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This article is a survey devoted to inverse problems of recovering sources and coefficients
(parameters of a medium) in mathematical models of heat and mass transfer. The main
attention is paid to well-posedness questions of the inverse problems with pointwise
overdetermination conditions. The questions of this type arise in the heat and mass transfer
theory, in environmental and ecology problems, when describing diffusion and filtration
processes, etc. As examples, we note the problems of determining the heat conductivity
tensor or sources of pollution in a water basin or atmosphere. We describe three types
of problems. The first of them is the problem of recovering point or distributed sources.
We present conditions for existence and uniqueness of solutions to the problem, show
non-uniqueness examples, and, in model situations, give estimates on the number of
measurements that allow completely identify intensities of sources and their locations. The
second problem is the problem of recovering the parameters of media, in particular, the
heat conductivity. The third problem is the problem of recovering the boundary regimes,
i. e. the flux through a surface or the heat transfer coefficient.
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Introduction

Consider inverse problems with pointwise ovedetermination of recovering coefficients
or sources in mathematical models of heat and mass transfer. We describe theoretical
results in the case of the second order parabolic systems

up+ Alt,x, Dyu = f =Y filt,2)qi(t) + fo, (t,2) €Q=(0,T) xG (GCR"). (1)
i=1
The operator A is an elliptic operator with matrix coefficients of the dimension h x h
representable as

A(t,z, D)u = — Z aij(t, T) Uy, + Z a;(t, r)u,, + apu,
ij=1 i=1

where a;;, a; are h x h matrices. The following initial and boundary conditions are imposed:

Ulj=o = ug, Buls=g(t,x), S=(0,T)xT, T =0G, (2)
where Bu = w or Bu = Y. %(t,z)u,, + yu or Bu = 2 + ou =
> i @i (8 2)ug; (8, 2)v; + o(t, 2)u(t, ), where 7 = (v,...,v,) is the outward unit

normal to I'. The unknowns in (1), (2) are a solution w and the function ¢;(t) (i =
1,2,...,s) occurring either into the right-hand side of (1) or the operators A and B.
The overdetermination conditions for recovering the functions {¢;}{_, are as follows:

u‘a):bi - ¢Z(t)7 L= 1727 s Sy

where {b;} is a set of points in G or on I'.

—~
w
S~—

34 Bulletin of the South Ural StateUniversity. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2022, vol. 15, no. 3, pp. 34-50



OB30OPHBIE CTATBHI

These problems arise in mathematical modelling of heat and mass transfer processes,
diffusion, filtration, and in many other fields (see [1-3]). The function f on the right-hand
side in (1) is referred to as a source function. Generally, there are three types of inverse
problems, one of them is the problem of recovering sources, the second problem is the
problem of recovering coefficients of A and the third problem is the problem of recovering
functions occurring in the boundary condition (for instance, heat flux of the heat transfer
coefficient). First, we pay attention to the case of source problems. Of course, we should
refer to the fundamental articles by A.I. Prilepko and his followers. In particular, the
works [4, 5] establish the existence and uniqueness theorem for solutions to the problem
of recovering the source f(t,x)q(t) with the overdetermination condition u(xg,t) = ¥(t)
(o is a point in G) and h = 1. Similar results are obtained in [6] for the problem of
recovering lower-order coefficient p(t) in equation (1). The Holder spaces are used as the
basic spaces in these articles. The results were generalized in the book [7, §6.6,§9.4], in
which the existence theory for problems (1) — (3) was developed in an abstract form with
the operator A replaced with —L, where L is a generator of an analytic semigroup. The
main results are based on the assumptions that the domain of L is independent of time
and the unknown coefficients occur into the lower part of the equation nonlinearly. Under
certain conditions, the existence and uniqueness theorems were proven locally in time in
the spaces of functions continuously differentiable with respect to time. There are many
articles devoted to problems (1) — (3) in model situations, especially in the case of n = 1
(see, for instance, [8-11]). In these articles different collections of coefficients are recovered
with the overdetermination conditions of form (3), in particular, including boundary points
b;. In this case the boundary condition and the overdetermination condition define the
Cauchy data at a boundary point. In the case of n = 1, many results are presented in [§].
Problems (1) — (3) were considered in our articles [12-15], where conditions on the data
were weakened in contrast to those in [7, §9.4] and the solvability questions were treated
in the Sobolev spaces. Note that in the article [15] the unknowns occur in the right-hand
side of (1) nonlinearly. In this case the right-hand side is of the form f(¢,z,u, Vu, q(t))
(see also [4]). If the functions {¢;};_; occur into the main part of the operator A then
we arrive at the classical problem of recovering the thermal conductivity tensor [16,17].
There are comparatively small number of theoretical results in this case. In particular,
we can refer to |8, Sect.4.3|, 9,11, 18,19|, where the existence and uniqueness theorems
in Holder spaces are established in the case of the heat conductivity depending on time
for n = 1. The above-mentioned articles [12-15| deal with the existence and uniqueness
theorems in the multidimensional case for the integral and pointwise overdetermination
conditions. Note that there are extremely large number of numerical results devoted to
problem (1) — (3). We can refer to the articles [20-22|, where the heat conductivity or
capacity are restored with the use of additional boundary data (for instance, additional
Dirichlet data on the boundary), and to [23-26|, where the unknowns are recovered with
the use of temperature measurements (3). Proceed with the point sources problems, which,
in contrast to the distributed sources case, are always ill-posed. In this case in problem (1)
- 3), f=>"1_,0(x —z;)q(t) + fo, the intensities ¢;(t) of point sources, their locations x;
and the number m are quantities to be determined. There is a small number of theoretical
results devoted to the solving these inverse problems. The main results are connected
with numerical methods of solving the problem and many of them are far from justified.
The problem is ill-posed and examples when the problem is not solvable or has many
solutions are easily constructed. Very often the methods rely on reducing the problem to
an optimal control problem and minimization of the corresponding objective functional
[2,27,30,38|. However, it is possible that the corresponding functionals can have many local
minima. Some theoretical results devoted to problem (1) — (3) are available in [39-43].
The stationary case is treated in [42], where the Dirichlet data are complemented with
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the Neumann data and these data allow to solve the problem on recovering the number of
sources, their locations, and intensities using test functions and a Prony-type algorithm.
Similar results are obtained in the multidimansional case for the parabolic source problem
and thereby the identifiability of point sources is proven in the case of Cauchy data on the
boundary of a spatial domain (i. e., the Dirichlet data on the boundary in addition to the
Neumann data are given). Model problem (1) — (3) (G = R") is considered in [43], where
the explicit representation of solutions to the direct problem (the Poisson formula) and
an auxiliary variational problem are used to determine numerically the quantities ), qirﬁj
(here ¢;(t) = const for all ¢ and r;; = |x; — y;], [ = 1,2,...). The quantities found allow
to determine the points {x;} and the intensities ¢; (see Theorem 2 and the corresponding
algorithm in [43]). In the one-dimensional case, the uniqueness theorem for solutions to
problem (1) — (3) with m = 1 is stated in [39]. Similar results are presented also in [44]. To
define a solution uniquely (intensities and source locations) in the one-dimensional case,
we need the condition that the sources and the measurement points {b;} alternate, and
this requires some unavailable information in a practical situation. The work [45] presents
non-uniqueness examples in the problems of recovering point sources. Some numerical
methods used in solving the problems of recovering point sources are described in [46-48]|.

Next, we describe two classical problems of recovering the heat flux and the heat
transfer coefficients. The former problem is the problem of determination of the function
g in (2). The measurement points {b;} can belong to the boundary or to be inside the
domain. In the latter case the problem becomes ill-posed in the classical sense. Main
articles are devoted to this problem but only few of them consider the theory of these
problems. In the article [49] the uniqueness theorem was obtained in the case of n = 1.
The same case is studied in [9], where the existence and uniqueness theorem is presented
in the problem of simultaneous determination of the heat flux and the leading coefficient
in the equation depending on time. However, the case of n = 1 is much simpler for the
study. One of the first articles devoted to problem (1) — (3) in the multidimensional case
is the article [50] (see also [51]), where, for Mu = u; — Au and g = ¥ (x)¢(t) (the unknown
function is ¢(t)), the existence and uniqueness theorem was obtained in Hélder classes
in the case of points {b;} that belong to the boundary. This article also contains the
uniqueness theorem in the problem of recovering the heat transfer coefficient depending
on time (the coefficient 7y or o in the operator B). The proof is based on reducing the
problem to an Abel integral equation using an asymptotic of the Green function. It is
possible that this approach is not applicable in the case of general parabolic systems. One
more approach to the study of problem (1) — (3) is based on reducing the problem to an
integral Volterra equation of the second kind. It can be found in [52|, the existence and
uniqueness theorem here is obtained with the use of the fixed point theorem in the case
of the points {b;} that belong to the boundary. The approach allows to develop a new
numerical method for solving the problem. Next, we refer to the article [53], where some
existence and uniqueness results are obtained in the ill-posed case when the points {b;}
are inside the domain. A solution is sought in the Sobolev space but some data of problem
must belong to some class of infinitely differentiable functions whose Laplace transform
decays sufficiently quickly. There are a lot of articles devoted to numerical solving the
problem. Necessary bibliography and some results can be found in [54-56].

At present, we can find many articles devoted to numerical methods for solving the
problem of recovering the heat transfer coefficient. The points {b;} in (3) can be interior
points of the domain G (see [57-60]) or belong to the boundary [49,61,62]. The stationary
case is treated in [34]. In the article [49] a parabolic system is considered and the heat
transfer coefficients are constants (the uniqueness theorem is established and the numerical
method is described). The heat transfer coefficient depending on time is determined
numerically in [57,58,60]. In [57,63] the heat transfer coefficient depends on x and the
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overdetermination data agree with the Dirichlet data on a part of a cylinder, i.e., we have
the Cauchy data on a part of the lateral boundary of the cylinder. The heat transfer
coefficient depending on all variables is calculated in [64] with the use of the Cauchy data
on the lateral boundary of the cylinder. In this article the main attention is paid to the
existence and uniqueness theorems for the above described inverse problems.

1. Preliminaries

Let E be a Banach space. The symbol L,(G; E) (G is a domain in R") stands for
the space of strongly measurable functions defined on G with values in E and a finite
norm ||||u(x)| £||z,()- The notations of the Sobolev spaces W (G; E) and W3 (Q; E) are
conventional (see [65]). If ' =R or £/ = R" then the latter space is denoted by W7 (Q).

The definitions of the Hélder spaces C*#(Q), C*#(S) can be found, for example, in [66]. By

the norm of a vector, we mean the sum of the norms of its coordinates. For a given interval

J =(0,T), set Wz (Q) = W5(J; L,(G)) N L, (J; W)(G)) and Wi (S) = Wi(J; L,(T)) N

L,(J;Wr(I)). Let (u,v) = [u(x)v(x)dr and denote by Bs(b) a ball of the radius 4
G

centered at b. The symbol p(X,Y") stands for the distance between the sets X and Y.

2. Distributed Sources

The results presented in this section can be found in [13-15]. Here, we replace
conditions (3) with the more general conditions

<u(bl-,t),el- >= wl(t), i:1,2,...,8, (4)

where the symbol < -, - > stands for the inner product in C", {¢;} is a set of vectors of unit
length, and we allow coinciding points and vectors among the points {b;} as well as the
vectors {e;}. In this section, the operator B coincides with Bu = """ | v;(t, x)us, + You.
The definition of the inclusion I' € C*® can be found in |66, Chapter 1]. Here, we assume
that I' € C? and the parameter p > n + 2 is fixed. The parameter 6 > 0 is said to be
admissible if Bs(b;) C G for the interior points b; € G, Bs(b;) N Bs(b;) = 0 for b; # b;,
1,7 = 1,2,...,s. We take a sufficiently small parameter § and assume that I's € C”.
More exactly, for every point b; € I', there exists a neighborhood U (the coordinate
neighborhood) of this point and a coordinate system y (local coordinate system) obtained
by rotation and translation of the origin from the initial one such that the y,-axis is
directed as the interior normal to I' at b; and the equation of the boundary U NI is of the

form y, = w(y’), w(0) =0, |¢'| <8, ¥ = (Y1, .-, Yn—1); moreover, we have w € C*(Bj}(0))
(B5(0) ={y' : [y/| <0}), GNU ={y: |y] <6,0 <y, —w(y) <}, R"\G)NU =
{y : Y| < §,-01 < yn —w(y') < 0}. For the given domain G, the numbers §,4; are
fixed and without loss of generality we can assume that 6; > (M + 1)d, where M is the
Lipschitz constant of the function w. Assume that Q™ = (0,7) x G, G5 = U;(Bs(z;) N G),
Qs = (0,T) x Gs, QF = (0,7) x G5, Ss = (0,T) x I's I's = U; Bs(z;) N T". Next, we fix an
admissible parameter . Our conditions for the data are as follows.

aij € C(Q), ar € Ly(Q), W € 01/2’1(3), a;; € Loo(0,T WL (Gs)); (5)

ar € Ly(0,T; W, (Gs)), i,j=1,2,....,n, k=0,1,...,n. (6)

The operator L is parabolic and the Lopatiskii condition holds. State these conditions.
Introduce the matrix Ag(t,z,&) = — >0, a;;(t, ©)&&; (§ € R™), and assume that there
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exists a constant 9; > 0 such that the roots p of the polynomial det (Ao(t, x,1§) +pE) =0
(E is the identity matrix) satisfy the condition

Rep < —ai[¢* VE €R" V(a,t) € Q. (7)

The Lopatinskii condition can be stated as follows: for every point (tg,z¢) € S and the
operators Ag(z,t, D) and By(z,t,D) = > v(t,x)0,, written in the local coordinate
system y at this point, the system

()\E + Ao(l'o, to, ifl, 0, n))’U(Z) = O, Bo(xo,to, ifl, 0, n)’U(O) = h]’, (8)

where & = (&1,...,&-1), Yn € RT, has a unique solution C (EJF) decreasing at infinity for
all ¢ € R"! Jarg \| < /2, and h; € C such that |¢'| + |\ # 0.
We also assume that there exists a constant €; > 0 such that

Re (_Ao(t7x7§)77777) > 81‘6‘2‘77‘2 vg € Rna ne Ch7 (9)

where the brackets (-,-) denote the inner product in C" (see [66, Definition 7, Section 8,
Chapter 7]).
Let

|det(z ”}/ZI/Z)‘ Z Eo > 0, (10)

=1

where v is the outward unit normal to I, gy is a positive constant, and
uo(x) € W22IP(G), g € Woo(S), B(r,0)ug(w)lr = g(x,0) ¥a €T, (1)
where sg = 1/2—1/2p. Fix an admissible 6 > 0. Construct functions ¢;(x) € C5°(R"™) such

that ¢;(z) = 1 in Bys/s(z;) and ¢;(x) = 0 in R™\ Bsssa(z;) and denote p(z) = Y"1, @i(z).
Additionally it is assumed that

p(x)uo(x) € Wy=2P(G), pg € Wr2(S) (s1 =1 —1/2p), (12)

['eC? v, €C(Ss) (k=0,1,2,...,n). (13)
Consider problem (1)-(3), where

n

A= Lo+ Z qr(t) Lg, Lyu = — Z a%(t, T) Uy o, + Zaf(t, )y, + af(t, z)u,

k=r+1 ij=1 i=1

and k = 0,74+ 1,7r+2,...,s. The unknowns ¢; are sought in the class C([0, 7). Construct
a matrix B(t) of the order s x s with the rows

< fl(t, bj), € >,..., < fr(t, bj), ej >, < —LT+1U0(t, bj), € >,...,< —LSUO(t, bj), €; > .
We suppose that
b € CH[0,T]), <ug(by),e; >=1;(0) (j =1,2,...,5), € CY*(S)NC*(S;), (14)

af; € C(Q) N Lo (0, T; Wi (Gs)), af € Lp(Q) N Loo (0, T; Wi (Gy)) (1,5 =1,...,n), (15)
fi € Lp(Q) N Loo(0,T; W) (Gs)) (i =0,1,....,7), (16)
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for some admissible 6 >0, p>n+2,and k=0,r+1,...,s, [ =0,1,...n;
af(t7 bl)afi(t7 bl) € C([OaTD (17)

for all possible values of 7, k, [. We also need the following condition: there exists a number
0o > 0 such that

|det B(t)| > 0y a.e. on (0, 7). (18)
Note that the entries of the matrix B belong to the class C([0,77]). Consider the system

V;:(0)+ < Loug(0,z5), e > — < fo(0,25),e; >=

m mi
= ZQOk < fk(oaxj>7€j > = Z Qo < LkUO(Oaxj>7€j >, j: 17 <oy S, (19>
k=1 k=m+1

where the vector gy = (o1, Go2, - - - , Qos) 1s unknown. Under condition (18), this system is
uniquely solvable. Let Ay = Ly + Zzzm +1 9ok L. The following theorem is valid.

Theorem 1. [14] Let conditions (9) — (18) be satisfied. Moreover, assume that conditions
(7), (8) hold for the operator Oy + Ay. Then there exists a number 7o € (0,T] such that,
on the interval (0,7), there exists a unique solution (u,q, qa, ..., qs) to problem (1) — (3)
such that u € Ly(0,70; W2X(G)), us € Ly,(Q™), ¢:(t) € C([0,7%), i = 1,...,s. Moreover,
ou € Ly(0,70; W3(G5)), wur € Ly(0, 70; W,y (Gs)).

In the case of the unknown lower-order coefficients, the results can be reformulated in

a more convenient form. In this case the operator A is assumed to be representable in the
form

A= LO — Z qz(t)lz, L()U = — Z (lij(t, I)Ux].x]- + Zaz(t,x)uxl + CL()(t,ZE)U,
j=1

Moreover, the rows of the matrix B(t) of the order r x r are as follows:
< fi(t,by), e >, oo, < [t i), 60 >, < Lpyruo(t, b;), €5 >, ..., < Laug(t, b;), e; > .
We suppose that
¥; € Wo(0,T), <ug(b;),e; >=1;(0), j=1,2,....s, (21)

Jisbij € Loo (0, T; W) (G5)) N Lo (0, T Ly(G)), fo € Lp(Q) N Ly(0, T W, (Gs)),  (22)

for some admissible § > 0, where ¢ = 1,...,r, 7 = 0,1,...,n, k = r+1,...,s. The
remaining coefficients satisfy the conditions

a;j € C(Q), ar € L,(Q), v € 01/2’1(§) N C2(S;), a;; € Loo(0, T W;O(Gg)); (23)

ar € Lp(Q) N L, (0, T; W, (Gs)), 1,5 =1,2,...,n, k=0,1,....n. (24)
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The corresponding theorem is stated in the following form.

Theorem 2. [14]| Assume that the parabolicity condition and Lopatinskii condition (7), (8)
for the operator O, + Ly, conditions (9) — (13), (18), (21) — (24) for some admissible § > 0
hold and p > n+2. Then, for some v € (0,T], on the interval (0,7y), there exists a unique
solution (u, q1, qa, -.., qs) to problem (1) — (3) such that u € L,(0,vo; WPQ(G)), ur € L,(QM),

ou € Ly(0,70; WHG)), wuy € Ly(0,70; W(G)), ¢:(t) € Lp(0,%), i =1,...,s.

Remark 1. A slightly sharper results can be found in [12], where the operator B can be
arbitrary, in particular, the boundary condition can coincide with the Dirichlet boundary
condition, but the points {b;} are interior points of G. The quasilinear case is considered
in [15].

3. Point Sources

In this section we present some results concerning with recovering of point sources.
We consider the simple parabolic equation

ut—l—Lu—Z:qZ (x —x;) + fo(t, x), :—Au—l—Zaz x)Uy, + ap(T)u, (25)

where (z,t) € Q = (0,T) x G, G is a domain in R" (n = 1,2,3) with a boundary I' € C.
We consider three cases G = R", or G = R} = {z : z, > 0}, or G is a domain with
a compact boundary. The unknowns are the functions ¢;(t). Equation (25) is completed
with the initial and boundary conditions

Bu’S =g, u’t:o - UO(x>7 S = (07T> X F7 (26)

where either Bu = %% + ou, or Bu = u (v is the outward unit normal to I'), and the
overdetermination conditions are as follows:

U(b],t) = w](t), j = 1,2,. .., S. (27)

The coefficients in (25) are real-valued.

First, we describe our conditions on the data and present the simplest existence
theorem. Let @ = (a1,az2) for n = 2 and @ = (a1, aq,a3) for n = 3. The brackets (-,-)
denote the inner product in R™. The coefficients in (25) are assumed to be real-valued and

a; EW2(G) (i=1,...,n), Vi,A,a9 € Loo(G), o € CY(T). (28)

Fix a parameter A € R and assume that

*’\thWQI/Zl’l/Q(S), if Bu—%jLau (o € CH(T)), (29)
e Mg e WI(9), if Bu=u, foe ™€ Ly(Q), (30)
uo(z) € Wy (G), uo(x)|r = g(z,0) if Bu = u. (31)

If the parameter A is sufficiently large then under the above conditions there exists a
unique solution wy € W, *(Q) to the problem

w + Lu = fo(t,z), Buls =g, uli=o= uo(x) (32)
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such that e w, € W, *(Q). Consider problem (25) — (27). After the change of variables
w = u — wy, we arrive at the simpler problem

w,ﬁ—Lw—ZqZ (x — x;), (33)
Buw|s =0, w|—o =0, (34)
w(bj,t) :¢](t) —wo(t, bj) ZQE](t), ] = 1,2,...,8. (35)

Assume that the functions 77/~)j (t) admit the representation

P;(t) = /Ot Vs, (t — T)vo;(7)dT, Yoje M € Ly(0,T), (36)

where V, (t) = < t/ “forn=2and V, = ;\;tg//g for n = 3.

Assume that K = {y € G: p(y, U 2;) < p(y,T")} for G # R™ and K is an arbitrary
compact set otherwise. We also assume that all coefficients in (25) admit extensions on
the whole R™ such that conditions (28) hold for the case of G = R". If G is a domain with

a compact boundary, then such an extension always exists. Denote

-1 .
oi() = 5 [ @ty + (o= b)), (o~ b))
0
Let §; = min; r;;,j = 1,2,..., s, where r;; = |z; — b;|. Introduce the matrix Ay with the
entries aj; = e#/@) if |z; — b;| = §; and aj; = 0 otherwise. We need the condition

Fix p € (1,n/(n — 1)). Suppose that the space W, 5(G) agrees with W, (G) in the case of
the Robin boundary conditions and with the subspace of W, (G) comprising the functions
vanishing on T otherwise. W, 4(G) is the dual space to W) 5(G) (1/p+1/q = 1).

Theorem 3. [68] Assume that T = oo, r = s, conditions (28), (31), (37) hold and
b € K fori=1,2,...,s. Then there exists \y > 0 such that if X > X\g and conditions
(29), (30), (36) are fulfilled then there exists a unique solution to problem (25) — (27) such
that u = wo + w, wo is a solution to problem (32), e Mwy € W% (Q), e M7 € Ly(0, 00),
e Mw € Ly(0,00; W 5(G)), e Mw; € Ly(0,00; W, 4(G)), e Mw € Wy*(Q.) for all e > 0.

We note that the following condition is actually a necessary condition for the
uniqueness of a solution to problem (25) — (27). If the condition is not satisfied then any
number of the points {b;} does not ensure uniqueness of solutions (see examples below).

Condition (A). For n = 2, any three points {b;} do not belong to the same straight
line and, for n = 3, any four points {b;} do not belong to the same plane.

Next, we describe some model situation in which Lu = —Au + Aqu, Ag > 0, G = R"
and the functions ¢; on the right-hand side of (25) are real constants.

Theorem 4. [45] Let uy, ug be two solutions to problem (25) — (27) from the class described

in Theorem 3 with the right-hand sides in (25) of the form > ;7 qzé(x ;) (¢ = const,j =
1,2). Assume that the condition (A) is satisfied and s > 2r + 1 in the case of n = 2 and
s > 3r + 1 in the case of n = 3, where r > max(ry,79) (i.e., there exists the upper bound
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for the number max(ry,13)). Then uy = us, 11 = 19, and ¢} = q? for all i that is a solution
to the problem of recovering the number m, the points x;, and the constants q; is unique.

We now present the corresponding examples showing the accuracy of the results
obtained. The following example shows that if Condition (A) is not satisfied then the
problem of recovering the intensities of sources (sinks) located at z1, 2, has a nonunique
solution. At the same time, it is an example of the nonuniqueness in the problem
of recovering the intensity of one source and its location. Note that the problem of
determining the location of one source xy and its intensity ¢(¢) is simple enough and
in order to uniquely recover these parameters we need two measurements in the case of
n = 1 [44], three measurements in the case of n = 2 [67] and four measurements (that
is s = 4 in (27)) in the case of n = 4 [69]. The smaller number of points does not allow
to determine the parameters ¢(t), zo uniquely. We should also require that the point z is
situated between two measurement points in the case of n = 1 and Condition (A) holds
in the case of n = 2,3. The numerical solution of the problem of recovering one source is
treated in the articles [28,30-37,41,67].

Example 1. First we take n = 3, G = R", Lu = —Au. Let u be a solution to equation
(25) satisfying the homogeneous initial value conditions with the right-hand side in (25)

of the form
q(t)(0(x — x1) — 6(x — x3)).

The Laplace transform of this solution to problem (25), (26) is written as

o 1 1 s
= i\ (—M——M — le—za| _ & Az—z2|y
=4 )(47T|x—x1\€ 47T|I—I2|e )

Let P be the plane perpendicular to the segment [z7, 25| and passing through its center.
We have
u(y,\) =0 Yy e P.

Therefore, u(y,t) = 0 for all y € P. Precisely the same example can be constructed in
the case of n = 2. We take the perpendicular to the segment [x7, x| passing through its
center rather than the plane P. Thus, if Condition (A) is not satisfied then any number
of measurement points does not allow to determine the intensity and the location of the
sources.

Example 2. Consider the case of G = R", Lu = —Auw. In this case condition (27) with
s = 4 in the case of n = 2 and s = 6 in the case of n = 3 does not allow to determine
location of two sources and their intensities even if Condition (A) holds. We describe the
example in the case of n = 3. The case of n = 2 is quite similar. Let w1, us be solutions to
equation (25) satisfying the homogeneous initial value conditions in which the right-hand
sides are of the form

q()o(x — 1) + q(t)d(x — 22), q(t)d(z — a7) + q(t)d(x — 23).
Let, for example, n = 3. Then the Laplace transforms of w4, 1, are as follows:

2 ~ 2 ~

(@, \) = Y el (e 0) = eVl (38

=1 47T|I'—I'Z| i=1 47T‘l‘_‘rz|

Here we use explicit representations of the fundamental solution to the Helmgoltz equation.
We take z; = (a,q,0), zj = (a,—a,0), z3 = (—a,—a,0), =5 = (—a,a,0) (a > 0). It is
easy to see that the functions 1y, iy coincide at the points

yl:(M7070)7y2:(_M7070)7y3:(07M70)7y4:(07 _M70)7y5:(0707 M)7y6:(0707 _M)7
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where M > 0 and, thus, the problem of recovering the locations of 2 sources and their
intensities admits several solutions in the case of s = 6. It follows from Theorem 4 that
in the case of s = 7 the points x1, 25 and the intensities are determined uniquely (if
Condition (A) holds and the intensities are constants).

4. Recovering of Heat Flux

Consider the parabolic equation
Mu=u;+ Lu = f(t,z), (t,z) € Q=(0,T)xG, T < 0, (39)

where Lu = —Au + Y"1 | a;(2)uy, + ag(x)u, G = R” or G is a domain with a compact
boundary of the class C?, and n = 2,3. Equation (39) is completed with the initial-
boundary conditions

Buls = g(t,z) (S=(0,T)x7T), o= uo(z), (40)
where Bu = %jta(x)u, and v is the outward unit normal to I' under the overdetermination
conditions
where {b;}7_, is a set of points that belong to G. Assume that g(t,x) = > a;(t)P;(x)

j=1

for some known functions ®;, the problem consists in recovering both a solution to (39)
satisfying (40) and (41) and the functions o, j = 1,2,...,r, characterizing g. Note that
any function can be approximated by the sums of this form for a suitable choice of basis
functions ®;.

There is a limited number of theoretical results devoted to problem (39) — (41). The
problem is ill-posed in the Hadamard sense (see [70]) if the points {b;}/_, are interior
points of G. Let

1
1 —
pi() =5 [(@ley+ 7@ =), (a = ) dr. (42)
0
For a given set of points b; € G (j = 1,2,...,r), construct the point b € I' such that
d; = p(bs, ) = [b—byl.
Below, we assume that, for every j = 1,2,...,r, the set K; consists of finitely many
points and

Vi=1,2,...,r, Vbe K;, |ri|d; <1 (i=1,2)forn=3, |k|d; <1lforn=2  (43)

where k; are the principal curvatures of I' at b for n = 3 and, respectively, k is the curvature
of I' for n =2 at b.

O]
Let U be the matrix with the entries ¥;; = > Lie 97 (i,7 = 1,2,...,7r). We

I;(b)

beK;
assume that
det U £ 0, ®;(z) € Wy/*(I), (44)
®;(x) € Wy (X,) for n =2, &;(z) € W3(Xy) for n=3, be Uj_ K, (45)
where X, =Y, NI (here Y} is the coordinate neighborhood of b). We require also that
ag € WL (Uper,(Ys N G)), I's € C3, o € C3/*™(I's) (e > 0), (46)
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up(r) € Wy (G), e ' f € Ly(Q). (47)
Here T's = (Uj_; Upek; Y3) N T'. The classical theory says that if condition (47) holds for
some sufficiently large vy then there exists a unique solution wy to problem (39) and (40),

where g = 0, such that e %, € W,*(Q). Consider problem (39) — (41). Changing the
variables w = u — wy, we obtain the simpler problem

wt"'Lw:Oa Bw’S:g(tax>7 w’t=0:0, (48)
’LU(b],t> :w](t)—wo(t,b]> :1;](15), j = 1,2,...,7". (49)
We assume that v;(t) € Ly(0,T) and

t

&j (t) - /%g (t - T)wOj (T>d7-7 wO]’ei’YOt € W;M(Oa T) (TL = 27 3)7 (50)
0
where V,(t) = e—;t/‘lt for n =2 and V, = % for n = 3. For T' = oo, condition (50)
can be rewritten as
sup / o + is|"/2eRe VP L(4);) (0 + is) > ds < oo, where p = o + is. (51)
o>

Theorem 5. [53] Assume that T = oo and conditions (28), (43) — (45), and (46) for
n = 3 hold. Then there exists \g > 0 such that, if Re A\ = 79 > Ao and conditions (47),
(50) are fulfilled, then there exists a unique solution to problem (39) — (41) such that

et € Wi(Q), e lay(t) € Wy'*(0,T) (i=1,2,...,r).

Note that, for T < oo, this theorem is also valid and the formulation is much simpler.

Problem (39) — (41) becomes well-posed provided that the points {b,} belong to I' and
the corresponding existence and uniqueness hold (see [52]). In this case we can consider
more general parabolic operator than that at the beginning of this section. We consider
the equation (see [52])

Mu=u;— Lu= f(t,x), (t,z) € Q=(0,T)x G, (52)
where Lu = i aij(t, T)Uge; + i a;(t, r)ug, + ap(t,z)u, G € R™ is a bounded domain
with a boundgr;lF. The initial—bz):ulndary conditions are as follows:

Buls = g(t,z) (S=(0,T)x7T), ulo = up(z), (53)
where Bu = i &ij(t,$)yi% + B(t,x)u, v is the ourward unit normal to I'. The

ij=1
overdetemination conditions agree with (41) where b; € I', {b;}]_; is a set of points.
The problem is to find a solution to equation (39) satisfying (41), (53) and the unknown

function g(t,z) = > a;(t)P;(t, z), where ®; are given and «; are unknowns. As before,
j=1

a parameter 0 > 0 is admissible if Bs(b;) N Bs(b;) = 0 for i # j, 4,5 = 1,2,...,r. The

operator L is elliptic, i. e., there exists a constant g > 0 such that

n

Z aijfz{j Z 50‘5‘2 Vf € Rn, V(t,l‘) S Q

1,7=1
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We also assume that
a; € L(Q), aw € C(Q), B € Wo2(S), ay|r € Wi0(S), (54)

a; € Lo (0, T; W, (Gs)), apt € Loo(0, T; W (G5)), (55)

where ¢ = 0,1...,n, k,l = 1,...,n. We use the straightening the boundary, i. e., the
transformation z, = y, — v(v'), 2/ = ¢/, where y is a local coordinate system at b;. We
assume that s = GsNI' € C°. Put U = {2 : |2/| < 6,0 < 2, < &; } and B = {2/ : |2/| < §}.
Set Qf = (0,7) x U, Qo = (0,T) x U and Sj = (0,7) x B§, So = (0,T) x Bj.

2

u(x) € Wy 7(G), f € L(Q). (56)
g(0,z) = B(x,0,0;)uolr, g € W;O’QSO(S), (57)
B € Ly(0,T; W2 VP (Ts) N W, (Ts; W /27120(0,T)). (58)

Let U; be a coordinate neighborhood of b; € I'. We straighten the boundary and take the
new coordinate system z = (z/, z,). Next, we assume that

V.oeg(t, z5(2,0)) € W;O’%O(SO) (k=1,2,...,7), (59)

Vapif (t,2'(2)) € Ly(Qo), Varpiuo(a'(2)) € WP (U),
Vz/akl(t, .Ti(Z/, 0)) € W;O’QSO(S()) (l{,l = 1, 2... ,n, 1 < 7“). (60)

These conditions (60), (59) are independent of the local coordinate systems y and z.
Next, we assume that

®; € Wr02(S), V. @(t,27(2,0)) € Wo*°(Sp), 4,5 =1,2,...,7 (61)

Introduce the matrix ®(¢) with the entries ¢;; = ®,(¢,b;) (i,j = 1,2,...,r) and suppose
that

|det | > 6, >0Vt € [0,T]. (62)
¢i 6W;1(0,T), Uo(bz) :¢z(0) (izl,...,T), (63)
where 0, is a positive constant. Take the first of equalities (40) at (0,b;). We have
3u0(bj) )
Bugy = N + 8(0, bj)uo(b;) = g(0,b;) Zaz j=1,...,r (64)

This system is uniquely solvable and we can find the quantities «;(0). In this case we have
the equality

8@50]5[:1:) + B(0, z)uo(x) = g(0,2) = Z a;(0)®;(0, ) Vo € G, (65)

i=1

where o;(0) are solutions to system (64).

Theorem 6. [52| Let the conditions (54) — (63), (65) be satisfied. Then there exists a
unique solution u, d to problem (39) — (41) such that w € W,*(Q), & € W;o**(0,T),

Vopu(z'(z) € W2 (Qo), i=1,...,7,
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OB OBPATHBIX 3AJTAYAX C TOYEYHBIM IIEPEOIIPEJEJIEHNEM
AJId MATEMATUNYECKNX MOAEJIEN TEIIJIOMACCOIIEPEHOCA

C.I'. IIamxos, KOropckuii rocyaapCTBeHHBI YHUBEPCUTET, I. XaHThI-MaHCHIiCK,
Poccuiickas ®@enepartiust

Hannast paboTa — 0030p, MOCBSIIIIEHHBI 00pATHBIM 33/[a9aM BOCCTAHOBJIEHUS] HCTOYHU-
KOB 1 K03 )UIMEHTOB (IapaMeTpoB CPebl) B MaTEMATUIECKUX MOJE/IAX TEILJIOMACCOIIEPe-
Hoca. [ytaBHOE BHUMAHIUE YEJsIeTCs BOITPOCAM KOPPEKTHOCTH OOPATHBIX 33184 C TOUEIHBIMU
YCJIOBUSIME [IepeoTIpe/iesiennsi. Takue BOMPOChl BO3HUKAIOT B TEOPUH TEILJIOMACCOIIEPEHOCA,
B 3aJ1a9aX OKPY?KAIOIIEH Cpebl U IKOJOTHH, IPU OMMUCAHUN MPOIEccoB auddy3un, Guib-
TPaIUUd U BO MHOTHX Jpyrux objacTsx. [IpuMepamu MOryT CIy2KHUTh 3aj1a9a OlpeIesIeHIs
TEH30Pa TEILIOIPOBOIHOCTH WJIA 33Jia9a OIPEIE€HUs] NICTOYHUKOB 3arDS3HEHUs] B BOJIHOM
bacceitie nau armocdepe. Mbl paccMarpuBaeM Tpu Tuna 3aaad. IlepBast u3 HuxX — 3aJa-
Y2 BOCCTAHOBJIEHUSI TOYEYHBIX WJIA PACIPEJIETECHHBIX UCTOYHIUKOB. ONMUCHIBAIOTCS YCIOBUS
CYMIECTBOBAHUS W €IMHCTBEHHOCTH DPEIeHUIA, TPUBOJISITCS MPUMEPhI HEEIMHCTBEHHOCTH M,
B MOJIEJIbHBIX CUTYAIIUSIX, JAIOTCs ONEHKH HA YHCJI0 3aMEPOB, KOTOPBIE MO3BOJISIET TTOJTHO-
CTHIO OIPEJIEJIUTh WHTEHCUBHOCTA UCTOYHUKOB M UX MECTOIOJIOXKeHue. Bropas 3agada —
3aj[a4a BOCCTAHOBJIEHUS [IAPAMETPOB CPeJIbl HAIPUMED, TEIJIONPOBOAHOCTH. Tperbs 3a1a-
4ya — 3a/la9a O BOCCTAHOBJIEHUN I'PDAHUYHBIX PEXKUMOB, T.€. IIOTOKA Yepe3 MOBEPXHOCTh WJIN
K03 PuImenTa TemIonepeIatu.
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