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The article describes the results of recent years on the analysis of biharmonic and
harmonic models by the methods of iterative extensions. In mechanics, hydrodynamics
and heat engineering, various stationary physical systems are modeled using boundary
value problems for inhomogeneous Sophie Germain and Poisson equations. Deflection of
plates, flows during fluid flows are described using the biharmonic model, i.e. boundary
value problem for the inhomogeneous Sophie Germain equation. Deflection of membranes,
stationary temperature distributions near the plates are described using the harmonic
model, i.e. boundary value problem for the inhomogeneous Poisson equation. With the
help of the developed methods of iterative extensions, efficient algorithms for solving the
problems under consideration are obtained.
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Introduction

First, we consider the biharmonic model, i.e. mixed boundary value problem for the
inhomogeneous biharmonic equation

A% = f (1)

in a bounded domain on the plane Q C R? with the boundary conditions of four types

o S
U=l =0, & =lhilr, =0,
9%

% =i, =0, L= lyilr, =0,

where

aQ:ga S:FOUFIUFZUF37 Fzﬂrjz(ba 27&]7 iaj:07172737

v v Y 2 2N
Lt = At + (1 — o)ningllyy — Nolyy — Ny Uy,

. 0Au y y y
Iyt = “on_ +(1- 0)%(711”2(“% — ligy) + (0] — n%)uxy)a
ny = —cos(n,x), ng = —cos(n,y), o € (0; 1).

The biharmonic model can be formulated as a scalar model, i.e. the problem of
representing a functional in the form of a dot product

weH: [u9)=F@®)VYoe H, FeH, (2)

where the Sobolev space is
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o y . . ov
H=H(Q) = {v c W2 (Q): U|F0UF1 =0, o }FOUFQ = 0},

the bilinear form, i.e. the dot product, is

[, 8] = A, 9) = / (CAGAT + (1 = 0) (igalng + 2ilayiay + tiyyly,))d, o € (0: 1).
Q

If f is a given function, then the functional

F(b):(a,b):/f“dﬂ.
Q
For problem (2), the following assumption ensures the existence and uniqueness of its
solution |1, 4]
Jer, 00 € (03400) 1 e [[8]3y20) < AW, 8) < ea[|0]lfy3(0) VO € H.

Second, we consider the harmonic model, i.e. mixed boundary value problem for the
inhomogeneous harmonic equation

v

—Ai=f (3)
in a bounded domain on the plane 2 C R? with the boundary conditions of two types

tlr, =0,

ou

— 0

on ’FQ )

where

00=35 s=T Ty, (T2 =0

The harmonic model can be formulated as a scalar model, the problem of representing
a functional in the form of a dot product

weH: [u,9)=F@®) VYoe H, FeH, (4)
where the Sobolev space is
H=H(Q)={teWy(Q): 0| =0},
the bilinear form, i.e. the dot product, is
i, 8] = At ) = / ({5 + 1,5,)d2
Q

If f is a given function, then the linear functional

F®) = (a,8)= [ fodQ.
/
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For problem (4), the following assumption ensures the existence and uniqueness of its
solution |1, 4|

Jer, 05 € (0;400) = e |83y < AW, 8) < o |80y VO € H.

Within the framework of the considered direction, such problems were studied
by the fictitious domain methods, for example, in works by A.M. Matsokin,
S.V. Nepomnyashchikh [3], S.B. Sorokin [5], G.I. Marchuk, Yu.A. Kuznetsov,
A.M. Matsokin [2] and others. There are difficulties in solving the above problems. The
promising direction of the fictitious domain methods for solving these problems also has
difficulties. We use the fact that if the problems considered as systems are similar, then
they have similar properties, and the methods for solving these problems are also similar
to each other. To develop new efficient methods, we use generalizations of the fictitious
domain method, i.e. methods of iterative extensions. In the fictitious domain method, on
the example of mechanics, we increase the support reaction and the stiffness of the material
on a fictitious continuation, i.e. additionally we use the choice of two parameters. Let us
minimize the error in a norm stronger than the energy norm of the emerging problem.
We apply the method of minimal residuals with indication of the conditions sufficient
for its convergence. With this new approach, the relative errors of the proposed iterative
processes are dominated by infinitely decreasing geometric progressions. The main goal of
the described works is the development of asymptotically optimal methods for solving the
above problems [6-12].

1. Analysis of Biharmonic Model
1.1. Biharmonic Model

Let us present the problem to be solved for w = 1 and the fictitious problem for w = II
i, € Hy : Ay(t, ¥,) = F,(0,) Yo, € H,, F,c H., (5)
where we use Sobolev spaces

v v 0

v v /bw
H, = H,() = {Uw € W;(Qw) : Uw‘rw,OUFw,l =0, on.. }Fw,OUFw,Q = 0}

in the bounded domains ,, C R? with the boundaries

aQw = gwy Sw = 1-‘w,O U Fw,l U Fw,Q U Pw,?n

Tui(Tws = 0ifi # j,i,j =0,1,2,3

n,, are outer normals to 0€2,, bilinear forms at a, € [0; +o0), g, € (0; 1) are

Aw(awa bw) = /(awAawA’bw + (1 - aw)(awxxﬁwxx + Qawxy’way + awyyﬁwyy) + @wawﬁw)de-

Qo

Each of the problems in (5) has a unique solution under the assumptions [1, 4]

Jer, 00 € (0;400) 1 [|Tul[fzia,) < Al 80) < e [0l Viw € He
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If fw is a given function, then
E, (8,) = / FuludS,.
Qo
In the problem to be solved, with w =1, a3 =0, 'y # 0. In the fictitious problem with
W = II, fH == 0, dH = 0.

1.2. Continued Biharmonic Model and Its Analytical Study

Let us present the continued problem

ueV: A(i, D) + A, ) = Fy (L) Vo eV, (6)

=0;.
Lo UT2

We assume that the solution domain of the original problem is complemented to the
rectangle

where we use the extended solution space

0v

VzVHDz{ﬁGM@@D:MMUDZO,E;

O UQH = 1:[7 0 mQH =0, O, O C RQ,
and the boundary of the rectangular domain is
31_[:5, S:F1UF2, FlmF2:®
We assume that the boundaries of the first domain and the second domain intersect each

other )
O (0 =S, S =T \Tus # 0,
n is an outer normal to JII. Subspace of solutions of the continued problem is

V] 9

Vi = VA() = {i € V: Bl =0}
In the formulation of the continued problem, we use the projection operator
L:Ve Vi, Vi=iml, I, = I3
We introduce subspaces

Vi = Va(11) = {is € V& tulyg, =0}, Vo= Vi@ Va,

Vo= Vo(ll) = {in € V : A(in, 50) =0 ¥ip € Vo

V=VioVeVi=VieoW, i=VieV, Vi=Vo V.

Direct sums are considered using the inner product generated by the bilinear form

A, 0) = Ay (it, 0) + An(i, ©) Vi, o € V.
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It is assumed that the bilinear form is such that
Jer, 00> 0 e [|0]fzan < AW®,8) < e [0z VO EV.
We use the statement on the possibility to continue the functions
331 € (0;1], B2 € [51; 1]: 51/\(172,772) < Ap(02, 02) < 52/\(172,772) Vi, € ‘72

Note that

9

H,(Q,) = Vo, (Q), we {1, II}.

Statement 1. [12] The solution to problem (6) it € Vi coincides with the solution to
problem (8) for w =1 on Q1 and equals zero on .

The study of the continued biharmonic model is carried out by the modified method
of fictitious components [6, 7, 9, 10]:

W eV AW = 0) = —m (A (6P 1) + A (@Y 0) — Fy(Lw) Vi e V,
o=1, eea=7=2/( +B), ke N\ {1}, Vi’ e V; C V. (7)
Let us introduce the norm
o= /A®, 7).

Theorem 1. [12| There exist the following convergence estimates:

1o

Ja -

e =010 b= Il =1, 0 <= (Ba— 3 /(B + ) < 1.

1.3. Continued Biharmonic Model under Discretization
and Its Numerical Analysis

ypSelld® —dlly. keN,

where

Let us discretize the continued model when

IT = (0;b1) x (05b), Ty = {bi} x (0;b2) | J(0;81) x {ba},

Ty = {0} x (0;02) | J(0;1) x {0}, b, b2 € (0; +00).
Let us introduce the grid
(zi;y5) = (i = 1,5)h; (j — 1,5)ha),
hl = bl/(m— 1,5), hg = bg/(n— 1,5), 1= 1,2...,m, j = 1,2...,77,, m—2,n—2 € N.

We consider grid functions at the grid nodes
vij=v(r;y;) €R, i=1,2..,m, j=1,2..,n, m—2,n—2¢€N.
Use the completion for the grid functions

O (z;y) = UM ()W (y), i=2,..m—1, j=2,..,n—1, m—2n—-2€N,
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W () = [2/i]0(a/hy — i+ 4) + W(x/hy — i +3) = [(i + 1) /m]¥(x/hy — i + 1),
1

U2 (y) = [2/5]%(y/ha — j +4) + V(y/hy — j +3) + [(J

0,522, z € [0;1],
—224+32—-1,5, z €1;2],
0,522 —3z—4,5, z€[2;3],
0, z ¢ (0;3).

We consider the basis functions to be equal to zero outside the rectangle:

U(z) =

O (z;y) =0, (z;y) ¢, i=2...m—1, j=2...n—1, m—2n—2€N,

Linear combinations of basis functions give a finite-dimensional subspace in the extended

space
m—1n—1

:{17: v”@’ny}CV.
1=2 j=2

Counsider the continued model in the matrix form
uw e€RY: Bu=f, feR"Y, (8)

under the assumption that the projection operator vanishes the coefficients of the basis
functions whose carriers do not belong entirely to the first domain, and the continued
matrix and the continued right-hand side of the system are defined by the equalities

(Bu,v) = Ay (a, [;7) + An(@, 0) Vi, 5 € V, (f,0) = Fi(I;7) Vo € V,

<f,17> = (f, @)hlhg = f@hlhg, v = (Ul,Ug, ...,UN), S RN, N = (m - 2)(n — 2)

In this case, we enumerate first the coefficients of the basis functions with carriers that
belong entirely to the inside of the first domain. Next, we enumerate the coefficients of
the basis functions with the carriers that cross the boundary of both the first and second
domains. We finish the enumeration with the coefficients of the basis functions with carriers
that belong entirely to the inside of the second domain. Then the vectors have the following
structure

’ / = —l —/

0= (0), 0y, By), w=(u, 0,0), f=(f,0,0).
The matrix has the structure
A A O
B=| 0 Agp A
0 Asp Ags

We define the matrices

The matrices have the structure

A11 A12 0 0 0 0
AI = A21 A20 ) AH = 0 AOQ A23
0 0 0 0 Agg A33
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Define the extended matrix

A11 Alg 0 A11 Alg 0 0 0 0
A=Ar+An= | Aoy Aoy Aog | =] Aar Ay O |+ ] 0 Ago Ao
0 Agg A33 0 0 0 0 Agg A33

We introduce the corresponding subspaces
Vi={o= (0,000 €RY ¢ 1 =0, v =0},

/ /

123:{17:(17'1,172,173)’6RN: v =0, 172:6}, Vo=VioVs,
Vo= {17 = (T, Ty, Tg)' € RN © A0y + AjgTy = 0, Agply + Asgls = ()} :
There exist decompositions
RY=VieV,oVs=VioV, i=V oV, Vu=Vols
Let us present the assumptions about the continuation in the matrix form
381 € (0;4+00), B € [Bi;4+00) i By (Aa, D) < (AnDa, Do) < By (ADy, To) Vi € Vs

The matrix form of the continued biharmonic model is

C[An A 0 (W hi
Bu = f, 0 Ape Ags 0O 1=10
0 Az As 0 0

The original problem in the matrix form and the fictitious problem in the matrix form are

- 7 A02 A23 Usg . 6 Uo o 6
Anur = fi, [ Ao Ass as | |0 as| |0
When studying the continued biharmonic model in the matrix form, we define the
extended matrix in a new way as follows:

Cll 012 0 A11 A12 0 0 0 0
C = A +~vAq, Cn Ch Coy | = An Ay O [+ 0 Az Ags |, v€(0;400).
0 Cg Cs 0 0 O 0 Asp Ass

We use the fulfilment of the statements about the continuation of functions in the following
form:

I € (0;+00), 72 € [y15+00) : 71 (Ca, C2) < (AAya, Auita) < 75 (Cia, C2) Vi € Vo,

Jo c (O, +OO) . <A11_)2,A1172> S 0[2 <AHT)2,AH@2> V/UQ € ‘72

To solve problem (8), as a generalization of the modified method of fictitious
components, we apply the method of iterative extensions [8, 9, 11,12]:

a* e RY: C@@* — ") = -7 (Ba"' - f), k€N, (9)

Vi eVi, v >a, o=1, T = L [0 Y, ke N{1},
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where residuals, corrections, and equivalent residuals are respectively calculated
Pl = Bttt — F @l = 0l gl = Bahl ke N
Let us define the norm
lollex = V(C?0,5) Vo € RY.
Theorem 2. [14] Process (9) has the following estimate
Ha’“ — 11”02 <e Hﬂo — 11”02 , €= 2(72/71)(04/7)k_1, k € N.
Let us present an algorithmic implementation of the method of iterative extensions
for the biharmonic model. We use the method of minimal residuals to solve problem (8).
I. Set the initial approximation and the iterative parameter
Vil e Vi, 1o = 1.
I1. Calculate the residual
Pl =Ba*1— f keN.
ITI. Calculate the absolute error norm squared
Epy = (L7 k eN.
IV. Find the correction
"t Cot =7 keN.
V. Calculate the equivalent residual
7"t =Buw* ! ke N{1}.
V1. Calculate the iteration parameter
ey = <7;k71’ —k71> / <77k71’77k71>’ ke N{1}.
VII. Calculate the next approximation
a* =a*t — @™t ke N,
VIII. Check the iteration stop criterion
B < EE?, ke N{1}, E€ (0; 1).
2. Analysis of Harmonic Model
2.1. Harmonic Model

Let us present the problem to be solved for w = 1 and the fictitious problem for w = II

) 3 . ) v _ v o 3 T/
u, € H, : Ay(ty,0,) = F,(0,) Vo, € H,, F, € H,, (10)
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where we use the Sobolev spaces

Y 9

H, = H,(Q) = {bw EWH): tulp,, = o}
in the bounded domains ,, C R? with the boundaries

0% = 5w, 5w =Twn|JTw2 Tun [ Tw2 =0,
n,, are outer normals todS),,, bilinear forms at r,, € [0; +00) are

A, (U, 0,) = /(awxr)w + Uy Doy + KTy Uy ) A2,
Qo

Each of the problems in (10) has a unique solution under the assumptions [1, 4]
Jer, 05 € (0;400) 1 [|Bullfy ) < Awll, ) < e l|Tulliyy o, Yo € Ho,
If fw is a given function, then
F, (0,) = / FutodQ,.
Qo

In the problem to be solved with w =1, k1 =0, I'1; # 0. In the fictitious problem with
W = II, fH = 0, 71[1 = 0.
2.2. Continued Harmonic Model and Its Analytical Study

Let us present the continued problem

@ eV: A(u, Lv)+ An(a,v) = F(Lo) Vo eV (11)
where we use the extended solution space
V=V()={veW,(I): o, =0}.

We assume that the solution domain of the original problem is complemented to the
rectangle

oA UQH = ﬁ; 0 ﬂQH =0, U, Q1 C RQ,
and the boundary of the rectangular domain is
31_[:5, S:F1UF2, FlmF2:®
We assume that the boundaries of the first domain and the second domain intersect each

other _
o ﬂ@QH =5, 9=T1 mFH,2 # 0,

n is an outer normal to JII. The subspace of solutions to the continued problem is

V= VA = {51 € Vi ilyg, =0}
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In the formulation of the continued problem, we use the projection operator
L:V eV, Vi=iml, I =12
We introduce subspaces

Vs = Va() = {55 € V' lg, =0}, Vo= Vi@ T,

Vo= Vo(1) = {in € V' Al i) = 0 Viig € 1o},
Direct sums are considered using the dot product generated by the bilinear form
A(it, ) = Ay (@, 0) + A, ) Vi, € V.
It is assumed that the bilinear form is such that
dep,e0 >0 ¢ HUHW21(H) < A(0,0) < o H’UHW%(H) Yo e V.
We use the statement on the possibility of continuing the functions
361 € (051], B € [Bis 1]+ PiAA(Ba, 02) < An(Bz, B2) < FoA(0n, To) Wiz € Vo

Note that

9

H,(,) = V,(), we {1, II}.

Statement 2. [12] The solution to the problem (11) it € Vy coincides with the solution to
problem (10) forw =1 on Q and equals to zero on Q.

The study of the continued harmonic model is carried out by the modified method of
fictitious components [6, 8, 9

9

it eV A —a" o) =~ (A @ Do) + Au(@0) = B(Lo) Yo eV,

=1 11 =7=2/Bi+ ), ke N\{1}, Vi’ e V; C V. (12)

Let us introduce the norm
v = VA0, D).

Theorem 3. [12| There exist the following convergence estimates:

1o

k

u—u

o <elit il ke,

e=64q"", o=/l 2 -1, OSQZ(BQ_Bl)/(Bl+BQ)<1'
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2.3. Continued Harmonic Model under Discretization
and Its Numerical Analysis

Let us discretize the continued model when

II = (O,bl) X (O, bg), Pl = {bl} X (O, bg) U(()’bl) X {bg},

Ty = {0} x (0;02) | J(0;1) x {0}, b, b2 € (0; +00).
Let us introduce the grid
hi =b1/(m—1,5), ha =by/(n—1,5), i=1,2...m, j=1,2...n, m—2n—2€N.
We consider the grid functions at the grid nodes
vij=v(r;y;) €R, i=1,2..,m, j=1,2..,n, m—2,n—2¢€N.
Use completion for the grid functions

O (z;y) = UM (2) U (y), i=2...m—1, j=2..n—1, m—2,n—2€N,
UH(z) = [2/i]V(x/hy —i+3,5) + U(x/hy — i +2,5),
W2 (y) = [2/7]9(y/ha — j +3,5) + W(y/hs — j +2,5),
2, z € [0;1],
U(z)=1% 2—2 z€[l;2],
0, z ¢ (0;2).
We define the basis functions to be equal to zero outside the rectangle:

O (z;y) =0, (z;y) ¢, i=2...m—-1, j=2....n—1, m—2n—2€N,

Linear combinations of basis functions give a finite-dimensional subspace in the extended
space

m—1n—1
P-f- S e} e
i=2 j=2
Counsider the continued model in the matrix form
we€RY: Bu=f, feR", (13)

under the assumption that the projection operator vanishes the coefficients of the basis
functions whose carriers do not belong entirely to the first domain, and the continued
matrix and the continued right-hand side of the system are defined by the equalities

(Bu,v) = Aq(i, [19) + An(i, 0) Vi, € V, (f,0) = Fi(Ii7) Vo € V,

(f,0) = (f,0)hihy = fOhihs, D= (v1,0,...,0n) € RV, N = (m —2)(n - 2).

In this case, we enumerate first the coefficients of the basis functions with carriers that
belong entirely to the inside of the first domain. Next, we enumerate the coefficients of
the basis functions with the carriers that cross the boundary of both the first and second
domains. We finish the enumeration with the coefficients of the basis functions with carriers
that belong entirely to the inside of the second domain. Then the vectors have the following
structure

/ ! /

o= (0, Ty, B3), = (1, 0,0), f=(f,0,0).
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The matrix has the structure

A A O
B=1] 0 Ap Ay
0 Az Ags

We define the matrices
(Ari,0) = A((a@,9), (Ana, ) = An(a,0) Va,o e V.

The matrices have the structure

A A O 0 O 0
Ar=1| Ay Ay O], Ap=1|0 Ay Ay
0 0 0 0 A32 A33
Define the extended matrix
A11 Alg 0 A11 Alg 0 0 0 0
A=A1+Ap=| Ay Ay Ags | =] Ass Ay O |+ |0 App Agg
0 Agg A33 0 0 0 0 A32 A33

We introduce the corresponding subspaces
Vi = {T) — (T, Ty, 73) €ERN : Ty =0, Ty :6},

/ !

Vi = {@:(@’1,@2,@3)’6RN: v =0, 172:(_)}, Vo=VioVs,
Vo = {?7 = (?7/1,?7;, 17;;)/ €RY 1 Aty + Aty =0, Azl + Agsty = 6} .
There exist decompositions
RY=VieW,oVs=VoV, i=VieV, Vu=VoVs
Let us present the assumptions about the continuation in the matrix form
381 € (0;4+00), Ba € [Bi;+00) 1 By (A, By) < (Anda, Vo) < By (A, Uy) Yoy € Va.

The matrix form of the continued harmonic model is

CTAn Ap 0 7[m fi
Bu = f, 0 Ap Ay 0 (=120
0 Agp Ag 0 0

The original problem in the matrix form and the fictitious problem in the matrix form are

— 7 AOQ A23 ?_LQ . 6 ’L_LQ o (_)
Anuy = fi, [A32 Ass as |~ 0| as | 0|
When studying the continued harmonic model in the matrix form, we define the
extended matrix in a new way as follows:

011 012 0 A11 A12 0 0 0 0
C=A+7Aqn, | O Cxp Cu | =] A Ay 0 |+7| 0 Age Az |, 7€ (0;400).
0 (3 O3 0 0 O 0 Az Ass

We use the fulfilment of the statements about the continuation of functions in the following
form:

Iy € (0;400), 72 € [y1;+00) 7% (Cg, Ctg) < (Aps, Apvy) < 722 (Cty, C0) V1, € Vs,
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da € (O7 —|—OO) : <A1’172,A12_)2> < 042 <AH?_)2, AH?_)2> V’Ug c ‘72

To solve problem (13), as a generalization of the modified method of fictitious
components, we apply the method of iterative extensions [8, 9, 11,12]:

a* e RY: C@@* —a") = —m_(Ba" - f), k€N, (14)
Vil e Vi, y>a, o=1, 7o = <7’k—1, _k_1> / <ﬁk_1,ﬁk’_1>, ke N{1},
where residuals, corrections, and equivalent residuals are respectively calculated as
Pl = Bttt — F @l = ¢l gl = Bahl ke N
Let us define the norm
lolle» = V(C?0.9) Vo € RY.

Theorem 4. [15] Process (14) has the following estimate:

Jo# =~ als < e 6 = e, £ = 260/ m)(0/2)"", K.

Let us present an algorithmic implementation of the method of iterative extensions
for the biharmonic model. We use the method of minimal residuals to solve problem (13).
I. Set the initial approximation and the iterative parameter

Vao S ‘71, To = 1.
II. Calculate the residual
Pl =Ba"t — f, keN,
III. Calculate the absolute error norm squared
Epoq = (P57 ke N
IV. Find the correction
ot co =7 B eN.
V. Calculate the equivalent residual
7! = Ba*! ke N{1}.
VI. Calculate the iteration parameter

Ty = (PN (LA, ke N{1}

VII. Calculate the next approximation

ot = ot — @t ke N.

VIII. Check the iteration stop criterion

Ek,1 S EoEQ, k € N{l}, E e (O, 1)
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Conclusion

The biharmonic and harmonic problems considered as models and systems are similar,

have similar properties and similar methods for their solution. With necessary changes, the
corresponding results for the biharmonic and harmonic models hold for the scalar model.
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opportunities for scientific research in the South Urals.
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AHAJIN3 BUTAPMOHNYECKUX 1 TAPMOHNYECKNX MO/JIEJIEN
METOJAMN NTEPAIIVIOHHBIX PACIIINPEHNN

A.JI. Ywaxos', E.A. Meavuaticun'
O m0-YpasbeKkuit rocy1apeTBeHHbli YHIBEPCUTeT, I. e Ia0nHCK,
Poccniickas @enepariust

B crarbhe mpuBoauTCs OmMCcaHe PE3yJIBTATOB 3a IMOC/IeHIE IOJIbI [T0 AHAJIN3Y OUrapMo-
HUYECKUX ¥ TAPMOHUYECKUX MOJeJIeil MeTOIaMi UTEPAIMOHHBIX pacimpennii. Pa3ananbie
CTaIMOHAPHbIE (PU3NIECKUE CHUCTEMBI B MEXAaHUKe, T'MIAPOINHAMUKE, TEIJIOTEXHUKE MOJIe-
JINPYIOTCsT C TIOMOIIBI0 KPAEBBIX 3aJ1ad Jijisi HeonHopoaubix ypasaennit Codu 2Kepmen u
[Tyaccona. Mcnosib3ysi GUrapMOHUIECKYIO MOJEJIb, T.€. KPAEBYIO 3aJ1ady JIJIsi HEOIHOPOIHO-
ro ypasHenuss Cocdu 2Kepmen, onucbiBarorT nporubaHue IJIACTHH, HOTOKU IIPU TEUEHUSIX
Kugkocteil. Vcnomb3ys rapMOHUYECKY IO MOJIENb, T.€. KPAeBYIO 33J1a9y JJIsi HEOJTHOPO/IHOTO
ypaBuenus llyaccona, omuchBaioT mporubanusi MeMODPAaH, CTAIMOHAPHBIE PACIIPEIEIEHUS
TeMireparyp y mwiactut. C IOMOIIBI0 pa3pabOTAHHBIX METOIOB UTEPAIHOHHBIX PACIIHPEHIIH
oIy 9aioTcs 3 dOEKTUBHBIE AJITOPUTMBI PEIEHUs PACCMATPUBAEMbBIX 3aa4.

Karouesvie cao6a: 6Uu2aPMOHUMECKUE U 2GPMOHUNECKUE MOJEAU; MEMObl UMEPAUUOH-

ML PACUUPEHUT.
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