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ON INVERSE PROBLEMS WITH POINTWISE OVERDETERMINATION
FOR MATHEMATICAL MODELS OF HEAT AND MASS TRANSFER
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This article is a survey devoted to inverse problems of recovering sources and coefficients
(parameters of a medium) in mathematical models of heat and mass transfer. The main
attention is paid to well-posedness questions of the inverse problems with pointwise
overdetermination conditions. The questions of this type arise in the heat and mass transfer
theory, in environmental and ecology problems, when describing diffusion and filtration
processes, etc. As examples, we note the problems of determining the heat conductivity
tensor or sources of pollution in a water basin or atmosphere. We describe three types
of problems. The first of them is the problem of recovering point or distributed sources.
We present conditions for existence and uniqueness of solutions to the problem, show
non-uniqueness examples, and, in model situations, give estimates on the number of
measurements that allow completely identify intensities of sources and their locations. The
second problem is the problem of recovering the parameters of media, in particular, the
heat conductivity. The third problem is the problem of recovering the boundary regimes,
i. e. the flux through a surface or the heat transfer coefficient.
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Introduction

Consider inverse problems with pointwise ovedetermination of recovering coefficients
or sources in mathematical models of heat and mass transfer. We describe theoretical
results in the case of the second order parabolic systems

ut + A(t, x,D)u = f =
r

∑

i=1

fi(t, x)qi(t) + f0, (t, x) ∈ Q = (0, T )×G (G ⊂ R
n). (1)

The operator A is an elliptic operator with matrix coefficients of the dimension h × h
representable as

A(t, x,D)u = −
n

∑

i,j=1

aij(t, x)uxixj
+

n
∑

i=1

ai(t, x)uxi
+ a0u,

where aij, ai are h×h matrices. The following initial and boundary conditions are imposed:

u|t=0 = u0, Bu|S = g(t, x), S = (0, T )× Γ, Γ = ∂G, (2)

where Bu = u or Bu =
∑n

i=1 γi(t, x)uxi
+ γ0u or Bu = ∂u

∂N
+ σu =

∑n
i,j=1 aij(t, x)uxj

(t, x)νi + σ(t, x)u(t, x), where ~ν = (ν1, . . . , νn) is the outward unit

normal to Γ. The unknowns in (1), (2) are a solution u and the function qi(t) (i =
1, 2, . . . , s) occurring either into the right-hand side of (1) or the operators A and B.
The overdetermination conditions for recovering the functions {qi}

s
i=1 are as follows:

u|x=bi = ψi(t), i = 1, 2, . . . , s, (3)

where {bi} is a set of points in G or on Γ.
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These problems arise in mathematical modelling of heat and mass transfer processes,
diffusion, filtration, and in many other fields (see [1–3]). The function f on the right-hand
side in (1) is referred to as a source function. Generally, there are three types of inverse
problems, one of them is the problem of recovering sources, the second problem is the
problem of recovering coefficients of A and the third problem is the problem of recovering
functions occurring in the boundary condition (for instance, heat flux of the heat transfer
coefficient). First, we pay attention to the case of source problems. Of course, we should
refer to the fundamental articles by A.I. Prilepko and his followers. In particular, the
works [4, 5] establish the existence and uniqueness theorem for solutions to the problem
of recovering the source f(t, x)q(t) with the overdetermination condition u(x0, t) = ψ(t)
(x0 is a point in G) and h = 1. Similar results are obtained in [6] for the problem of
recovering lower-order coefficient p(t) in equation (1). The Hölder spaces are used as the
basic spaces in these articles. The results were generalized in the book [7, § 6.6,§ 9.4], in
which the existence theory for problems (1) – (3) was developed in an abstract form with
the operator A replaced with −L, where L is a generator of an analytic semigroup. The
main results are based on the assumptions that the domain of L is independent of time
and the unknown coefficients occur into the lower part of the equation nonlinearly. Under
certain conditions, the existence and uniqueness theorems were proven locally in time in
the spaces of functions continuously differentiable with respect to time. There are many
articles devoted to problems (1) – (3) in model situations, especially in the case of n = 1
(see, for instance, [8–11]). In these articles different collections of coefficients are recovered
with the overdetermination conditions of form (3), in particular, including boundary points
bi. In this case the boundary condition and the overdetermination condition define the
Cauchy data at a boundary point. In the case of n = 1, many results are presented in [8].
Problems (1) – (3) were considered in our articles [12–15], where conditions on the data
were weakened in contrast to those in [7, § 9.4] and the solvability questions were treated
in the Sobolev spaces. Note that in the article [15] the unknowns occur in the right-hand
side of (1) nonlinearly. In this case the right-hand side is of the form f(t, x, u,∇u, ~q(t))
(see also [4]). If the functions {qi}

s
i=1 occur into the main part of the operator A then

we arrive at the classical problem of recovering the thermal conductivity tensor [16, 17].
There are comparatively small number of theoretical results in this case. In particular,
we can refer to [8, Sect.4.3], [9, 11, 18, 19], where the existence and uniqueness theorems
in Hölder spaces are established in the case of the heat conductivity depending on time
for n = 1. The above-mentioned articles [12–15] deal with the existence and uniqueness
theorems in the multidimensional case for the integral and pointwise overdetermination
conditions. Note that there are extremely large number of numerical results devoted to
problem (1) – (3). We can refer to the articles [20–22], where the heat conductivity or
capacity are restored with the use of additional boundary data (for instance, additional
Dirichlet data on the boundary), and to [23–26], where the unknowns are recovered with
the use of temperature measurements (3). Proceed with the point sources problems, which,
in contrast to the distributed sources case, are always ill-posed. In this case in problem (1)
– (3), f =

∑r
i=1 δ(x− xi)qi(t) + f0, the intensities qi(t) of point sources, their locations xi

and the number m are quantities to be determined. There is a small number of theoretical
results devoted to the solving these inverse problems. The main results are connected
with numerical methods of solving the problem and many of them are far from justified.
The problem is ill-posed and examples when the problem is not solvable or has many
solutions are easily constructed. Very often the methods rely on reducing the problem to
an optimal control problem and minimization of the corresponding objective functional
[2,27,30,38]. However, it is possible that the corresponding functionals can have many local
minima. Some theoretical results devoted to problem (1) – (3) are available in [39–43].
The stationary case is treated in [42], where the Dirichlet data are complemented with
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the Neumann data and these data allow to solve the problem on recovering the number of
sources, their locations, and intensities using test functions and a Prony-type algorithm.
Similar results are obtained in the multidimansional case for the parabolic source problem
and thereby the identifiability of point sources is proven in the case of Cauchy data on the
boundary of a spatial domain (i. e., the Dirichlet data on the boundary in addition to the
Neumann data are given). Model problem (1) – (3) (G = Rn) is considered in [43], where
the explicit representation of solutions to the direct problem (the Poisson formula) and
an auxiliary variational problem are used to determine numerically the quantities

∑

i qir
l
ij

(here qi(t) = const for all i and rij = |xi − yj|, l = 1, 2, . . .). The quantities found allow
to determine the points {xi} and the intensities qi (see Theorem 2 and the corresponding
algorithm in [43]). In the one-dimensional case, the uniqueness theorem for solutions to
problem (1) – (3) with m = 1 is stated in [39]. Similar results are presented also in [44]. To
define a solution uniquely (intensities and source locations) in the one-dimensional case,
we need the condition that the sources and the measurement points {bi} alternate, and
this requires some unavailable information in a practical situation. The work [45] presents
non-uniqueness examples in the problems of recovering point sources. Some numerical
methods used in solving the problems of recovering point sources are described in [46–48].

Next, we describe two classical problems of recovering the heat flux and the heat
transfer coefficients. The former problem is the problem of determination of the function
g in (2). The measurement points {bi} can belong to the boundary or to be inside the
domain. In the latter case the problem becomes ill-posed in the classical sense. Main
articles are devoted to this problem but only few of them consider the theory of these
problems. In the article [49] the uniqueness theorem was obtained in the case of n = 1.
The same case is studied in [9], where the existence and uniqueness theorem is presented
in the problem of simultaneous determination of the heat flux and the leading coefficient
in the equation depending on time. However, the case of n = 1 is much simpler for the
study. One of the first articles devoted to problem (1) – (3) in the multidimensional case
is the article [50] (see also [51]), where, for Mu = ut−∆u and g = ψ(x)ϕ(t) (the unknown
function is ϕ(t)), the existence and uniqueness theorem was obtained in Hölder classes
in the case of points {bi} that belong to the boundary. This article also contains the
uniqueness theorem in the problem of recovering the heat transfer coefficient depending
on time (the coefficient γ0 or σ in the operator B). The proof is based on reducing the
problem to an Abel integral equation using an asymptotic of the Green function. It is
possible that this approach is not applicable in the case of general parabolic systems. One
more approach to the study of problem (1) – (3) is based on reducing the problem to an
integral Volterra equation of the second kind. It can be found in [52], the existence and
uniqueness theorem here is obtained with the use of the fixed point theorem in the case
of the points {bi} that belong to the boundary. The approach allows to develop a new
numerical method for solving the problem. Next, we refer to the article [53], where some
existence and uniqueness results are obtained in the ill-posed case when the points {bi}
are inside the domain. A solution is sought in the Sobolev space but some data of problem
must belong to some class of infinitely differentiable functions whose Laplace transform
decays sufficiently quickly. There are a lot of articles devoted to numerical solving the
problem. Necessary bibliography and some results can be found in [54–56].

At present, we can find many articles devoted to numerical methods for solving the
problem of recovering the heat transfer coefficient. The points {bi} in (3) can be interior
points of the domain G (see [57–60]) or belong to the boundary [49,61,62]. The stationary
case is treated in [34]. In the article [49] a parabolic system is considered and the heat
transfer coefficients are constants (the uniqueness theorem is established and the numerical
method is described). The heat transfer coefficient depending on time is determined
numerically in [57, 58, 60]. In [57, 63] the heat transfer coefficient depends on x and the

36 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2022, vol. 15, no. 3, pp. 34–50



ОБЗОРНЫЕ СТАТЬИ

overdetermination data agree with the Dirichlet data on a part of a cylinder, i.e., we have
the Cauchy data on a part of the lateral boundary of the cylinder. The heat transfer
coefficient depending on all variables is calculated in [64] with the use of the Cauchy data
on the lateral boundary of the cylinder. In this article the main attention is paid to the
existence and uniqueness theorems for the above described inverse problems.

1. Preliminaries

Let E be a Banach space. The symbol Lp(G;E) (G is a domain in Rn) stands for
the space of strongly measurable functions defined on G with values in E and a finite
norm ‖‖u(x)‖E‖Lp(G). The notations of the Sobolev spaces W s

p (G;E) and W s
p (Q;E) are

conventional (see [65]). If E = R or E = Rn then the latter space is denoted by W s
p (Q).

The definitions of the Hölder spaces Cα,β(Q), Cα,β(S) can be found, for example, in [66]. By
the norm of a vector, we mean the sum of the norms of its coordinates. For a given interval
J = (0, T ), set W s,r

p (Q) = W s
p (J ;Lp(G)) ∩ Lp

(

J ;W r
p (G)

)

and W s,r
p (S) = W s

p (J ;Lp(Γ)) ∩

Lp

(

J ;W r
p (Γ)

)

. Let (u, v) =
∫

G

u(x)v(x) dx and denote by Bδ(b) a ball of the radius δ

centered at b. The symbol ρ(X, Y ) stands for the distance between the sets X and Y .

2. Distributed Sources

The results presented in this section can be found in [13–15]. Here, we replace
conditions (3) with the more general conditions

< u(bi, t), ei >= ψi(t), i = 1, 2, . . . , s, (4)

where the symbol < ·, · > stands for the inner product in Ch, {ei} is a set of vectors of unit
length, and we allow coinciding points and vectors among the points {bi} as well as the
vectors {ei}. In this section, the operator B coincides with Bu =

∑n
i=1 γi(t, x)uxi

+ γ0u.
The definition of the inclusion Γ ∈ Cs can be found in [66, Chapter 1]. Here, we assume

that Γ ∈ C2 and the parameter p > n + 2 is fixed. The parameter δ > 0 is said to be
admissible if Bδ(bi) ⊂ G for the interior points bi ∈ G, Bδ(bi) ∩ Bδ(bj) = ∅ for bi 6= bj ,
i, j = 1, 2, . . . , s. We take a sufficiently small parameter δ and assume that Γδ ∈ C3.
More exactly, for every point bi ∈ Γ, there exists a neighborhood U (the coordinate
neighborhood) of this point and a coordinate system y (local coordinate system) obtained
by rotation and translation of the origin from the initial one such that the yn-axis is
directed as the interior normal to Γ at bi and the equation of the boundary U ∩Γ is of the
form yn = ω(y′), ω(0) = 0, |y′| < δ, y′ = (y1, . . . , yn−1); moreover, we have ω ∈ C3(B′

δ(0))
(B′

δ(0) = {y′ : |y′| < δ}), G ∩ U = {y : |y′| < δ, 0 < yn − ω(y′) < δ1}, (R
n \ G) ∩ U =

{y : |y′| < δ,−δ1 < yn − ω(y′) < 0}. For the given domain G, the numbers δ, δ1 are
fixed and without loss of generality we can assume that δ1 > (M + 1)δ, where M is the
Lipschitz constant of the function ω. Assume that Qτ = (0, τ)×G, Gδ = ∪i(Bδ(xi) ∩G),
Qδ = (0, T )× Gδ, Q

τ
δ = (0, τ)× Gδ, Sδ = (0, T )× Γδ Γδ = ∪iBδ(xi) ∩ Γ. Next, we fix an

admissible parameter δ. Our conditions for the data are as follows.

aij ∈ C(Q), ak ∈ Lp(Q), γk ∈ C1/2,1(S), aij ∈ L∞(0, T ;W 1
∞(Gδ)); (5)

ak ∈ Lp(0, T ;W
1
p (Gδ)), i, j = 1, 2, . . . , n, k = 0, 1, . . . , n. (6)

The operator L is parabolic and the Lopatiskii condition holds. State these conditions.
Introduce the matrix A0(t, x, ξ) = −

∑n
i,j=1 aij(t, x)ξiξj (ξ ∈ Rn), and assume that there
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exists a constant δ1 > 0 such that the roots p of the polynomial det
(

A0(t, x, iξ)+pE
)

= 0
(E is the identity matrix) satisfy the condition

Re p ≤ −δ1|ξ|
2 ∀ξ ∈ R

n ∀(x, t) ∈ Q. (7)

The Lopatinskii condition can be stated as follows: for every point (t0, x0) ∈ S and the
operators A0(x, t,D) and B0(x, t,D) =

∑n
i=1 γi(t, x)∂xi

written in the local coordinate
system y at this point, the system

(

λE + A0(x0, t0, iξ
′, ∂yn)

)

v(z) = 0, B0(x0, t0, iξ
′, ∂yn)v(0) = hj, (8)

where ξ′ = (ξ1, . . . , ξn−1), yn ∈ R+, has a unique solution C
(

R
+)

decreasing at infinity for
all ξ′ ∈ Rn−1, | arg λ| ≤ π/2, and hj ∈ C such that |ξ′|+ |λ| 6= 0.

We also assume that there exists a constant ε1 > 0 such that

Re (−A0(t, x, ξ)η, η) ≥ ε1|ξ|
2|η|2 ∀ξ ∈ R

n, η ∈ C
h, (9)

where the brackets (·, ·) denote the inner product in Ch (see [66, Definition 7, Section 8,
Chapter 7]).

Let

| det(
n

∑

i=1

γiνi)| ≥ ε0 > 0, (10)

where ν is the outward unit normal to Γ, ε0 is a positive constant, and

u0(x) ∈ W 2−2/p
p (G), g ∈ W s0,2s0

p (S), B(x, 0)u0(x)|Γ = g(x, 0) ∀x ∈ Γ, (11)

where s0 = 1/2−1/2p. Fix an admissible δ > 0. Construct functions ϕi(x) ∈ C∞
0 (Rn) such

that ϕi(x) = 1 in Bδ/2(xi) and ϕi(x) = 0 in Rn \B3δ/4(xi) and denote ϕ(x) =
∑r

i=1 ϕi(x).
Additionally it is assumed that

ϕ(x)u0(x) ∈ W 3−2/p
p (G), ϕg ∈ W s1,2s1

p (S) (s1 = 1− 1/2p), (12)

Γ ∈ C2, γk ∈ C1,2(Sδ) (k = 0, 1, 2, . . . , n). (13)

Consider problem (1)-(3), where

A = L0 +
s

∑

k=r+1

qk(t)Lk, Lku = −
n

∑

i,j=1

akij(t, x)uxjxj
+

n
∑

i=1

aki (t, x)uxi
+ ak0(t, x)u,

and k = 0, r+1, r+2, . . . , s. The unknowns qi are sought in the class C([0, T ]). Construct
a matrix B(t) of the order s× s with the rows

< f1(t, bj), ej >, . . . , < fr(t, bj), ej >,< −Lr+1u0(t, bj), ej >, . . . , < −Lsu0(t, bj), ej > .

We suppose that

ψj ∈ C1([0, T ]), < u0(bj), ej >= ψj(0) (j = 1, 2, . . . , s), γl ∈ C1/2,1(S) ∩ C1,2(Sδ), (14)

akij ∈ C(Q) ∩ L∞(0, T ;W 1
∞(Gδ)), a

k
l ∈ Lp(Q) ∩ L∞(0, T ;W 1

p (Gδ)) (i, j = 1, . . . , n), (15)

fi ∈ Lp(Q) ∩ L∞(0, T ;W 1
p (Gδ)) (i = 0, 1, . . . , r), (16)
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for some admissible δ > 0, p > n+ 2, and k = 0, r + 1, . . . , s, l = 0, 1, . . . n;

aki (t, bl), fi(t, bl) ∈ C([0, T ]) (17)

for all possible values of i, k, l. We also need the following condition: there exists a number
δ0 > 0 such that

|detB(t)| ≥ δ0 a.e. on (0, T ). (18)

Note that the entries of the matrix B belong to the class C([0, T ]). Consider the system

ψjt(0)+ < L0u0(0, xj), ej > − < f0(0, xj), ej >=

=

m
∑

k=1

q0k < fk(0, xj), ej > −
m1
∑

k=m+1

q0k < Lku0(0, xj), ej >, j = 1, . . . , s, (19)

where the vector ~q0 = (q01, q02, . . . , q0s) is unknown. Under condition (18), this system is
uniquely solvable. Let A1 = L0 +

∑r
k=m+1 q0kLk. The following theorem is valid.

Theorem 1. [14] Let conditions (9) – (18) be satisfied. Moreover, assume that conditions
(7), (8) hold for the operator ∂t + A1. Then there exists a number τ0 ∈ (0, T ] such that,
on the interval (0, τ0), there exists a unique solution (u, q1, q2, ..., qs) to problem (1) – (3)
such that u ∈ Lp(0, τ0;W

2
p (G)), ut ∈ Lp(Q

τ0), qi(t) ∈ C([0, τ 0]), i = 1, . . . , s. Moreover,

ϕu ∈ Lp(0, τ0;W
3
p (Gδ)), ϕut ∈ Lp(0, τ0;W

1
p (Gδ)).

In the case of the unknown lower-order coefficients, the results can be reformulated in
a more convenient form. In this case the operator A is assumed to be representable in the
form

A = L0 −
r

∑

i=m+1

qi(t)li, L0u = −
n

∑

i,j=1

aij(t, x)uxjxj
+

n
∑

i=1

ai(t, x)uxi
+ a0(t, x)u,

liu =
n

∑

j=1

bij(t, x)uxj
+ bi0(t, x)u. (20)

Moreover, the rows of the matrix B(t) of the order r × r are as follows:

< f1(t, bi), ei >, . . . , < fm(t, bi), ei >,< lm+1u0(t, bi), ei >, . . . , < lru0(t, bi), ei > .

We suppose that

ψj ∈ W 1
p (0, T ), < u0(bj), ej >= ψj(0), j = 1, 2, . . . , s, (21)

fi, bkj ∈ L∞(0, T ;W 1
p (Gδ)) ∩ L∞(0, T ;Lp(G)), f0 ∈ Lp(Q) ∩ Lp(0, T ;W

1
p (Gδ)), (22)

for some admissible δ > 0, where i = 1, . . . , r, j = 0, 1, . . . , n, k = r + 1, . . . , s. The
remaining coefficients satisfy the conditions

aij ∈ C(Q), ak ∈ Lp(Q), γk ∈ C1/2,1(S) ∩ C1,2(Sδ), aij ∈ L∞(0, T ;W 1
∞(Gδ)); (23)

ak ∈ Lp(Q) ∩ Lp(0, T ;W
1
p (Gδ)), i, j = 1, 2, . . . , n, k = 0, 1, . . . , n. (24)
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The corresponding theorem is stated in the following form.

Theorem 2. [14] Assume that the parabolicity condition and Lopatinskii condition (7), (8)
for the operator ∂t +L0, conditions (9) – (13), (18), (21) – (24) for some admissible δ > 0
hold and p > n+2. Then, for some γ0 ∈ (0, T ], on the interval (0, γ0), there exists a unique
solution (u, q1, q2, ..., qs) to problem (1) – (3) such that u ∈ Lp(0, γ0;W

2
p (G)), ut ∈ Lp(Q

γ0),

ϕu ∈ Lp(0, γ0;W
3
p (G)), ϕut ∈ Lp(0, γ0;W

1
p (G)), qi(t) ∈ Lp(0, γ0), i = 1, . . . , s.

Remark 1. A slightly sharper results can be found in [12], where the operator B can be
arbitrary, in particular, the boundary condition can coincide with the Dirichlet boundary
condition, but the points {bj} are interior points of G. The quasilinear case is considered
in [15].

3. Point Sources

In this section we present some results concerning with recovering of point sources.
We consider the simple parabolic equation

ut + Lu =
r

∑

i=1

qi(t)δ(x− xi) + f0(t, x), Lu = −∆u+
n

∑

i=1

ai(x)uxi
+ a0(x)u, (25)

where (x, t) ∈ Q = (0, T )×G, G is a domain in Rn (n = 1, 2, 3) with a boundary Γ ∈ C2.
We consider three cases G = R

n, or G = R
n
+ = {x : xn > 0}, or G is a domain with

a compact boundary. The unknowns are the functions qi(t). Equation (25) is completed
with the initial and boundary conditions

Bu|S = g, u|t=0 = u0(x), S = (0, T )× Γ, (26)

where either Bu = ∂u
∂ν

+ σu, or Bu = u (ν is the outward unit normal to Γ), and the
overdetermination conditions are as follows:

u(bj, t) = ψj(t), j = 1, 2, . . . , s. (27)

The coefficients in (25) are real-valued.
First, we describe our conditions on the data and present the simplest existence

theorem. Let ~a = (a1, a2) for n = 2 and ~a = (a1, a2, a3) for n = 3. The brackets (·, ·)
denote the inner product in Rn. The coefficients in (25) are assumed to be real-valued and

ai ∈ W 2
∞(G) (i = 1, . . . , n), ∇ψ,∆ψ, a0 ∈ L∞(G), σ ∈ C1(Γ). (28)

Fix a parameter λ ∈ R and assume that

e−λtg ∈ W
1/4,1/2
2 (S), if Bu =

∂u

∂ν
+ σu (σ ∈ C1(Γ)), (29)

e−λtg ∈ W
3/4,3/2
2 (S), if Bu = u, f0e

−λt ∈ L2(G), (30)

u0(x) ∈ W 1
2 (G), u0(x)|Γ = g(x, 0) if Bu = u. (31)

If the parameter λ is sufficiently large then under the above conditions there exists a
unique solution w0 ∈ W 1,2

2 (Q) to the problem

ut + Lu = f0(t, x), Bu|S = g, u|t=0 = u0(x) (32)
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such that e−λtw0 ∈ W 1,2
2 (Q). Consider problem (25) – (27). After the change of variables

w = u− w0, we arrive at the simpler problem

wt + Lw =

m
∑

i=1

qi(t)δ(x− xi), (33)

Bw|S = 0, w|t=0 = 0, (34)

w(bj, t) = ψj(t)− w0(t, bj) = ψ̃j(t), j = 1, 2, . . . , s. (35)

Assume that the functions ψ̃j(t) admit the representation

ψ̃j(t) =

∫ t

0

Vδj (t− τ)ψ0j(τ)dτ, ψ0je
−λt ∈ L2(0, T ), (36)

where Vγ(t) =
e−γ2/4t

4πt
for n = 2 and Vγ = γe−γ2/4t

2
√
πt3/2

for n = 3.

Assume that K = {y ∈ G : ρ(y,∪m
i=1xi) ≤ ρ(y,Γ)} for G 6= Rn and K is an arbitrary

compact set otherwise. We also assume that all coefficients in (25) admit extensions on
the whole Rn such that conditions (28) hold for the case of G = Rn. If G is a domain with
a compact boundary, then such an extension always exists. Denote

ϕj(x) =
−1

2

∫ 1

0

(~a(bj + τ(x− bj)), (x− bj)) dτ.

Let δj = mini rij, j = 1, 2, . . . , s, where rij = |xi − bj |. Introduce the matrix A0 with the
entries aji = eϕj(xi) if |xi − bj | = δj and aji = 0 otherwise. We need the condition

detA0 6= 0. (37)

Fix p ∈ (1, n/(n− 1)). Suppose that the space W 1
p,B(G) agrees with W 1

p (G) in the case of

the Robin boundary conditions and with the subspace of W 1
p (G) comprising the functions

vanishing on Γ otherwise. W−1
p,B(G) is the dual space to W 1

q,B(G) (1/p+ 1/q = 1).

Theorem 3. [68] Assume that T = ∞, r = s, conditions (28), (31), (37) hold and
bi ∈ K for i = 1, 2, . . . , s. Then there exists λ0 ≥ 0 such that if λ ≥ λ0 and conditions
(29), (30), (36) are fulfilled then there exists a unique solution to problem (25) – (27) such
that u = w0 + w, w0 is a solution to problem (32), e−λtw0 ∈ W 1,2

2 (Q), e−λt~q ∈ L2(0,∞),
e−λtw ∈ L2(0,∞;W 1

p,B(G)), e
−λtwt ∈ L2(0,∞;W−1

p,B(G)), e
−λtw ∈ W 1,2

2 (Qε) for all ε > 0.

We note that the following condition is actually a necessary condition for the
uniqueness of a solution to problem (25) – (27). If the condition is not satisfied then any
number of the points {bi} does not ensure uniqueness of solutions (see examples below).

Condition (A). For n = 2, any three points {bi} do not belong to the same straight
line and, for n = 3, any four points {bi} do not belong to the same plane.

Next, we describe some model situation in which Lu = −∆u + λ0u, λ0 ≥ 0, G = Rn

and the functions qi on the right-hand side of (25) are real constants.

Theorem 4. [45] Let u1, u2 be two solutions to problem (25) – (27) from the class described

in Theorem 3 with the right-hand sides in (25) of the form
∑rj

i=1 q
j
i δ(x−xi) (q

j
i = const, j =

1, 2). Assume that the condition (A) is satisfied and s ≥ 2r + 1 in the case of n = 2 and
s ≥ 3r + 1 in the case of n = 3, where r ≥ max(r1, r2) (i.e., there exists the upper bound
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for the number max(r1, r2)). Then u1 = u2, r1 = r2, and q1i = q2i for all i that is a solution
to the problem of recovering the number m, the points xi, and the constants qi is unique.

We now present the corresponding examples showing the accuracy of the results
obtained. The following example shows that if Condition (A) is not satisfied then the
problem of recovering the intensities of sources (sinks) located at x1, x2 has a nonunique
solution. At the same time, it is an example of the nonuniqueness in the problem
of recovering the intensity of one source and its location. Note that the problem of
determining the location of one source x0 and its intensity q(t) is simple enough and
in order to uniquely recover these parameters we need two measurements in the case of
n = 1 [44], three measurements in the case of n = 2 [67] and four measurements (that
is s = 4 in (27)) in the case of n = 4 [69]. The smaller number of points does not allow
to determine the parameters q(t), x0 uniquely. We should also require that the point x0 is
situated between two measurement points in the case of n = 1 and Condition (A) holds
in the case of n = 2, 3. The numerical solution of the problem of recovering one source is
treated in the articles [28, 30–37,41, 67].

Example 1. First we take n = 3, G = Rn, Lu = −∆u. Let u be a solution to equation
(25) satisfying the homogeneous initial value conditions with the right-hand side in (25)
of the form

q(t)(δ(x− x1)− δ(x− x2)).

The Laplace transform of this solution to problem (25), (26) is written as

û = q̂(λ)(
1

4π|x− x1|
e−

√
λ|x−x1| −

1

4π|x− x2|
e−

√
λ|x−x2|).

Let P be the plane perpendicular to the segment [x1, x2] and passing through its center.
We have

û(y, λ) ≡ 0 ∀y ∈ P.

Therefore, u(y, t) = 0 for all y ∈ P . Precisely the same example can be constructed in
the case of n = 2. We take the perpendicular to the segment [x1, x2] passing through its
center rather than the plane P . Thus, if Condition (A) is not satisfied then any number
of measurement points does not allow to determine the intensity and the location of the
sources.

Example 2. Consider the case of G = Rn, Lu = −∆u. In this case condition (27) with
s = 4 in the case of n = 2 and s = 6 in the case of n = 3 does not allow to determine
location of two sources and their intensities even if Condition (A) holds. We describe the
example in the case of n = 3. The case of n = 2 is quite similar. Let u1, u2 be solutions to
equation (25) satisfying the homogeneous initial value conditions in which the right-hand
sides are of the form

q(t)δ(x− x1) + q(t)δ(x− x2), q(t)δ(x− x∗1) + q(t)δ(x− x∗2).

Let, for example, n = 3. Then the Laplace transforms of û1, û2 are as follows:

û1(x, λ) =
2

∑

i=1

q̂

4π|x− xi|
e−

√
λ|x−xi|, û2(x, λ) =

2
∑

i=1

q̂

4π|x− x∗i |
e−

√
λ|x−x∗

i |. (38)

Here we use explicit representations of the fundamental solution to the Helmgoltz equation.
We take x1 = (a, a, 0), x∗1 = (a,−a, 0), x2 = (−a,−a, 0), x∗2 = (−a, a, 0) (a > 0). It is
easy to see that the functions û1, û2 coincide at the points

y1=(M, 0, 0), y2=(−M, 0, 0), y3=(0,M, 0), y4=(0,−M, 0), y5=(0, 0,M), y6=(0, 0,−M),
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where M > 0 and, thus, the problem of recovering the locations of 2 sources and their
intensities admits several solutions in the case of s = 6. It follows from Theorem 4 that
in the case of s = 7 the points x1, x2 and the intensities are determined uniquely (if
Condition (A) holds and the intensities are constants).

4. Recovering of Heat Flux

Consider the parabolic equation

Mu = ut + Lu = f(t, x), (t, x) ∈ Q = (0, T )×G, T ≤ ∞, (39)

where Lu = −∆u +
∑n

i=1 ai(x)uxi
+ a0(x)u, G = Rn

+ or G is a domain with a compact
boundary of the class C2, and n = 2, 3. Equation (39) is completed with the initial-
boundary conditions

Bu|S = g(t, x) (S = (0, T )× Γ), u|t=0 = u0(x), (40)

where Bu = ∂u
∂ν
+σ(x)u, and ν is the outward unit normal to Γ under the overdetermination

conditions
u(t, bi) = ψi(t) (i = 1, 2, . . . , r), (41)

where {bi}
r
i=1 is a set of points that belong to G. Assume that g(t, x) =

r
∑

j=1

αi(t)Φi(x)

for some known functions Φj , the problem consists in recovering both a solution to (39)
satisfying (40) and (41) and the functions αj, j = 1, 2, . . . , r, characterizing g. Note that
any function can be approximated by the sums of this form for a suitable choice of basis
functions Φi.

There is a limited number of theoretical results devoted to problem (39) – (41). The
problem is ill-posed in the Hadamard sense (see [70]) if the points {bi}

r
i=1 are interior

points of G. Let

ϕj(x) =
1

2

1
∫

0

(~a(bj + τ(x− bj)), (x− bj)) dτ. (42)

For a given set of points bj ∈ G (j = 1, 2, . . . , r), construct the point b ∈ Γ such that
δj = ρ(bj ,Γ) = |b− bj |.

Below, we assume that, for every j = 1, 2, . . . , r, the set Kj consists of finitely many
points and

∀j = 1, 2, . . . , r, ∀b ∈ Kj , |κi|δj < 1 (i = 1, 2) for n = 3, |κ|δj < 1 for n = 2, (43)

where κi are the principal curvatures of Γ at b for n = 3 and, respectively, κ is the curvature
of Γ for n = 2 at b.

Let Ψ be the matrix with the entries Ψji =
∑

b∈Kj

Φi(b)e
−ϕj (b)

Ij(b)
(i, j = 1, 2, . . . , r). We

assume that
det Ψ 6= 0, Φi(x) ∈ W

1/2
2 (Γ), (44)

Φi(x) ∈ W 1
2 (Xb) for n = 2, Φi(x) ∈ W 2

2 (Xb) for n = 3, b ∈ ∪r
j=1Kj, (45)

where Xb = Yb ∩ Γ (here Yb is the coordinate neighborhood of b). We require also that

a0 ∈ W 1
∞(∪b∈Kj

(Yb ∩G)), Γδ ∈ C3, σ ∈ C3/2+ε(Γδ) (ε > 0), (46)
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u0(x) ∈ W 1
2 (G), e

−γ0tf ∈ L2(Q). (47)

Here Γδ = (∪r
j=1 ∪b∈Kj

Yb) ∩ Γ. The classical theory says that if condition (47) holds for
some sufficiently large γ0 then there exists a unique solution w0 to problem (39) and (40),
where g = 0, such that e−γ0tw0 ∈ W 1,2

2 (Q). Consider problem (39) – (41). Changing the
variables w = u− w0, we obtain the simpler problem

wt + Lw = 0, Bw|S = g(t, x), w|t=0 = 0, (48)

w(bj, t) = ψj(t)− w0(t, bj) = ψ̃j(t), j = 1, 2, . . . , r. (49)

We assume that ψ̃j(t) ∈ L2(0, T ) and

ψ̃j(t) =

t
∫

0

Vδj (t− τ)ψ0j(τ)dτ, ψ0je
−γ0t ∈ W̃

n/4
2 (0, T ) (n = 2, 3), (50)

where Vγ(t) =
e−γ2/4t

4πt
for n = 2 and Vγ = γe−γ2/4t

2
√
πt3/2

for n = 3. For T = ∞, condition (50)

can be rewritten as

sup
σ>γ0

∞
∫

−∞

|σ + is|n/2eRe
√
pδj |L(ψ̃j)(σ + is)|2 ds <∞, where p = σ + is. (51)

Theorem 5. [53] Assume that T = ∞ and conditions (28), (43) – (45), and (46) for
n = 3 hold. Then there exists λ0 ≥ 0 such that, if Reλ = γ0 ≥ λ0 and conditions (47),
(50) are fulfilled, then there exists a unique solution to problem (39) – (41) such that

e−γ0tu ∈ W 1,2
2 (Q), e−γ0tαi(t) ∈ W

1/4
2 (0, T ) (i = 1, 2, . . . , r).

Note that, for T <∞, this theorem is also valid and the formulation is much simpler.
Problem (39) – (41) becomes well-posed provided that the points {bj} belong to Γ and

the corresponding existence and uniqueness hold (see [52]). In this case we can consider
more general parabolic operator than that at the beginning of this section. We consider
the equation (see [52])

Mu = ut − Lu = f(t, x), (t, x) ∈ Q = (0, T )×G, (52)

where Lu =
n
∑

i,j=1

aij(t, x)uxixj
+

n
∑

i=1

ai(t, x)uxi
+ a0(t, x)u, G ∈ Rn is a bounded domain

with a boundary Γ. The initial-boundary conditions are as follows:

Bu|S = g(t, x) (S = (0, T )× Γ), u|t=0 = u0(x), (53)

where Bu =
n
∑

i,j=1

aij(t, x)νi
∂u
∂xi

+ β(t, x)u, ν is the ourward unit normal to Γ. The

overdetemination conditions agree with (41) where bi ∈ Γ, {bi}
r
i=1 is a set of points.

The problem is to find a solution to equation (39) satisfying (41), (53) and the unknown

function g(t, x) =
r
∑

j=1

αi(t)Φi(t, x), where Φi are given and αi are unknowns. As before,

a parameter δ > 0 is admissible if Bδ(bi) ∩ Bδ(bj) = ∅ for i 6= j, i, j = 1, 2, . . . , r. The
operator L is elliptic, i. e., there exists a constant δ0 > 0 such that

n
∑

i,j=1

aijξiξj ≥ δ0|ξ|
2 ∀ξ ∈ R

n, ∀(t, x) ∈ Q.
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We also assume that

ai ∈ Lp(Q), akl ∈ C(Q), β ∈ W s0,2s0
p (S), akl|Γ ∈ W s0,2s0

p (S), (54)

ai ∈ L∞(0, T ;W 1
p (Gδ)), akl ∈ L∞(0, T ;W 1

∞(Gδ)), (55)

where i = 0, 1 . . . , n, k, l = 1, . . . , n. We use the straightening the boundary, i. e., the
transformation zn = yn − γ(y′), z′ = y′, where y is a local coordinate system at bi. We
assume that Γδ = Gδ∩Γ ∈ C3. Put U = {z : |z′| < δ, 0 < zn < δ1} and B′

δ = {z′ : |z′| < δ}.
Set Qτ

0 = (0, τ)× U , Q0 = (0, T )× U and Sτ
0 = (0, τ)× B′

δ, S0 = (0, T )× B′
δ.

u0(x) ∈ W
2− 2

p
p (G), f ∈ Lp(Q), (56)

g(0, x) = B(x, 0, ∂x)u0|Γ, g ∈ W s0,2s0
p (S), (57)

β ∈ Lp(0, T ;W
2−1/p
p (Γδ) ∩W

1
p (Γδ;W

1/2−1/2p
p (0, T )). (58)

Let Ui be a coordinate neighborhood of bi ∈ Γ. We straighten the boundary and take the
new coordinate system z = (z′, zn). Next, we assume that

∇z′ϕkg(t, x
k(z′, 0)) ∈ W s0,2s0

p (S0) (k = 1, 2, . . . , r), (59)

∇z′ϕif(t, x
i(z)) ∈ Lp(Q0), ∇z′ϕiu0(x

i(z)) ∈ W 2−2/p
p (U),

∇z′akl(t, x
i(z′, 0)) ∈ W s0,2s0

p (S0) (k, l = 1, 2 . . . , n, i ≤ r). (60)

These conditions (60), (59) are independent of the local coordinate systems y and z.
Next, we assume that

Φi ∈ W s0,2s0
p (S), ∇z′Φi(t, x

j(z′, 0)) ∈ W s0,2s0
p (S0), i, j = 1, 2, . . . , r. (61)

Introduce the matrix Φ(t) with the entries φij = Φj(t, bi) (i, j = 1, 2, . . . , r) and suppose
that

| det Φ| ≥ δ1 > 0 ∀t ∈ [0, T ]. (62)

ψi ∈ W s1
p (0, T ), u0(bi) = ψi(0) (i = 1, . . . , r), (63)

where δ1 is a positive constant. Take the first of equalities (40) at (0, bj). We have

Bu0 =
∂u0(bj)

∂N
+ β(0, bj)u0(bj) = g(0, bj) =

r
∑

i=1

αi(0)Φi(0, bj), j = 1, . . . , r. (64)

This system is uniquely solvable and we can find the quantities αi(0). In this case we have
the equality

∂u0(x)

∂N
+ β(0, x)u0(x) = g(0, x) =

r
∑

i=1

αi(0)Φi(0, x) ∀x ∈ G, (65)

where αj(0) are solutions to system (64).

Theorem 6. [52] Let the conditions (54) – (63), (65) be satisfied. Then there exists a
unique solution u, ~α to problem (39) – (41) such that u ∈ W 1,2

p (Q), ~α ∈ W s0,2s0
p (0, T ),

∇z′ϕiu(x
i(z)) ∈ W 1,2

p (Q0), i = 1, . . . , r,
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ОБ ОБРАТНЫХ ЗАДАЧАХ С ТОЧЕЧНЫМ ПЕРЕОПРЕДЕЛЕНИЕМ
ДЛЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ТЕПЛОМАССОПЕРЕНОСА

С.Г. Пятков, Югорский государственный университет, г. Ханты-Мансийск,
Российская Федерация

Данная работа – обзор, посвященный обратным задачам восстановления источни-
ков и коэффициентов (параметров среды) в математических моделях тепломассопере-
носа. Главное внимание уделяется вопросам корректности обратных задач с точечными
условиями переопределения. Такие вопросы возникают в теории тепломассопереноса,
в задачах окружающей среды и экологии, при описании процессов диффузии, филь-
трации и во многих других областях. Примерами могут служить задача определения
тензора теплопроводности или задача определения источников загрязнения в водном
бассейне или атмосфере. Мы рассматриваем три типа задач. Первая из них – зада-
ча восстановления точечных или распределенных источников. Описываются условия
существования и единственности решений, приводятся примеры неединственности и,
в модельных ситуациях, даются оценки на число замеров, которые позволяет полно-
стью определить интенсивности источников и их местоположение. Вторая задача –
задача восстановления параметров среды например, теплопроводности. Третья зада-
ча – задача о восстановлении граничных режимов, т.е. потока через поверхность или
коэффициента теплопередачи.

Ключевые слова: тепломассоперенос; математическое моделирование; параболи-

ческое уравнение; обратная задача; единственность; точечный источник.
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