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In this paper, we present a system analysis of approaches to classification of prime knots
and links in thickened surfaces of genus 1 and 2 obtained by the author in collaboration
with S.V. Matveev and V.V. Tarkaev in 2012 – 2020. The algorithm of the classification
forms structure of the present paper. The results of classification are considered within
system analysis of the main ideas of key steps of the algorithm. First, we construct prime
projections. To this end, we define a prime link projection, enumerate graphs of special type
which embedding in the surface can be a prime projection, enumerate projections in the
surface, and show that all obtained projections are prime and not equivalent using some
invariants of projections. Second, we construct prime links. To this end, we define a prime
link, construct a preliminary set of diagrams, use invariants of links to form equivalence
classes of the obtained diagrams and show that the resulting diagrams are not equivalent,
and prove primality of the obtained links. At that, at each step, the used methods and the
introduced objects are characterized from viewpoints of two cases (genus 1 and 2), and we
distinguish properties that are common for both cases or characteristics of only one of two
cases. Note consolidated tables, which systematize the classified projections with respect to
their properties: generative graph, genus, number of components and crossings, existence
and absence of bigon that simplifies the further work with the proposed classification of
projections and links.
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Introduction

In the knot theory, one of the oldest and the most important problems is to recognize
a knot (or a link), i. e., to associate the considered object with a unique tabulated one.
This problem involves the problem on complete classification of knots and links ordered
taking into account some their properties. Most of the classifications obtained during last
150 years consider knots and links in the 3-dimensional sphere S3, see [1–3]. Recently,
increasing interest in the theory of knots and links in arbitrary 3-manifolds (i. e., global
knots and links) leads to tabulation of knots and links in manifolds different from the S3.

As regards tabulation of global knots, note that knots in the solid torus [4] and the
thickened Klein bottle [5], as well as prime knots in the lens spaces [6] are tabulated. For
the latter, we mention that recent classifications consider only the so-called prime objects,
which can not be obtained by some known operations from already tabulated objects. The
works [7,8] present classifications of virtual knots ordered taking into account the number
of classical crossings and obtain a list of some characteristics of each knot, but do not
take into account such important properties of a knot as primality and genus. Recall that
genus of a virtual knot is the minimal genus of the thickened surface which can contain
the considered knot. We propose to tabulate virtual knots taking into account both the
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primality and genus of a knot, see the articles [9, 10] for classifications of prime knots in
the thickened surface of genus 1 and 2, respectively, where, in a sense, such classifications
are considered as classifications of prime virtual knots of genus 1 and 2.

As regards tabulation of global links, note classifications of links in the projective
space [11] and the solid torus [12], as well as prime links in the thickened surface of
genus 1 [13, 14] and 2 [15]. Also, we mention a classification of virtual links of special
type, namely, alternating virtual links [16], see also [17] for the associated database, which
include alternating virtual knots as well.

In this paper, we present a system analysis of approaches to classification of prime knots
and links in thickened surfaces of genus 1 and 2 obtained by the author in collaboration
with S.V. Matveev and V.V. Tarkaev in 2012 – 2020. After Section 1 that gives main
objects considered in this paper, we present the algorithm of the classification that forms
structure of the present paper as follows. In Section 2, we construct prime projections.
First, in Subsection 2.1, we define a prime link projection. Second, in Subsection 2.2,
we enumerate graphs of special type which embedding in the surface can be a prime
projection. Third, in Subsection 2.3, we enumerate prime projections in the surface. For
this purpose, it is sufficient to enumerate all possible embeddings of the graphs into the
surface giving prime link projections. Finally, in Subsection 2.4, we show that all obtained
projections are not equivalent in the sense of homeomorphism of the surface onto itself.
To this end, we use some invariants of projections. Next, we use the obtained table of
prime projections to construct prime links in Section 3. First, in Subsection 3.1, we define
a prime link. Second, in Subsection 3.2, we construct a preliminary set of diagrams. To
this end, we associate each tabulated projection with the corresponding set of diagrams.
Third, in Subsection 3.3, we use invariants of links in order to form equivalence classes of
the obtained diagrams and show that all obtained diagrams are not equivalent in the sense
of homeomorphism of the surface onto itself. Finally, in Subsection 3.4, we prove primality
of the obtained links. Therefore, we describe main ideas of each step of the algorithm and
illustrate these steps by results obtained by us within classification of prime knots and
links in thickened surfaces.

1. Definitions

In this section, we recall some main objects considered in this paper.
Let Tg be a 2-dimensional surface of genus g ∈ {1, 2} (in the case of g = 1, the surface

is said to be a torus). Further, for shortness, we omit the words “2-dimensional” and define
Tg, g ∈ {1, 2}, in more details.

A torus T1 = S1 × S1 can be considered as a direct product of two copies of an 1-
dimensional sphere S1, which are said to be meridian and longitude of T1 (within the
paper, see Fig. 1(a)).

(a) (b) (c) (d)

Fig. 1. (a) T1 endowed with an oriented pair “meridian-longitude”, (b) T o
1 with a hole and

a disk D2, (c) T2 obtained as a result of gluing two copies of T o
1 , (d) T2 endowed with

oriented pairs “meridian-longitude” of its handles

A surface F o with a hole is obtained from the original surface F by removing the
interior of a 2-dimensional disk D2. Fig. 1(b) shows an example: a torus T o

1 with a hole is
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obtained from a torus T1 by removing the interior of a disk D2. Hereinafter, we use o to
show that a surface has one hole and oo to show that a surface has two holes.

In its turn, T2 can be considered as a surface formed by gluing two copies of a torus T o
1

with a hole constructed by identifying their holes, see Fig. 1(c). Here each T o
1 is called a

handle of T2. In other words, T2 is a connected sum of two copies of T1. Note that T2 also
admit consideration of a fixed pair “meridian-longitude” for each of its handles (within the
paper, see Fig. 1(d)).

Consider a surface Tg, where g ∈ {1, 2}, and an interval I = [0, 1]. A thickened surface
of genus g is a 3-dimensional manifold homeomorphic to the direct product Tg × I.

Denote by Lm ⊂ Tg × I an m-component link in Tg × I, which is defined as a smooth
embedding of m simple closed curves, union of which forms a not connected 1-dimensional
manifold, in the interior of Tg × I such that the images of the curves do not intersect each
other. Note that 1-component link L1 is said to be a knot and is denoted by K. Two links
Lm ⊂ Tg × I and L′

m ⊂ Tg × I are said to be equivalent, if there exists a homeomorphism
of Tg × I onto itself that takes Lm to L′

m.
As in the classical case, links in Tg × I can be presented by their diagrams. A diagram

D ⊂ Tg of a link Lm ⊂ Tg×I is defined by analogy with a diagram of a classical link except
that the link is projected into the surface Tg instead of the plane. For each component of
Lm, we refer to the part of D associated with this component as the component of D. Two
diagrams D and D′ in Tg are equivalent, if there exists a sequence of Reidemeister moves
Ω1 − Ω3 and simultaneous switchings of types of all crossings that takes D to D′.

A projection G ⊂ Tg of a link Lm ⊂ Tg × I is a diagram of Lm such that the crossings
of the diagram are transversal intersections of strands without any under/over-crossing
information. Therefore, a projection is a subset of Tg such that each connected component
of the subset is a regular graph of degree 4 embedded in Tg. Two projections G and G′ in
Tg are equivalent, if there exists a homeomorphism of Tg onto itself that takes G to G′.
For the given projection G ⊂ Tg, we consider the following characteristics: crossings are
vertices of G, complexity is the number of crossings, faces are connected components of
the set Tg \ G, components are closed paths on G passing through crossings of G by the
“straight ahead” rule. It is clear that if G is obtained by projection of a link Lm into Tg,
then each component of G is a projection of the corresponding component of Lm.

Within the presented below classification, we fix a genus g ∈ {1, 2} of the surface,
a number n ∈ {2, ..., 5} of crossings in a diagram and a number m ∈ {1, 2, ..., 4} of
components of a link (we use m = 1 in the case of a knot and below refer to a knot as an
1-component link).

2. Construction of Prime Projections

First, in Subsection 2.1, we define a prime link projection. Second, in Subsection 2.2,
we enumerate graphs of special type which embedding in the surface can be a prime
projection. Third, in Subsection 2.3, we enumerate prime projections in the surface.
Finally, in Subsection 2.4, we show that all obtained projections are not equivalent in
the sense of homeomorphism of the surface onto itself.

2.1. Definition of Prime Projection

In the knot theory, recent classifications consider only the so-called prime objects,
which can not be obtained by some known operations from already tabulated objects.
Therefore, in this subsection, we define a prime link projection in Tg. First of all, Table 1
compares types of simple closed curves considered in T1 and T2, see also Fig. 1(b,c) and
Fig. 1(a,d) for examples of cut and not cut curves, respectively. Then, Table 2 presents
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comparison of types of link projections in T1 and T2 necessary to define a prime projection.
Lemma 1 establishes a connection between types of links given in Subsection 3.1 (see
Table 5) and types of projections defined in Table 2.

Table 1

Types of a simple closed curve C ∈ Tg, g ∈ {1, 2}

Type C,C ′ ∈ T1, see [14] C,C ′ ∈ T2, see [18]
Cut The complement Tg\C consists of two components.
Trivial cut Tg\C = T o

g ∪D2

Not trivial cut – T2\C = T o
1 ∪ T o

1

Not cut The complement Tg\C consists of the unique component: T oo
g−1,

where T oo
0 is considered as a 2-dimensional sphere with 2 holes.

Parallel not cut Tg\{C ∪ C ′} = T oo
g−1 ∪ T oo

0

Table 2

Types of a link projection G ∈ Tg, g ∈ {1, 2}

Type G ∈ T1, see [14] G ∈ T2, see [18]
Essential Each face of G is homeomorphic to D2.
Composite At least one of the following conditions holds.

(a) There exists a disk D2 ⊂ T1 such that the boundary ∂D2 intersects
G transversally exactly in two points, which are internal for two distinct
edges of G, and at least one vertex of G is inside D2.
(b) There exist two not cut parallel simple closed curves C1, C2 ⊂ Tg

and two distinct edges e1, e2 of G such that for i = 1, 2 the curve Ci

intersects the edge ei transversely at exactly one internal point, and
both surfaces (T oo

g−1 and T oo
0 ) to which the curves divide Tg contain

vertices of G.
– (c) There exists a not trivial cut simple closed curve

C ⊂ T2 and two distinct edges e1, e2 of G such that C
intersects the edge ei, i = 1, 2, transversely at exactly
one internal point, and both surfaces (two copies of T o

1 )
to which the curve C divide T2 contain vertices of G.

Split There exists a component of G that has no common points or exactly
one common point with the union of all other components of G.

Prime G is essential, not composite and not split.

Lemma 1. [14, Lemma 2.1] Let L be a link in Tg × I having diagram D ⊂ Tg on the
projection G ⊂ T . If the projection G is composite, split or essential, then the link L is
composite, split or essential, respectively.

2.2. Enumeration of Graphs

Let us enumerate graphs whose embedding into Tg can be a prime projection.

Lemma 2. [14, Lemma 4.2] If a projection G ⊂ T is prime, then G is connected and
contains no loop nor any cut pair of edges (i.e., removing the pair of edges gives a
disconnected graph).
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All abstract quadrivalent graphs with at most 5 vertices satisfying the first and second
conditions were enumerated in [9]. In this list, there are exactly 8 graphs satisfying the
third condition of Lemma 2, see graphs a− h given in Fig. 2.

Fig. 2. Graphs used to enumerate prime projections

2.3. Enumeration of Prime Projections

We use the graphs obtained in Subsection 2.2 to construct prime projections by
representing an embedding of each graph as an union of curves and enumerating all possible
combinations of types of intersection points (transversal or not transversal (see [18])), and
curves (cut (for T2, trivial or not trivial) or not cut (for T2, parallel or not)).

A face of a projection is called bigon, if the face is homeomorphic to D2 and the
boundary of the face is composed of exactly two edges. The transformation of a projection
that creates or removes a bigon (see Fig. 3 on the left) turned out to be useful to construct
most part of projections in T1 (i.e., all projections with at least one bigon). In this case, we
reduce consideration of a graph with n vertices to a graph with n− 2 vertices, which does
not necessary satisfy conditions of Lemma 2 and even can be a circle without vertices. For
the rest (without bigons) projections in T1 and all projections in T2, we use transformation
of a projection that add or remove a nontransversal point (see Fig. 3 on the right).

Fig. 3. L removes a bigon, while L−1 is performed along the dotted arc α and creates a
bigon; M removes a nontransversal point, while M−1 is performed along the dashed arc β
and creates a nontransversal point

Table 3 presents integrated data on numerical results of embedding of the graphs a−h
given in Fig. 2 that leads to prime projections in Tg, g ∈ {1, 2}, which were obtained in [9,
13,14,18,19]. Table 4 presents integrated data on numerical results of tabulation of prime
projections and diagrams in Tg, g ∈ {1, 2}, which were obtained in [9, 10, 13–15,18, 19].

2.4. Invariants of Projections

In order to show that all obtained projections are not equivalent in the sense of
homeomorphism of the surface onto itself, we use some invariants of projections [13,18,19].

The first invariant, which turned out to be enough to prove that the most part of
projections are pairwise inequivalent, is constructed as follows. First, we associate each face
of a projection with a natural number, which is equivalent to the number of edges which
form the boundary of the face. Since each face of a prime projection is homeomorphic to
D2, then the number of faces of each projection is equal to n−2g+2, where n is the number
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of crossings and g is the genus of the surface Tg. Second, we associate each projection with
an ordered set {[g] (m) i1 i2 . . . in−2g+2 x}, where g is the genus of the surface Tg, m is
the number of components of the projection, 1 ≤ m ≤ 4, i1, i2, . . . , in−2g+2 are natural
numbers, which are associated with faces of the projection and put in not decreasing order,
n is the number of crossings, x is the graph such that the projection is an embedding of
x in Tg, x ∈ {a, b, c, d, e, f, g, h}, see Fig. 2.

Table 3

Prime projections obtained as embedding of the graphs a− h in Tg [9, 13, 14, 18, 19]

Graph Genus Number Prime projections
of components with bigons without bigons

a 1 1 21 [9] –
2 – 21 [13]

b 1 1 31, 32 [9] 31 [9]
2 31 [13] 32, 33 [13]
3 – 34 [13]

2 1 – 31 [19]
2 – 31 [18]

c 1 1 41, 43, 48 [9] [9]
2 41, 43, 46 [13] 49 [13]
4 – 413 [13]

2 1 41 [19] 46 [19]
2 – 44 [18]
3 – 411 [18]
4 – 414 [18]

d 1 1 42, 44-47, 49 [9] 410 [9]
2 42, 44, 45, 47 [13] –
3 48 [13] 410-412 [13]

2 1 42, 43 [19] 44, 45, 47-413 [19]
2 41, 42 [18] 43, 45- 49 [18]
3 410 [18] 412, 413 [18]
4 – 414 [18]

e 1 1 51, 52, 54, 56, 531 [9] –
2 51, 510, 513, 516 [13] 536 [13]

f 1 1 53, 55, 57, 510, 512, 514, 516-518,
522, 527, 528, 532 [9]

–

2 52, 53, 55, 58, 511, 514, 518,
521 [13]

534 [13]

3 538, 540-543 [13] [13]
4 – 547 [13]

g 1 1 58, 59, 511, 513, 515, 519-521, 523-
526, 529, 530 [9]

534 [9]

2 54, 56, 57, 59, 512, 515, 517, 519,
520, 522-530 [13]

532 [13]

3 539 [13] 545 [13]
4 – 546 [13]

h 1 1 – 533 [9]
2 – 531, 533, 535, 537 [13]
3 – 544 [13]
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Table 4

Prime projections and diagrams of the type (g;m;n) obtained in [9, 10, 13–15,18, 19]

Genus,
g ∈ {1, 2}

Components,
m ∈ {1, 2, 3, 4}

Crossings,
n ∈ {2, 3, 4, 5}

Prime projections
of the type (g;m;n)

Prime diagrams
of the type (g;m;n)

1 1 2 21 [9] 21 [9]
3 31, 32 [9] 31-33 [9]
4 41-410 [9] 41-417 [9]
5 51-534 [9] 51-569 [9]

2 2 21 [13] 21 [14]
3 31-33 [13] 31-33 [14]
4 41-49 [13] 41-417 [14]
5 51-537 [14] 51-579 [14]

3 3 34 [13] 34 [14]
4 410-412 [13] 418-420 [14]
5 538-545 [14] 580-597 [14]

4 4 413 [13] 421 [14]
5 546, 547 [14] 598, 599 [14]

2 1 3 31 [19] 31-33 [10]
4 41-413 [19] 41-472 [10]

2 3 31 [18] 31 [15]
4 41-49 [18] 41-431 [15]

3 4 410-413 [18] 432-436 [15]
4 4 414 [18] 437 [15]

In order to define the second invariant, we say that an edge e of the projection G has
type (i, j) if e is a common edge of i-gonal and j-gonal faces of the projection G. The
existence and absence of edges of some type allow to prove pairwise inequality of some
projections in Tg, g ∈ {1, 2}.

Third, for some pairs of projections in T1, we use the existence and absence of common
points of i-gonal and j-gonal faces, e.g. if each of the three triangle faces of G1 has a
common point with its bigon while G2 has a triangle face having no common points with
its bigon, then G1 and G2 are pairwise inequivalent.

Fourth, for some pairs of projections in T2, we recall that the “straight ahead” rule
determines a cycle composed of all edges of the projection, and think about different
number of edges of the type (i1, j1) between edges of the type (i2, j2) in such a cycle.

The fifth invariant is used for projections in T2 and takes into account absence of
bijective mapping between Gauss codes of the projections, i.e. sequences of ordinal numbers
of vertices taking in the order of visiting the vertices then go along the projection by
“straight ahead” rule.

The sixth invariant is used for projections in T2 and takes into account absence of self
intersections of a component.

Finally, for some pairs of projections in T2, we use the existence and absence of an
edge, which is common for the same face, or the number of edges that are common for
different faces with the same number of vertices.

3. Construction of Prime Links

In this section, we tabulate prime not oriented links in the thickened surface Tg × I,
g ∈ {1, 2}. Namely, we construct a table of prime diagrams based on the table of prime

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (Вестник ЮУрГУ ММП). 2022. Т. 15, № 3. С. 5–18

11



A.A. Akimova

link projections obtained in Section 2 as follows. First, in Subsection 3.1, we define a prime
link. Second, in Subsection 3.2, we construct a preliminary set of diagrams. To this end,
we associate each tabulated projection with the corresponding set of diagrams. Third,
in Subsection 3.3, we use invariants of links in order to form equivalence classes of the
obtained diagrams and show that all obtained diagrams are not equivalent. Finally, in
Subsection 3.4, we prove primality of the obtained links.

3.1. Definition of Prime Link

First of all, we recall definition of destabilization. Assume that D ⊂ Tg is a link
diagram. A not cut curve C ⊂ Tg is said to be a cancellation curve for the pair (D, Tg), if
an intersection of C and D is empty. In order to perform destabilization of the surface Tg,
it is sufficient to cut Tg along the cancellation curve C and glue each obtained component
of the boundary by a disk D2. Fig. 4 shows a torus T1 as a result of destabilization of T2.

Fig. 4. Destabilization of T2

Table 5 presents comparison of types of links in T1 and T2.

Table 5

Types of a link L ∈ Tg, g ∈ {1, 2}

Type L ∈ T1, see [14] L ∈ T2, see [15]
Essential Any diagram of L admits no destabilization, i.e. any annulus, which is

isotopic to C × I ⊂ Tg × I, where C ⊂ Tg is a not cut simple closed
curve, has not empty intersection with L.

Composite At least one of the following conditions holds.
(a) L is a connected sum of essential links L′ ⊂ Tg × I and L′′ ⊂ S3

defined by analogy with the classical connected sum of two links in S3,
see [10, 13, 15] for more details.
(b) L is a circular connected sum of two essential links L′ ⊂ Tg × I and
L′′ ⊂ T1 × I introduced in [20] and generalised for T2 in [10, 15].

– (c) L is a connected sum of two essential links L, L′ in
T1 × I introduced in [10, 15].

Split There exists an embedded surface in Tg×I (i.e., Tg, Tg−1, Tg−2 (if any)),
which does not intersect L and cuts Tg × I into two parts such that
each part contains a component of L.

Prime L is essential, not composite and not split.

The natural idea is to tabulate only prime links. Indeed, nonessential links correspond
to links that can be found in already existing tables of knots and links in the 3-dimensional
sphere S3 [1–3] or thickened annulus (solid torus) [4, 12]. In their turn, composite links
correspond to links, which can be obtained using already known knots and links by
connected sums of the types (a) − (c). Finally, a split link can be considered as a trivial
union of already tabulated knots and links.
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3.2. Construction of Preliminary Set of Diagrams

We convert each prime link projection constructed in Section 2 to the set of
corresponding diagrams. To this end, we enumerate all possible ways to consider each
crossing of a projection to be either an over- or undercrossing of a diagram. Obviously,
there are 2n diagrams on each projection with n crossings. However, we can significantly
reduce this procedure by the following three ideas [14].

First, the simultaneous switching of all crossings convert any diagram to the equivalent
one. Therefore, we can fix the type of one crossing of each projection and, consequently,
to halve the set of diagrams on the projection.

Second, if a diagram is based on a projection having biangle face, then both crossings
of the face have the same type. Otherwise, we can reduce the number of crossings by the
second Reidemeister move Ω2, see also [9] for detailed information of alternate fragments
of projections that allow to simplify enumeration of possibilities.

Third, each component of a diagram contains both types of crossings (under- and
over-crossings) with the union of other components, otherwise we have a split diagram,
since there exists the necessary embedded Tg.

3.3. Invariants of Links

In order to form equivalence classes of the obtained diagrams, we use invariants of
nonoriented links, which are based on the Kauffman bracket [21] (see also [22] for the
original version called the Jones polynomial).

3.3.1. Generalized Kauffman Bracket Polynomial for T1

Let us recall the definition of the generalized Kauffman bracket polynomial [13]. In
contrast to the usual Kauffman bracket polynomial of classical knots [21], the generalized
version takes into account types of curves on the surface (cut and not cut).

Let D be a diagram of a knot or link on T1. Endow each angle of each crossing of D
with a marker A or B according to the rule given in the center of Fig. 5(a). Each state s of
the diagram D is defined by a combination of ways to smooth each crossing of D such as
to join together either two angles endowed with a marker A, or two angles endowed with
a marker B, see Fig. 5(a) on the left and right, respectively. Obviously, if the diagram D
has n crossings, then there exist exactly 2n states of D.

Fig. 5. (a) A- and B-smoothings of a crossing, (b) rules to define the sign ε(i) of the i-th crossing

By the writhe of an oriented classical knot diagram D with n crossings we mean the
sum over all crossings of D

w(D) =
n∑

i=1

ε(i),

where ε(i) is a sign of the i-th crossing of D defined by the rules given in Fig. 5(b). Note
that the writhe of an oriented classical link diagram is the sum of signs of only those
crossings of D that are self-intersections of the components.
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The exact formula of the generalized Kauffman bracket polynomial [13] is as follows:

X (a, x)D = (−a)−3w(D) 〈a, x〉D , (1)

where
〈a, x〉D =

∑

s

aα(s)−β(s)(−a2 − a−2)γ(s)xδ(s) (2)

is the generalized Kauffman bracket [13]. Here α(s) and β(s) are the numbers of markers
A and B in the given state s, while γ(s), δ(s) are the numbers of cut and not cut curves in
T1 obtained by smoothing of all crossings according to the state s, and w(D) is the writhe
of D. The sum is taken over all 2n states of D.

3.3.2. Kauffman Bracket Skeleton for T1

Let us define the Kauffman bracket skeleton [14] as a simplification of the generalized
Kauffman bracket polynomial X (a, x)D. Obviously, X (a, x)D can be represented in the
form

X (a, x)D =
∑

m

Pm(a)x
m,

where Pm(a) =
∑
j

bjma
j is a Laurent polynomial.

Let tm be a tuple composed of nonzero coefficients bjm of the polynomial Pm(a),
which are ordered in increasing order of j. Note that transition from Pm(a) to tm erases
information on degrees of the variable a and remains information on order and values
of the coefficients bjm. For example, Laurent polynomials Pm1

(a) = a−10 + 5a10 and
Pm2

(a) = 1 + 5a2 correspond to the same tuple tm1
= tm2

= (1, 5).
The formal sum

SD =
∑

tm 6=∅

tmx
m (3)

is called the Kauffman bracket skeleton, and tuples tm are called coefficients of the
Kauffman bracket skeleton. We say that the Kauffman bracket skeletons SD1

and SD2

are inverted to each other, if the coefficients of SD1
are the corresponding coefficients of

SD2
, where numbers of each tm are taken in reverse order. This transformation of the

Kauffman bracket skeletons is called inversion. For example, SD1
= (1,−2)x+(3,−4, 2)x3

is inverted to SD2
= (−2, 1)x+ (2,−4, 3)x3.

Lemma 3. [14, Corollary 4.12] The Kauffman bracket skeleton considered up to inversion
and multiplication by −1 is an invariant of links in the thickened torus.

Note that the generalized Kauffman polynomial X (a, x)D is stronger than the
Kauffman bracket skeleton S〈D〉, while S〈D〉 is more compact and has equal strength within
the considered problem. Computation of both X (a, x)D and S〈D〉 is implemented in the
program “3-Manifold Recognizer” [23].

3.3.3. Additional Invariants for T1

With the exception of some pairs, the list of the generalizations of the Kauffman
bracket described above is enough to prove that all tabulated links in T1 are pairwise
inequivalent. For the rest links, we use the following two invariants [14]. First invariant for
T1 takes into account the existence and absence of a homology trivial component. In order
to describe the second invariant for T1, choose and fix any orientation of each link. The
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orientation allows to consider the homology classes of components of the links and to find
the intersection number of these homology classes, which absolute value is an invariant of
nonoriented link.

3.3.4. Kauffman Bracket Frame for T2

Kauffman bracket frame F (·) was obtained in [24] as a simplification of the surface
bracket polynomial [25]. The idea of the invariant is to consider only the values and order
of coefficients and do not take into account the powers of one of the variables.

Define coordinates of not cut curves in T2 as follows. For any oriented not cut curve
C ⊂ T2 and two fixed oriented pairs “meridian-longitude” of handles of the surface T2

(within the paper, see Fig. 1(d)), the numbers a and c (respectively, b and d) are calculated
as intersection numbers of the curve C and the corresponding meridian (respectively,
longitude) of the surface T2. Then the curve C is associated with the ordered set of
four numbers (a, b, c, d), where a, b, c, d are called the coordinates of the curve C. The
coordinates (a, b, c, d) and (−a,−b,−c,−d) are considered to be equal.

For the given diagram D ⊂ T2, we define the set of states as described above for the
generalized Kauffman bracket polynomial for T1. Associate the union of disjoint not cut
curves in each state si, i = 1, 2, 3, . . . , 2n, with a product of the corresponding variables yj,
which take values in the coordinates (aj , bj , cj, dj) of the not cut curves that form the union
associated with si. Then the formula of the generalised Kauffman bracket is as follows:

〈a, yj〉D =

2n∑

i=1

aα(si)−β(si)(−a2 − a−2)γ(si)
∏

j

y
δj(si)
j , (4)

where δj(si) is the number of not cut curves having coordinates (aj , bj, cj , dj) associated
with the variable yj.

For shortness, we propose to use the following simplification of (4). Let us order
terms of (4) in nondecreasing order of the powers of the variable a and collect terms

having the same power of the variable a, i.e. represent (4) as
∑
m

Pma
m, where Pm is a

polynomial in the variables yj. Then, we associate the polynomial (4) with an ordered set
of nonzero polynomials Pm in the variables yj, which is called the Kauffman bracket frame

F (·). For example, X̃ (D) = −2a−8y12 − a−12y62 − a−8y3y7 − a−6y4y7 is associated with
F (D) = (−y62,−2y12 − y3y7,−y4y7).

We say that the Kauffman bracket frames F (D1) and F (D2) are inverted to each other,
if the elements of F (D1) are the corresponding elements of F (D2), where the polynomials
Pm are taken in reverse order. This transformation of the Kauffman bracket frames is
called an inversion. For example, F (D1) = (−y62,−2y12 − y3y7,−y4y7) is inverted to
F (D2) = (−y4y7,−2y12 − y3y7,−y62).

Lemma 4. [10, Lemma 1] The Kauffman bracket frame F (·) considered up to
inversion, multiplication by −1, and changes of variables yj associated with changes of the
corresponding homology classes of noncut curves in the surface T2 generated by orientation
preserving homeomorphisms of T2 is an invariant of knots in the thickened surface T2 × I
of genus 2.

3.3.5. Additional Invariants for T2

With the exception of some pairs, the list of the Kauffman bracket frames described
above is enough to prove that all tabulated links in T2 are pairwise inequivalent. For the
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rest links, we use the cabled Jones polynomial, see the invariants of the virtual knots given
in [7] and the generalised Alexander polynomials [26].

3.4. Proof of Primality

In order to prove that a link is prime, it is enough to show that the link is essential,
not composite and not split.

3.4.1. Links in T1

Following [14], in order to show that a link L ⊂ T1 is essential, not split and can not
be represented as a connected sum of type (a), it is enough to show that the complement
of each tabulated link admits the hyperbolic structure. Here by the complement of
link we mean T1 × I \ U(L), where L is a link and U(L) is an open regular tabular
neighbourhood of L. We use the program “SnapPy” [27] to verify that the complement of
each tabulated link admits the hyperbolic structure. To this end, we use the program “3-
Manifold Recognizer” [23] to find the isometric signatures of complements of the tabulated
links necessary to compute the hyperbolic volumes by means of the program “SnapPy”.
The question about representation of tabulated links in T1 as a circular connected sum is
opened. Therefore, some tabulated links can be not prime, if they are circular connected
sums.

3.4.2. Links in T2

Lemma 5. [15, Lemma 2] Suppose that the Kauffman bracket frame F (D) of a connected
link diagram D ⊂ T2 contains terms corresponding to 4 not cut curves having not equivalent
coordinates (ak, bk, ck, dk), k ∈ {1, 2, 3, 4}, such that the system of 4 linear equations of the
form

bk · a− ak · b+ dk · c− ck · d = 0, k ∈ {1, 2, 3, 4},

where a, b, c, d are the variables and ak, bk, ck, dk are known coefficients, has only zero
solution. Then the link diagram D admits no destabilisation.

Following Lemma 5, for each tabulated diagram D, we construct a set of 4 not cut
curves involved in the Kauffman bracket frame F (D), which is enough to show that there
exists no cancellation curve for the corresponding link L ⊂ T2× I, i.e. the link is essential.

In order to prove that all tabulated links are noncomposite, it is enough to show
that each knot can not be represented as a connected sum of the type (a), (b), or (c)
under the hypothesis that the complexity of a connected sum is not less than the sum of
complexities of the terms that form the sum. Within the considered problem on tabulation
of links having diagrams with either 3 or 4 crossings, the impossibility of representation
as a connected sum of the type (a), (b), or (c) is obvious, see [10, 15] for more details.

As regards to the split property, we note that when constructing the table, we remove
obviously split links.

Acknowledgements. The author is grateful to Professor G.A. Sviridyuk for the problem
statement. The work is supported by the RFBR grant No. 20-01-00127.
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СИСТЕМНЫЙ АНАЛИЗ КЛАССИФИКАЦИИ ПРИМАРНЫХ УЗЛОВ
И ЗАЦЕПЛЕНИЙ В УТОЛЩЕННЫХ ПОВЕРХНОСТЯХ РОДА 1 И 2

А.А. Акимова, Южно-Уральский государственный университет, г. Челябинск,
Российская Федерация

В данной работе представлен системный анализ подходов к классификации при-
марных узлов и зацеплений в утолщенных поверхностях рода 1 и 2, полученной ав-
тором совместно с С.В. Матвеевым и В.В. Таркаевым в 2012 – 2020 гг. Алгоритм
классификации формирует структуру настоящей статьи. Результаты классификации
рассматриваются в разрезе системного анализа основных идей ключевых шагов алго-
ритма. Во-первых, мы строим примарные проекции. Для этого мы определяем понятие
примарной проекции зацепления, перечисляем графы специального вида, чье вложе-
ние в поверхность может быть примарной проекцией, перечисляем проекции на по-
верхности и показываем, что все полученные проекции примарны и не эквивалентны,
используя ряд инвариантов проекций. Во-вторых, мы строим примарные зацепления.
Для этого мы определяем понятие примарного зацепления, строим предварительное
множество диаграмм, используем инварианты зацеплений, чтобы сформировать клас-
сы эквивалентностей зацеплений и показать, что полученные диаграммы не эквива-
лентны, и доказываем примарность полученных зацеплений. При этом, на каждом
этапе используемые методы и вводимые понятия характеризуются в разрезе двух слу-
чаев (род 1 и 2), выделяются как общие, так и характерные только для одного из
рассматриваемых случаев свойства. Интерес представляют сводные таблицы, в кото-
рых классифицированные проекции систематизированы по свойствам: порождающий
граф, род, число компонент и перекрестков, наличие или отсутствие двуугольной гра-
ни, что облегчает дальнейшую работу с предлагаемой классификацией проекций и
зацеплений.

Ключевые слова: примарная проекция; узел; зацепление; утолщенный тор; утол-

щенная поверхность рода 2; обобщенный скобочный полином Кауфмана; скелет скоб-

ки Кауфмана; табулирование; классификация.
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