily deduce that v = v(t) = f(s0(l, t), φ(l)). Substituting now v(t) and φ(x)
into (6a), (6b) and (6e), we find that the system of equations in the formulation of the
regularized problem B splits into a sequence of linear equations of uniformly parabolic
and elliptic types, which should be solved successively to find first s, and then p and θ.
Accordingly, the form of the Rothe regularized scheme is greatly simplified and estimate
(17) is constructed for its solutions in a quite standard way, see, for example, [9, Ch. III,
§ 5].

In cases where φ depends on θ, Condition 1 is postulated and the passage to the limit
as τ → 0+ is carried out for arbitrarily given φ satisfying requirement (4).

The following theorem gives a formal justification to the Rothe method.

Theorem 3. Let {θτ , sτ , pτ , vτ , Iτ}τ>0 be the family of solutions to the regularized Rothe
scheme (in the sense of Definitions 1 and 2) satisfying Condition 1; then there exist a
sequence {τ → 0+} and five limiting functions {θ, s, p, v, I} such that

θτ −→
τ→0

θ, sτ −→
τ→0

s, pτ −→
τ→0

p

strongly in L2(0, T ;W 1
2 (0, l)) ∩ C(Q̄T ), weakly in L2(0, T ;W 2

2 (0, l)), (18)

∆τθτ −→
τ→0

∂θ/∂t, ∆τsτ −→
τ→0

∂s/∂t, Iτ −→
τ→0

I weakly in L2(ΩT−δ), ∀ δ > 0, (19)

vτ −→
τ→0

v strongly in L2(0, T ;W 1
2 (0, l)), (20)

and the five limiting functions {θ, s, p, v, I} are a strong generalized solution to the
regularized problem B.

Proof. Limiting relations (18) – (20) follow from (17) due to the Alaoglu, Ascoli – Arcel
and Kolmogorov – Riesz theorems. In turn, these limiting relations allow to pass to the
limit in the regularized Rothe scheme and thus establish that the limit functions serve as
a solution to the regularized problem B.

Conclusion

For a highly nonlinear one-dimensional problem of description of thermomechanical
processes in a snowpack, the approximate Rothe scheme is constructed. This scheme is
uniquely solvable locally in time and its regularized version is uniquely solvable globally
in time. Under additional condition, it is established that the family of solutions to the
regularized Rothe scheme converges to the solution of the original problem strongly in
suitable functional spaces.
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ИССЛЕДОВАНИЕ МОДЕЛИ ФИЛЬТРАЦИИ ВОЗДУХА И ВОДЫ
В ТАЮЩЕМ ИЛИ ЗАМЕРЗАЮЩЕМ СНЕГЕ

С.В. Алексеева1,2, С.А. Саженков1,3

1Алтайский государственный университет, г. Барнаул, Российская Федерация
2Новосибирский национальный исследовательский государственный университет,
г. Новосибирск, Российская Федерация
3Институт гидродинамики им. М.А. Лаврентьева СО РАН, г. Новосибирск,
Российская Федерация

Статья посвящена теоретическому исследованию нестационарной задачи описания

термомеханических процессов в снегу с учетом эффектов таяния и промерзания. Снег

моделируется как сплошная среда, состоящая из воды, воздуха и пористого ледяного

скелета. Базовые уравнения, описывающие состояние снега, основаны на фундамен-

тальных законах сохранения механики сплошных сред. Для одномерной постановки
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в качестве приближения рассматриваемой задачи строится схема Роте. Дается фор-

мальное обоснование метода Роте, т.е. устанавливается сходимость приближенных ре-

шений к решению рассматриваемой задачи при некоторых дополнительных требова-

ниях регулярности.

Ключевые слова: фильтрация; фазовый переход; снег; законы сохранения в меха-

нике; метод Роте.
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